首页 > 职称论文知识库 > 电磁理论是谁发表的论文

电磁理论是谁发表的论文

发布时间:

电磁理论是谁发表的论文

因为法拉第只是定性的,用文字描述了电磁感应现象。并没有继续深究。自从1820年起,电磁热席卷席欧洲,法拉第相信自然力的统一性。认为磁生电是必然存在的。从1824年~1828年,法拉第多次进行电磁学实验。1831年8月29日法拉第终于取得突破性进展。他将产生感应电流的情况分为五类,变化中的电流,变化中的磁场,运动的稳恒电流,运动中的磁铁,运动中的导线。1833年楞次用楞次定则来说明感应电流的方向。1845年,纽曼以定律的形式提出电子感应的定量规律。1856年,麦克斯韦发表了第一篇关于电磁理论的论文。进一步建立了电磁理论。

光电磁理论的创立

1831年6月13日,麦克斯韦出生在苏格兰爱丁堡一个很有名望的家庭。其父对于实用的、技术性的学问很感兴趣,后来成为爱丁堡皇家学会成员。8岁时,母亲去世,在父亲的引导下学习科学。受其父亲的影响,麦克斯韦从小就进入科学界,因而受到很多有益的影响。1847年,16岁的他进入爱丁堡大学学习数学和物理学,1850年,他转入剑桥大学,在那里,在著名数学家W·霍普金斯的指导下,他取得了不菲的成绩。

1855年至1856年间,麦克斯韦发表了第一篇电磁学方面的论文——《论法拉第的力线》。这篇论文不仅以抽象的数学形式表示了法拉第直观的力线图像并推进了法拉第的实验研究,而且包含了一系列重要思想,为以后的研究开拓了一条新路。

1861年,在对磁场变化产生感应电动势的现象作了深入分析之后,麦克斯韦敏锐地感觉到,即使不存在导体回路,变化的磁场通过媒质也会在其周围激发出一种“场”,他把它当作感应或涡旋电场。这是麦克斯韦为统一电磁理论所作的第一个重大假设。1862年,麦克斯韦发表了重要论文《论物理的力线》,其中引进了“位移电流”的概念。这是麦克斯韦理论思维的一个创造,也是建立理论的一个关键步骤。这使他可以把导体中的电流产生围绕电流的磁力线和导体切割线时在导体中产生感生电流这两个基本原理加以扩展,形成下述两个原理:空间里变化的电场产生磁场;空间里变化的磁场产生电场。由此得到这样一幅崭新的物理图景:交变的电场产生交变的磁场,交变的磁场产生交变的电场。这两种相互联系、相互激发的过程,使电场和磁场形成统一的“电磁场”。关于电磁场的完全的理论体系就这样逐渐形成。

1864年至1865年,麦克斯韦发表了著名论文《电磁场的动力理论》。在这篇论文里,他得出了真空中的电磁场方程即麦克斯韦方程。这个方程在电磁学中的地位,相当于牛顿力学定律在经典力学中的地位。其形式之简洁、优美,一直为科学界所称道。

1868年,麦克斯韦发表了又一篇重要论文《关于光的电磁理论》,明确地把光概括到电磁理论中。这就是著名的光的电磁波学说。到此为止,麦克斯韦就把电学、磁学、光学这三个原来相互独立的重要物理学研究领域结合起来,完成了19世纪中叶物理学的一个重大综合。

此外,继法拉第之后,麦克斯韦用数学的力量进一步排除超距作用力,对物理学的发展具有深远的意义。因为如果不排除超距力,就不会有电磁理论,也不会有相对论。如果用洛仑兹变换,就可以从麦克斯韦推出光速不变的原理,而这正是相对论的一个基本前提,难怪爱因斯坦一再说,狭义相对论的建立要归功于麦克斯韦方程。

1871年,麦克斯韦任剑桥物理系主任,成为剑桥大学第一个实验物理学教授,筹建并领导该校卡文迪物理实验室。这个名为实验室而实为物理研究所的学术单位,后来发展成为科学史上最重要的、最著名的学术中心之一。

是麦克斯韦。光的电磁理论是首先由J.C.麦克斯韦提出的。经过多年尝试,他于1864年发表了较完整的理论。在麦克斯韦以前,科学家们已认识到光是横波。为了说明这种横波,以A.-J.菲涅耳为代表的一些科学家设想光波是在一种特殊媒质──以太中传播的波,但是遇到了不可克服的困难(见以太论)。在光学发展的同时,电磁学有了很大发展。麦克斯韦引入位移电流,建成了电磁场方程组,也就是麦克斯韦方程组矢量方程组。从这组方程出发,麦克斯韦由理论上推断出电磁波的存在,其速度与光速相同。因此,认为光波是一种电磁波。

法拉第提出来的。法拉第在实验室中发现通电导线能绕磁铁旋转,实现了人类历史上第1次将电磁运动向机械运动的转换,才使得现代社会出现了电动机。

论文电磁波是谁发表的

德国著名物理学家赫兹是电磁波的发现者. 1887年,当时赫兹正在用两套放电电极,一套产生振荡,发出电磁波;另一套充当接收机构。放电产是隙可随意调节,用以指示接收到的信号强弱。为了便于观察,赫有一次偶然把次回路整个放在暗箱中,他注意到,次回路的最大火花长度明显变小了。于是他挪动暗箱的位置,弄清了这是由于箱体挡住了原回路和次回路之间的通道所致。赫兹的工作非常认真,他没有放过这一偶然现象,于是专门安排了一个实验来研究它。他采用的线路用两套感应线圈分别向二套放电电极供电,一套感应线圈的原线圈串联起来拉同一电源,用一个开关控制。大的感应圈给出火花A,约长1厘米;另一感应线圈给出火花B,约长1毫米,从微调螺旋可以测出两极之间的距离,然后,他用各种材料挡在两个火花之间,读取火花B的最大长度。 他比较了导体和非导体的作用,确定没有什么不同,证明不是静电或电磁的屏蔽作用,接着,他又用各种透明的和不透明的材料进行实验,发现能透光的玻璃仍然能起隔离作用。看来光的因素也应排除。再埋一步实验,发现岩盐、冰糖、明矾起的隔离作用很差,而水晶和透明石膏最好,几乎不起隔离作用,几厘米厚都不影响放电,赫兹还改变电极之间的远近,变换电极所有材料,用各种不同的液体甚至不同气压的气体作为屏蔽物,又做了反射、折射等试验。最后鸪是紫外线在起作用。当紫外线照到负电极时,效果最为明显,说明负电极更容易放电,赫兹的论文《紫外光对放电的影响》发表在1887年《物理学年鉴》上。论文详细描述了他的了发现。 赫兹的论文发表后,立即引起了广泛的反响,许多国家的物理学家纷纷投到光电效应的研究中来,因为当时人们误以为光直接变成了电,如果真是这样,岂不是一大好事。 从1888年到1898年,每年差不多都有好几篇甚至十几篇关于光电效应的论文发表,这些研究逐渐提示了光电效应的本质。1899年,汤姆生测出了光电流的荷质比,证明光电流也是由电子组成,光电效应就是由于光照射金属电极,使金属内部的自由电子猁能量而逃逸到空间的一种现象。

电磁波是詹姆斯·克拉克·麦克斯韦发现的。

詹姆斯·克拉克·麦克斯韦,出生于苏格兰爱丁堡,英国物理学家、数学家。经典电动力学的创始人,统计物理学的奠基人之一。1831年6月13日生于苏格兰爱丁堡,1879年11月5日卒于剑桥。

1847年进入爱丁堡大学学习数学和物理,毕业于剑桥大学。他成年时期的大部分时光是在大学里当教授,最后是在剑桥大学任教。

1873年出版的《论电和磁》,也被尊为继牛顿《自然哲学的数学原理》之后的一部最重要的物理学经典。麦克斯韦被普遍认为是对物理学最有影响力的物理学家之一。

詹姆斯·麦克斯韦的成就:

麦克斯韦于1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。

1859年他首次用统计规律得出麦克斯韦速度分布律,从而找到了由微观量求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法。

这种方法是以分析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。

电磁波由法拉第发现、麦克斯韦完成的电磁理论,因为未经一系列的科学实验证明,始终处于预想阶段。是赫兹把天才的预想变成世人公认的真理,使假说变成了现实。促使赫兹去验证麦克斯韦预言的正确性是一次偶然的发现引起的。他在做一次放电实验时,发现在附近的线圈上迸发出小火花。赫兹马上联想到,这是电谐振的结果,就像声学实验中,相同的音又会产生共振一样。赫兹受到启发,由此开始了捕捉电磁波的系统实验。

发表电磁加热的论文

磁铁加热会消磁的论文开头写法如下:1、介绍磁铁加热会导致消磁这一现象需要被深入研究。2、回顾之前对磁性材料稳定性和磁化状态的研究。3、阐述为深入探究磁铁加热会产生消磁现象的原因和机理。

生活中电磁辐射污染论文类的 供研究者使用生活中的电磁辐射污染及防范【摘 要】如今我们工作、生活在 E 时代,在你每天尽情享受科技带来的便捷 和舒适时,有没有想过,在不知不觉中频率不同的电磁波,在我们周围悄无声息地 构成了一种被称作“ 电子 雾”的浓重污染源,它看不到、听不到、嗅不到、摸 不到,神不知鬼不觉地任意穿透、 “切割”人的身体,如同“幽灵”一样,令人防不 胜防。生活中的电子产品种类十分众多,与我们的生活、工作关系非常密切,我们 与它们接触的时间又比较长,因此,这些电子产品所产生的电磁辐射对人体健康 的影响问题已经越来越受到人们的重视。 那么,什么是电磁辐射污染?它对人体作 用的机理有哪些?如何防范电磁辐射污染?【关键词】电磁辐射污染 电磁辐射污染机理 电磁辐射污染防范1831 年英国 科学 家法拉第应用电磁感应的方法,使磁场中的导体在一定 条件下产生了感应电流。 这是 19 世纪最伟大的发现之一,随即世界上第一座发电 站的建成标志着人类迈进了电磁辐射的应用时代。一百多年前,电磁辐射已经深 入到了人类生活的方方面面,当今更是进入了一个电磁辐射的高利用时代。 不过,科学历来都是一把双刃剑,时代的进步常常是要付出一定代价的,这种 二律背反的现象已经得到了 历史 的多次验证。 人们在充分享受电磁辐射带来的 方便舒适的同时,也日渐感受到了它的负面效应。如各类各类办公自动化设备、 移动通讯设备、 家用电器迅速进入我们的生活,提高了我们的工作效率,丰富了我 们的精神和物质生活。就在我们的生活前所未有的便捷的同时,我们所使用的高 科技产品所产生的电磁辐射,又成为继室内空气污染、放射性污染和噪音污染之 后的又一室内环境污染。特别是近些年来,国内外媒体上屡屡报道的有关电磁辐 射对人体有害,更是让人们感觉到了来自电磁辐射的威胁,以致于很多人一提起 它,就有一种莫名的痛恨和恐惧。1 电磁辐射污染: 所谓电磁辐射污染是指高压电、变电站、电台、电视台、雷达站、电磁波发 射塔和电子仪器、医疗设备、自动化设备及微波炉、收音机、电视机、电脑、手 机等工作时产生的各种不同波长频率的电磁波。 人体如果长期暴露在超过安全的 电磁辐射剂量的电磁辐射下,细胞就会被杀伤或杀死。随着信息技术产品的不断 丰富,电磁辐射污染已经成为危害人们工作和生活的辐射污染的重要类型之一。 另一个方面,信息技术要依靠电磁波,而电磁波极容易被干扰和破坏,由此会带来 一些垃圾信息、有害信息的侵害,这也是电磁辐射污染的一个方面。电磁辐射会 造成所谓的“电磁污染”,人们也叫它电子“烟雾”或电子垃圾,即电磁辐射的强 度超过人体或环境所能承受的限度所产生的危害现象。它无色、无味、无形、无 踪,无任何感觉,可穿透包括人体在内的多种物质,无处不在,被科学家称为 “电子 垃圾”或“电子辐射污染”,有专家称这是继大气污染,水污染和噪音污染的第四 污染。2 电磁辐射对人体作用机理人体是导体,可以吸收电磁场的能量。 在电磁场的作用下,人体的分子会发生 取向排列,在分子排列过程中相互碰撞消耗磁场能而转化为内能,引起热效应。 电 磁场强度越大,则热效应越明显;电磁振荡频率越高,热效应越明显,即电磁辐射 对人体的作用:微波>超短波>短波>中波>长波。 而且干扰人体生物电信息的传递。 科学实验已表明,电磁辐射污染对人体的危害主要为两个方面——致热作用和非 致热作用。 致热作用致热作用是指电磁波穿透生物体表层,直接对肌体内部组织 “加热” (如同微波炉加热食品一样),即在高频电磁波作用下,物质的温度会发生改变。 高 频电磁波的致热作用会对生物体产生影响,从而对人体造成严重的伤害,导致乳 腺癌、阳痿、流产、胎儿畸形等疾病。 非致热作用非致热作用主要是指电磁波对人体植物神经系统的危害,造成心 悸、脱发、心动过缓、血压降低和妇女月经失调等疾病。有一个典型的实验是这 样做的:从鸡雏、猫的体内摘取出大脑皮质,用调制后的特高频、甚高频电磁波对 其进行照射,发现有钙离子析出。钙离子是生物体内信息传递、免疫系统工作和 细胞繁殖不可缺少的物质,它的浓度变化必然会对生物体产生影响。3 生活中电磁辐射污染的防范 现代 生活,处处离不开与 电子 设备打交道。能制造电磁辐射污染的污染 源无处不在,电脑、打印机、复印机、手提电话、无线电仪器等无不产生对身体 不利的电磁辐射波;与日常生活有关的如电视机、音响、洗衣机、电冰箱、空调、 微波炉等均能产生各种数量不等的电磁干扰,我们如何防护呢? 生活中怎样才能防止和减少室内电磁辐射污染呢? 中国 室内装饰协会室内 环境监测中心的专家提醒大家注意以下几点: 在购买电子产品是应注意证实该产品是否已经通过了 CCC 认证(国家对电子 电磁兼容性的安全认证);尽量减少对高辐射产品的使用;尽量使用低辐射的产品, 如低辐的电视机、微波炉、电脑等;尽量使用坐机拨打电话,少用手机拨打电话。 手机接通瞬间释放的电磁辐射最大,最好在铃声响过一两秒或两次铃声之间接听, 使用时头部和手机天线的距离尽量远一些。 有人说了,不买家电或是有也束之高阁不再用,污染不就没有或减少了嘛。 好 倒是好,可是要没了它们,咱们的生活就该倒退回从前的艰苦时代了。 恐怕没人愿 意放弃好生活而去过苦日子吧,多学几招防范措施才是现实可行之策。例如: 不要把家电摆放得过于集中,以免使自己暴露在超限量辐射的危险之中。特 别是一些易产生电磁波的家电,如电视、电脑、冰箱、收音机等,最好不要集中摆 放在卧室里。 要避免长时间使用家用电器、手机等,还要尽量避免同时启用多种家电。与 家电保持安全距离很有必要。距离越远,受电磁波侵害就越小。 彩电的安全距离是荧光屏宽度的 5 倍左右,日光灯为 2~3 米,微波炉开启之 后要离开至少 1 米远,孕妇和小孩应尽量远离微波炉。 电器暂停使用时,最好不让 它们处于待机状态,因为此时可产生较微弱的电磁场,长时间也会产生辐射积累。 还有一招就是吃东西。多食用胡萝卜、豆芽、西红柿、油菜、海带、卷心菜、 瘦肉、动物肝脏等富含维生素 A、C 和蛋白质的食物,加强机体抵抗电磁辐射的能 力。 居住、工作在高压线、雷达站、电视台、电磁波发射塔附近的人,佩带心脏起搏器有条件的应配备阻挡电磁辐射的屏蔽防护服。 电视、电脑等有显示屏的电器设备可安装电磁辐射保护屏,使用者还可配戴 防辐射眼镜。 显示屏产生的辐射可能导致皮肤干燥,加速皮肤老化甚至导致皮癌, 因此在使用后应及时洗脸。 注间电磁辐射污染的环境指数。有关专家提醒,5 种人特别要注意这一条,第 一是生活和工作在高压线、变电站、电台、电视台、雷达站、电磁发射塔附近的 人员;第二是经常使用电子仪器、医疗设备、办公自动化设备的人员;第三是生活 在现代电器自动化环境中的工作人员;第四是佩戴心脏起搏器的患者;第五是生 活在以上环境里的孕妇、儿童、老人及病患者等,都应该了解室内电磁辐射污染 的程度,如果环境中电磁辐射污染比较高,就必须采取相应的措施。 对于 E 时代下的又一现代污染———电磁辐射已经被联合国人类环境大会 列入必须控制的造成公害的主要污染物之一。记得吗?我们的儿歌里曾把站着几 只小麻雀的高压线比作五线谱,那曾是城市里最美的图画。可时过境迁,如今,因 为怀疑围绕在居民区周围的高压线释放出的电磁辐射会损害人体健康,高压线的 建设者们屡次亮相听证会甚至法庭,争端大有愈演愈烈之势。 一些专家说,人类认 识世界是一个渐进的过程,许多问题还有待 科学 研究的进一步深入和时间的考 验。目前,不管学术界的争论如何激烈,现存的、引起很大争执的问题应该及时得 到解决。首先,应该及时推出直接关系到公众健康的产品标准。第二、对于已有 标准的产品,应该加强监管力度,特别是列入 3C 认证目录的产品。第三,应该制定 相关的 法律 、法规以及时解决目前引起争端的事件。当然,对于我们普通人也 要适当改变一下生活方式。 如尽量用更多的时间到户外活动,到乡村去,到田野去, 接近大 自然 ,享受大自然。参考 文献 [1]《宇宙、地球和大气》[美].I.阿西摩夫著科学出版社. [2]《电磁波工程》朱建清,著.国防科技大学出版社.

在《论电磁的热效应和热的机械值》论文发表后,焦耳受到了冷遇,许多科学家并不认同焦耳的研究成果。但焦耳不气馁,继续通过实验来获得更精确的热功当量值。直至1878年,焦耳设计了构造精妙的叶轮实验装置,进行了400余次实验。焦耳测量了水、鲸油、水银的热功当量,所得到的热功当量值几乎皆为423.9千克米/千卡。这一数值仅比现今的公认值427千克米1千卡小0.7%,该数值保持30年而未作大的更正。

发表电磁学论文

试论三相交直流指示仪表在电磁学计量校验的应用摘要:现代社会对于电能的使用越来越广泛,越来越多的家用电器,工业机械都在依靠电能来进行驱动。作为电磁学计量的重要工具,电能表的校验对于我国电力企业有着重要的意义。三相交直流指示仪表作为电磁学计量校验的重要工具,其在电能表计量校验中的应用对于电磁学计量校验有着重要意义。文中就三相交直流指示仪表在电磁学计量校验中的应用进行了简要的论述。 关键词:三相交直流指示仪表;电磁学;计量校验;应用;电能表 现代社会对于电能的需求不断增加,电能表作为电力计量的重要仪表,其计量校验对于电力企业有着重要的作用。加快电磁学计量仪表的校验,加强电磁学计量仪表校验精度,对于我国电力系统的健康发展以及试用人员都有着重要的意义。 1.常用电磁学计量仪表分析 常用电磁学计量仪表中,常用的计量仪表主要兆欧表、万能表、钳形电流表。针对不同型号的仪表,其测量校验范围也不相同。在使用过程中首先要针对测量条件选用等级相同仪表或档位进行测量。电能表作为电能计量的基础工具,其良好的校验对于电力企业有着重要的意义。三相电能表校验装置是电能表的标准校验仪器设备,它对于我国电能计量有着重要的作用,是电力部门、电能表生产厂家和标准计量部门不可缺少的标准仪器设备之一。目前,这种装置的设计与生产,在原理和技术上都是成熟的,同时其自动化水平和验表的精确度也正在不断提高中。 2.三相交直流指示仪表在电磁计量校验中的应用 本文以电能表校验作为基础,对三相交直流指示仪表在电磁学计量仪表校验的应用进行了简要的论述与分析。 2.1传统校验仪器在电能表校验分析 三相交直流指示仪表在电磁计量校验应用最具代表性的是三相交直流指示仪表在电能表的校验。电能表的校验对于电力部门、电能表生产厂家以及计量部门是一向非常重要的工作,校验准确与否直接关系到这些部门与用电户的切身利益。为了更好的分析其运用,首先对电能表的校验原理与三相交直流指示仪表的工作原理等进行分析。对电能表的校验是在被校表加上一定的电压、电流,根据被测表的读数与实际消耗电能相比从而得出被测表的误差。不同等级的电能表校验装置对标准表有不同的要求,其中国家标准《交流电能表检定装置检定规程JJG597一89》列出了各级电能表校验装置对标准表的要求。程控式三相校表台的流行结构是由原有的半自动化的校表台演变而来的。在这种结构中,系统的整个控制主要由主控单片机来完成。由控制单片机来负责获取各种数据,并对其进行运算,并向各个受控对象发送指令,整个系统的工作的运行由它进行协调。后台计算机主要起数据存取、打印的功能。这种设计方案具有从原有系统升级简单,可以保证原有研究成果的最大利用;同时台体可以在脱离计算机的情况下单独工作。但这种工作方式也有着其较大的缺陷:由于整个系统的协调、运算、控制等工作都在单片机的控制下进行,此方案对单片机的要求较高,会导致系统的故障率提高;同时这个方案又浪费了后台计算机的强大计算能力,使其闲置;另外一方面,这个方案中控制单片机与后台计算机都对系统有一定的控制能力,这样容易产生控制实施时的语义不清,从而使系统发生故障。因此,采用新技术生产的三相交直流指示仪表对电能表进行校验可以有效的避免传统校验仪的弊端,减少校验误差的几率2.2三相交直流指示仪表组成及其各组建功能分析 目前较为先进且成熟的程控式三相交直流指示仪表一般由由后台控制计算机、通讯控制单片机、三相程控数字信号源、标准表、光电头和误差显示模块组成。采用标准表法对三相电能表进行校验。通过对被测表和标准表加相同的电压电流值,然后根据标准表记录的电能数和被测表所记录的电能数进行比对,从而得出被测表的误差数。其各模块的功能分别为:标准表是采用标准表法进行校验,标准表等级要满足装置的等级要求。可以选一个具有三个功率元件的三相电能表,也可选择三个只具有一个功率元件的单相电能表。具有三个功率元件的三相电能表,三个功率元件产生三路模拟输出相加后经I用变换产生标准表功率脉冲和。因此标准表在任一相为负功率而三相总功率为正时均可准确测量。标准表具有四个电压量程:60V、100V、200V、400V和至少一个电流程:SA。在进行校验时它的接线方式与被校表相同。标准表电压回路接线及电压量程的转换由通讯控制单片机控制继电器自动完成转换。三相程控数字信号源的主要功能是在通讯控制单片机的控制之下,根据不同的要求产生精确的三相电压和电流信号。光电头用以监视被测表的运行情况。每当被测表转一圈后,光电头发出一个脉冲送给通讯控制单片机,当被测表转到用户设定的圈数之后,后台控制计算机开始计算被测表误差。通讯单片机主要为后台控制计算机和前台可控器件提供通信通道。即将由串口发来的指令进行相应的解码后发给前台;另一方面,将前台的数据进行相应的编码后发给后台。通讯控制单片机主要根据后台管理计算机发出的指令控制三相程控数字信号源的开始及停止工作。并根据后台管理计算机发出的指令控制三相程控数字信号源的接线方式及电压电流量程的自动转换。将A一D采样后的数据传输到后台控制计算机,并根据后台控制计算机运算后的结果对电压、电流源进行调控。接收光电头及标准表功率脉冲,并将数据传送到后台控制计算机进行计算。将误差数据送到到显示模块。后台控制计算机主要是负责控制整个校表装置的工作和测试结果数据的存储、查询和打印。 3.三相交直流指示仪表对于电能表校验的特点分析 三相交直流多功能校验装置,是集电能表、交直流指示仪表和交直流电测量变送器三大检定校验功能于一体的,集目前先进技术于一身技术,功能齐全的校验装置。一般采用大规模集成电路,其程控信号源采用数字合成技术和以多组高性能单片机为核心的微机控制系统。通过操作键盘,电压、电流、相位、频率数字化粗细调,对单、三相交直流有功无功功率表、电流、电压、频率、相位表、电测量变送器和各式电能表,实现规程、选点、单点校验。其具有数字合成技术和单片机控制系统;数码显示;配套采用国际先进的双磁芯零误差电流互感器的多功能标准表。数字化粗细调,电流、电压、频率、相位一键到位,并且键盘显示。专用程控键盘校表,无需计算机可实现规程、选点、单点校验。进入单点校验状态时可随时改变校验点。宽量程,无须互感器,确保精度;档位齐全,可自动切换量程。可自动或手动校验交流电压、电流、有功功率、无功功率、频率、相位表和直流仪表及交直流电测量变送器;兼校一块电能表。具有自我保护功能,对电压短路、电流开路实现保护并报警。可与计算机连接进行校验、数据处理、存储、查询、打印及管理。 结论 由于三相交直流指示仪表具有的多种特性,使其在电磁学校验中的应用越来越广,已经成为了电磁学校验仪器发展的重要方向,相信在未来几年里更加严格的校验要求将为三相交直流指示仪表提供更加广阔的发展空间。 参考文献 [1]孙明玮.三相交直流指示仪表的开发与设计[J].精密仪器,2007,11. [2]李晓理.电能表校验装置基本原理[J].电气仪表开发,2007,6. [3]李志明.校验仪表数据采集与过程控制[J].计算机工程与应用,2008,1. [4]郭航.电能表智能校验台[J].电测与仪表,2000,3. [5]赵宇飞.电磁学基础校验[J].仪表仪器,2006,7. 这是网上的资料

1855年,24岁的麦克斯韦发表了学术论文《论法拉第的“力线”》。这是麦克斯韦第一篇关于电磁学理论方面的论文,麦克斯韦向电磁学理论的纵深领域挺进。

卢瑟福出生于新西兰的一个偏僻小村庄,他从小就向往解释宇宙,向往发明,向往创造。 1889他考上了新西兰大学。大学期间,他就自己动手制成一种灵敏的检波器,试验了在新西兰大地上的第一次电报,并发表了电磁学方面的论文。凭着这几篇论文,大学毕业几年后,卢瑟福到了剑桥大学的卡文迪实验室。 在这里,他接受了老师汤姆孙的建议,开始了对原子的探试。探试的第一步就是抓住镭放出的射线,看它到底是些什么东西,然后就可以顺藤摸瓜追踪原子内的秘密。 卢瑟福天生是个实验的好手,他立即设计了一个实验,用一个铅块,钻上小孔,孔内放一点镭。这样射线只能从这个小孔里发出,然后将射线放到一个磁场里。 奇怪的现象出现了,一束射线立即分成三股,一股靠近N极偏转,一股靠近S极偏转,还有一股不偏不倚一直向前,卢瑟福给它们取名为α、β和γ射线。经过测定,β射线就是老师汤姆孙发现的.电子流,γ射线就是伦琴发现的X光,居里夫妇发现的放射性就是α、β和γ射线。好个卢瑟福,真是出手不凡,19世纪最后10年的三大发现他在一个实验里就全部得到解释。 当他兴冲冲地把这些新发现告诉老师汤姆孙时,老师自然很高兴,顺便还告诉卢瑟福一个消息:加拿大麦克吉尔大学物理系派人来剑桥聘请教授,他认为卢瑟福是最好的人选。 1898年卢瑟福横渡大西洋到了加拿大,在这里,他遇到一个比他小七岁的年轻助手索迪,索迪的化学知识很丰富,这正好弥补了卢瑟福化学知识上的不足。 这时,卢瑟福又想起了在剑桥时遇到的一个老问题,α粒子从所具有的电量和质量来看很像元素氦,有索迪做助手,卢瑟福马上开始验证。实验结果出来了,α射线果然就是氦流。那么镭放出α射线后剩下的又是什么呢?经实验,竟然又是一种新元素氡。于是卢瑟福宣布放射性既是原子现象,又是产生新物质的化学变化的伴随物。 1907年,为了表彰卢瑟福的这一重大发现,诺贝尔评审委员会授予他诺贝尔化学奖。你可能会莫名其妙,物理学家怎么获得了化学奖。没错,正如卢瑟福所说:“这真是太妙了!我一生中研究了许多变化,但是最大的变化是这一次,我从一个物理学家变成了一个化学家。”

电磁学论文发表

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

电磁学是物理学的一个分支。电学与磁学领域有著紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。 主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。电磁学或称电动力学或经典电动力学。之所以称为经典,是因为它不包括现代的量子电动力学的内容。电动力学这样一个术语使用并不是非常严格,有时它也用来指电磁学中去除了静电学、静磁学后剩下的部分,是指电磁学与力学结合的部分。这个部分处理电磁场对带电粒子的力学影响。电磁学的基本理论由19世纪的许多物理学家发展起来,麦克斯韦方程组通过一组方程统一了所有的这些工作,并且揭示出了光作为电磁波的本质。电磁学的基本方程式为麦克斯韦方程组,此方程组在经典力学的相对运动转换(伽利略变换)下形式会变,在伽里略变换下,光速在不同惯性座标下会不同。保持麦克斯韦方程组形式不变的变换为洛伦兹变换,在此变换下,不同惯性座标下光速恒定。二十世纪初迈克耳孙-莫雷实验支持光速不变,光速不变亦成为爱因斯坦的狭义相对论的基石。取而代之,洛伦兹变换亦成为较伽利略变换更精密的惯性座标转换方式。静磁现象和静电现象很早就受到人类注意。中国远古黄帝时候就已经发现了磁石吸铁、磁石指南以及摩擦生电等现象。系统地对这些现象进行研究则始於16世纪。1600年英国医生威廉·吉尔伯特(William Gilbert,1544~1603)发表了<论磁、磁饱和地球作为一个巨大的磁体>(Demagnete,magneticisque corporibus et de magnomagnete tellure)。他总结了前人对磁的研究,周密地讨论了地磁的性质,记载了大量实验,使磁学从经验转变为科学。书中他也记载了电学方面的研究。

电磁场与微波技术,是电子信息类学科的一门非常重要的专业理论课,目的是满足学生以后从事微波天线以及射频类的相关工作需求。我整理了电磁场微波技术论文,有兴趣的亲可以来阅读一下!

“电磁场与微波技术”课程的改革与实践

摘要:在对“电磁场与微波技术”课程的改革与实践中,分析了目前该课程的教学中存在的主要问题,结合课程特点和“三本院校”学生的实际情况,整合了电磁场与电磁波、微波技术和天线理论三门课程的主要内容,加强了该课程与工程实际的结合,适应了三本学校的应用型人才的目标,并通过教学方式和考核方式等方面的具体改革措施,提高了该课程的教学质量,尤其是提高了学生对该课程的相关知识和技术的实际应用能力。

关键词:电磁场与微波技术;工程实际;考核制度

作者简介:张具琴(1980-),女,河南信阳人,黄河科技学院电子信息工程学院,讲师;贾洁(1982-),女,河南安阳人,黄河科技学院电子信息工程学院,助教。(河南郑州450063)

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)17-0054-02

随着信息时代的发展,作为信息主要载体发展方向的高频电磁波—微波,不仅在卫星通信、计算机通信、移动通信、雷达等高科技领域得到了广泛的应用,而且已经深入到了各行各业中,在人们的日常生活也扮演着重要角色。因此对于电子信息专业的学生来说,电磁场、微波技术与天线类课程在目前及今后都是不可缺少的主干专业课程。[1,2]但由于该课程的自身特点及对于该课程教学的一些传统认识,使得学生对该课程的知识和技能的学习和掌握不能满足国内对电磁场与微波技术及其相关专业人才的需求。为提高该课程教学质量和人才培养质量,尤其是针对三本院校的应用型人才培养目标,笔者认真分析了该课程教学中的问题,结合课程特点和“三本院校”学生的实际情况,对该课程进行了一系列的改革和实践探索,并取得了一定的成果。

一、“教”“学”中的主要问题

该课程传统的教学方法是以事实性知识传授为教学目标,即课程内容是介绍“是什么”“为什么”,而缺乏“怎么做”“怎么用”,过分强调理论,而缺乏对知识的实际应用。

目前该类课程所用教材多为一本学校编著,这些教材整体突出课程内容的完整性和理论分析的严密性。对于理论基础一般也较为薄弱、更注重实际应用能力的三本学生来说算是“天书一部”,学习起来也“味同嚼蜡”,教师授课也是事倍功半,教学效果很不理想,很多三本学校对该课程的开设是“形同虚设”。

该类课程的教学模式仍是以理论教学为主的,教学方法和内容很少涉及该课程的实际知识应用和人才就业的方向指导,结果学生学完后除了知道有很多公式推导外,对该课程其他方面相关内容知之甚少,所以缺乏学习动力,教学效果不佳。

对于该课程的考核制度多为“一刀切”模式,即“考试分数定高低”,未能考虑学生的个体差异,忽视学生学习能力、学习过程、学习方式差别,不能很好调动学生的积极性和主动性。

二、改革方法和措施

1.改革传统的事实性知识传授的教学目标,更注重对实际应用能力的培养

在教学内容中,增加具体理论的应用实例分析,[3]使学生对电磁场和微波的实用性有较好的认识;增加微波技术在新科技和社会生产生活中的实际应用的一些例子,使学生有更强的学习兴趣和学习动力;课程中很多知识点的引入,都以思考题和小的科研课题的形式提出,使学生应用所学的理论知识分析解决实际问题的能力与创新、研究能力得到相应的锻炼。

增开相应的微波实验项目,使学生的实际动手能力得到很好提高,考虑到实验室建设的成本的问题,可以通过先引入微波的仿真实验项目或者引入与现有的大学物理实验、通信原理实验等成熟实验项目相结合的实验项目。[4]

2.突破传统的一本院校所编教材的限制,使学生在有限的时间内掌握具有生命力的知识基础和必要技能,以满足高素质应用人才知识结构和素质结构的需求

在实际授课过程中注重将“电磁场与电磁波”、“微波技术”和“天线理论”有机结合,采用电磁场与微波技术结合的自编的简本教材为授课教材,把天线及应用作为扩展补充教材,将三者精要贯穿于教学中。这大大节约了理论教学时间,使学生有更多的时间参与到实践中去,有利于培养学生应具有的实践能力。

具体教学内容方面:加强了该课程中的最基本的电磁场的概念、定理的讲解,力求夯实该门课程的基础;增加了微波在新科技中的应用和微波的发展前景的介绍和大量的网络理论应用实例分析等,有利于学生学习目标、学习兴趣的建立和实际应用能力的提高;针对该门课程涉及知识面广、理论性较强的特点,对于只是涉及而非重点内容大胆删减或者采用增加附录的形式直接给出,这样有利于学生有针对性地学习;对于课程中的概念采用“量纲分析法”,使学生对概念的物理意义有更深地理解,应用起来能够更加娴熟;对于其他新知识的引入采用“概念—方程—新概念”教学模式,顺着学生的理解思路,水到渠成;更加注重了理论与实践的结合,每个具体的理论讲完后,立即有相应的实例分析,既有利于提高学生的实际分析问题的能力又有利于提高其学习兴趣。

3.改革传统的理论教学为主的教学方法,开展“以应用为基本出发点”的理论教学方法研究

(1)以应用为本,确定理论教学的研究方法。在教学大纲和简本教材中,弱化理论讲解,重视实际解决问题能力的提高,主要采用“用什么理论,讲什么理论”和选学、自学内容相结合的模式,即让大多数学生学到了本课程的主要内容,又让学有富余的学生得到更深层次的提高。

(2)注重对学生进行思维能力与应用能力的训练。改变传统的纯理论讲解、缺少实际应用实例的情况,在教学过程中注重理论讲解、实例分析、习题课相结合;以思考题和小的科研课题的形式,对学生进行有效的思维能力与应用能力训练。

(3)具体教学方法中,采用多种方法相结合,尤其是板书和多媒体相结合教学。对于主要理论、公式的推导,以板书教学为主,有利于学生的理解和接受;而对于一些介绍性知识、实例讲解和仿真实验方面,可辅以多媒体教学和动画演示,丰富学生的感性认识和知识量。

(4)注重案例教学。例如,以往年学生的毕业设计为案例,阐明微波是如何用来解决实际问题的;提出目前理论应用于实际的方向和技术瓶颈,鼓励同学们探索和研究,力争做到理论与实践相互联系,相互穿插,相辅相成,使学生真正从这门课程中学到“实惠”,即掌握了具体知识的应用,也为其以后的就业指明了方向。

(5)开设“第二课堂”教学法。针对学生层次的差异,可以采用课堂教学与网络教学相结合的方式、给出小型科研调研题目等方式,[5,6]使每个学生的潜能都能得到最大的发挥。充分利用黄河科技学院(以下简称“我校”)的校企业合作平台,让学生利用半年左右的时间充分参与到微波天线企业一线的科研和生产中,在理解整机工作原理的基础上,研究实际的产品部件;通过在学生与学生之间、学生与老师之间、工程技术人员之间对出现问题的讨论,使学生更全面地思考和理解问题,另一方面也能使学生掌握和了解最新的知识,适应科技高速发展的需要,实现与时俱进。

4.改革传统的考核制度“一刀切”模式,开辟“多样化的柔性”考核制度

结合“因材施教”的指导方针,认真考虑学生的个体差异,增强“第二课堂”的作用,开设“老生研讨课”,加重过程考核,提出开卷考试制度等方案,极大地调动了学生的积极性和主动性,提高了教学效果。传统的终结性考核以理论知识、标准答案、闭卷形式为主。改革后的考核方式更加注重过程考核,加入调研报告成绩,课程小结成绩实,实践环节成绩;考试试卷上增设选做题目、课程设想等,给学生充足的学习空间,有利于激发学生的学习自主性,提高学习的自觉性和自学能力;考试采用开卷形式,重视知识的应用而弱化死记硬背,加强学生的应用能力的考核。

另外,本课程的教学中也广泛利用网上电子教案、习题库等教学资源,为学生的自学和课后复习提供了一定的空间,随着课程网络资源的建设,教学中可利用校园网实现网络教学、在线测试、在线答疑。

三、改革实践的效果

课程教学目标和教学内容的调整,理顺并抓住了根本,节省了时间,避免了枯燥繁冗的数学推导过程,使学生接触更多的工程实践,适应了三本学校的应用型人才目标;教学方法、教学手段的改革,加强了理论与实际的联系,避免了学生对该课程中一些难而无用的知识纠结,侧重工程实际应用,使他们的实践能力大大提高;考核方式的改革,使学生的学习积极性得到了全面地调动,学生能够主动参与到学习过程中,学习方式灵活、学习兴趣也有了很大的提高。

改革后学生能够积极主动地参与到“电磁场与微波技术”的学习中,通过亲身体验和相关内容的学习,积累和丰富直接经验,促进学生掌握了该课程的基本知识和基本技能,培养了学生的创新精神、实践能力和终身学习的能力。具体表现在以下几个方面:本课程的合格率达到了95%以上,优秀率将近40%;有近50%的学生投入到该课程的研讨式学习和科研课题研究中,6名同学在科技期刊上发表了科研论文;三届毕业设计有13名学生做了该方向的课题,[7]其中3名同学取得了优秀毕业设计的成绩;在两届全国大学生电子设计大赛中,2名同学选择了该方向的创新设计并取得了优异成绩;该方向的就业率和考研率都有很大提高,2005级以来三届近400名毕业生中就有15名学生从事该方向工作,实现了我校该方向就业的零的突破,有近30名毕业生选择该方向为研究生报考方向。

四、结束语

该课程的教学改革和实践在教学质量和人才培养方面取得了一定的成绩,但教学改革任重道远,要培养出既具有理论知识基础又具有较强实践能力的适应时代的高素质应用人才,必须与时俱进地调整和充实教学的各个环节,协调和配合好教学体制和机制的多方面才能达到最佳效果。

参考文献:

[1]盛振华.电磁场微波技术与天线[M].西安:西安电子科技大学出版社1995.

[2]李丽华.论三本院校电磁场与微波技术课程教学[J].投资与合作(学术版),2010,(9):64-65.

[3]陈帝伊,刘淑琴,许景辉,等.“电磁场理论”课程的教学改革探讨[J].电气电子教学学报,2009,(4):116-117.

[4]杨再旺,张淑娥.谈《电磁场与微波技术》实验方法改革[J].中国电力教育,2005,(S1):147-150.

[5]陈宏,费跃农,郑三元,等.研究性学习在“模拟电子技术”课程教学中的应用[J].电气电子教学学报,2009,(5):108-110.

[6]刘云.浅谈“微波技术与天线”课程中的创造力培养[J].电气电子教学学报,2011,(2):8-9.

[7]郑娟,蒋军.电磁场与微波技术方向毕业设计指导[J].黄山学院学报,2009,(3):125-127.

呵呵我也是科大的

  • 索引序列
  • 电磁理论是谁发表的论文
  • 论文电磁波是谁发表的
  • 发表电磁加热的论文
  • 发表电磁学论文
  • 电磁学论文发表
  • 返回顶部