首页 > 期刊论文知识库 > 苯与烷烃酸性比较研究论文

苯与烷烃酸性比较研究论文

发布时间:

苯与烷烃酸性比较研究论文

苯的酸性比烷烃的酸性大。苯是一种碳氢化合物,是有酸性的,而且比烷烃的酸性要大。烷烃是只有碳碳单键的链烃,是最简单的一类有机化合物。

烷烃不能与液溴与酸性高锰酸钾反应烯烃可以使液溴与酸性高锰酸钾褪色苯不能使液溴和酸性高锰酸钾褪色

乙烷与苯的酸性比较,苯的酸性大于乙烷,乙烷都是饱和键,相对更稳定,而苯有不饱和键容易发生加成反应,取代反应等。

烯烃>炔烃>烷烃烷烃性质稳定烯烃的双键是一个pai键,一个sigema键,而炔烃的是1个sigema键,2个pai键,性质跟稳定。(打不上希腊字母,我说的是单烯烃,如果是2烯烃,共轭烯烃等,就说不定了)

水和烷烃的极性比较研究论文

烷烃分为饱和的和不饱和的。饱和的如果是直链烃,就是c-c-c-c-c-c-c这样的,肯定是结构对称并且是非极性的如果是有支链的,如c-c-c-c-c等 | | c c这个就不是完全非极性结构,因为它的分子结构并不对称,会偏向一边不饱和烃与之类似,如果其结构能形如c-c-c-c-c-c-c,对称点在某一个原子上或者几何中心的,那么这就是非极性分子

烷烃即饱和烃(saturated group),是只有碳碳单键的链烃,是最简单的一类有机化合物。烷烃分子中,氢原子的数目达到最大值,它的通式为CnH2n+2。分子中每个碳原子都是sp3杂化。最简单的烷烃是甲烷。烷烃中,每个碳原子都是四价的,采用sp3杂化轨道,与周围的4个碳或氢原子形成牢固的σ键。连接了1、2、3、4个碳的碳原子分别叫做伯、仲、叔、季碳;伯、仲、叔碳上的氢原子分别叫做伯、仲、叔氢。为了使键的排斥力最小,连接在同一个碳上的四个原子形成四面体(tetrahedron)。甲烷是标准的正四面体形态,其键角为109°28′(准确值:arccos(-1/3))。理论上说,由于烷烃的稳定结构,所有的烷烃都能稳定存在。但自然界中存在的烷烃最多不超过50个碳,最丰富的烷烃还是甲烷。由于烷烃中的碳原子可以按规律随意排列,所以烷烃的结构可以写出无数种。直链烷烃是最基本的结构,理论上这个链可以无限延长。在直链上有可能生出支链,这无疑增加了烷烃的种类。所以,从4个碳的烷烃开始,同一种烷烃的分子式能代表多种结构,这种现象叫同分异构现象。随着碳数的增多,异构体的数目会迅速增长烷烃还可能发生光学异构现象。当一个碳原子连接的四个原子团各不相同时,这个碳就叫做手性碳,这种物质就具有光学活性。烷烃失去一个氢原子剩下的部分叫烷基,一般用R-表示。因此烷烃也可以用通式RH来表示。烷烃最早是使用习惯命名法来命名的。但是这种命名法对于碳数多,异构体多的烷烃很难使用。于是有人提出衍生命名法,将所有的烷烃看作是甲烷的衍生物,例如异丁烷叫做2-二甲基丙烷。现在的命名法使用IUPAC命名法,烷烃的系统命名规则如下:找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸)代表碳数,碳数多于十个时,以中文数字命名,如:十一烷。 从最近的取代基位置编号:1、2、3...(使取代基的位置数字越小越好)。以数字代表取代基的位置。数字与中文数字之间以 - 隔开。 有多个取代基时,以取代基数字最小且最长的碳链当主链,并依甲基、乙基、丙基的顺序列出所有取代基。 有两个以上的取代基相同时,在取代基前面加入中文数字:一、二、三...,如:二甲基,其位置以 , 隔开,一起列于取代基前面。 异辛烷(2,2,4-三甲基戊烷)的结构式。异辛烷是汽油抗爆震度的一个标准,其辛烷值定为100。对于一些结构简单或者常用的烷烃,还经常用俗名。如,习惯上直链烷烃的名称前面加“正”字,但系统名称中并没有这个字。在主链的2位有一个甲基的称为“异”,在2位有两个甲基的称为“新”。这虽然只适合于异构体少的丁烷和戊烷,出于习惯还是保留了下来,甚至给不应该叫“异”的2,2,4-三甲基戊烷也冠上了“异辛烷”的名字。物理性质烷烃随着分子中碳原子数的增多,其物理性质发生着规律性的变化:1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。一般地,C1~C4气态,C5~C16液态,C17以上固态。2.它们的熔沸点由低到高。3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。4.烷烃都不溶于水,易溶于有机溶剂。 CH3 | 注意:新戊烷(CH3—C—CH3)由于支链较多,常温常压下也是气体。 | CH3化学性质烷烃性质很稳定,因为C-H键和C-C双键相对稳定,难以断裂。除了下面三种反应,烷烃几乎不能进行其他反应。氧化反应R + O2 → CO2 + H2O 或 CnH2n+2 + (3n+1)/2 O2-----------(点燃)---- nCO2 + (n+1) H2O所有的烷烃都能燃烧,而且反应放热极多。烷烃完全燃烧生成CO2和H2O。如果O2的量不足,就会产生有毒气体一氧化碳(CO),甚至炭黑(C)。以甲烷为例:CH4 + 2 O2 → CO2 + 2 H2O O2供应不足时,反应如下:CH4 + 3/2 O2 → CO + 2 H2O CH4 + O2 → C + 2 H2O 分子量大的烷烃经常不能够完全燃烧,它们在燃烧时会有黑烟产生,就是炭黑。汽车尾气中的黑烟也是这么一回事。取代反应R + X2 → RX + HX 由于烷烃的结构太牢固,一般的有机反应不能进行。烷烃的卤代反应是一种自由基取代反应,反应的起始需要光能来产生自由基。以下是甲烷被卤代的步骤。这个高度放热的反应可以引起爆炸。链引发阶段:在紫外线的催化下形成两个Cl的自由基 Cl2 → Cl* / *Cl链增长阶段:一个H原子从甲烷中脱离;CH3Cl开始形成。 CH4 + Cl* → CH3+ + HCl (慢) CH3+ + Cl2 → CH3Cl + Cl* 链终止阶段:两个自由基重新组合 Cl* 和 Cl*, 或 R* 和 Cl*, 或 CH3* 和 CH3*. 裂化反应裂化反应是大分子烃在高温、高压或有催化剂的条件下,分裂成小分子烃的过程。裂化反应属于消除反应,因此烷烃的裂化总是生成烯烃。如十六烷(C16H34)经裂化可得到辛烷和辛烯(C8H18)。由于每个键的环境不同,断裂的机率也就不同,下面以丁烷的裂化为例讨论这一点:CH3-CH2-CH2-CH3 → CH4 + CH2=CH-CH3 过程中CH3-CH2键断裂,可能性为48%; CH3-CH2-CH2-CH3 → CH3-CH3 + CH2=CH2 过程中CH2-CH2键断裂,可能性为38%; CH3-CH2-CH2-CH3 → CH2=CH-CH2-CH3 + H2 过程中C-H键断裂,可能性为14%。 裂化反应中,不同的条件能引发不同的机理,但反应过程类似。热分解过程中有碳自由基产生,催化裂化过程中产生碳正离子和氢负离子。这些极不稳定的中间体经过重排、键的断裂、氢的转移等步骤形成稳定的小分子烃。在工业中,深度的裂化叫做裂解,裂解的产物都是气体,称为裂解气。由于烷烃的制取成本较高(一般要用烯烃催化加氢),所以在工业上不制取烷烃,而是直接从石油中提取。烷烃的作用主要是做燃料。天然气和沼气(主要成分为甲烷)是近来广泛使用的清洁能源。石油分馏得到的各种馏分适用于各种发动机:C1~C4(40℃以下时的馏分)是石油气,可作为燃料; C5~C11(40~200℃时的馏分)是汽油,可作为燃料,也可作为化工原料; C9~C18(150~250℃时的馏分)是煤油,可作为燃料; C14~C20(200~350℃时的馏分)是柴油,可作为燃料; C20以上的馏分是重油,再经减压蒸馏能得到润滑油、沥青等物质。 此外,烷烃经过裂解得到烯烃这一反应已成为近年来生产乙烯的一种重要方法。 英文命名对照n Name Formula Alkyl1 Methane CH4 Methyl2 Ethane C2H6 Ethyl3 Propane C3H8 Propyl4 Butane C4H10 Butyl5 Pentane C5H12 Pentyl6 Hexane C6H14 Hexyl7 Heptane C7H16 Heptyl8 Octane C8H18 Octyl9 Nonane C9H20 Nonyl10 Decane C10H22 Decyl例如,2,2,4-三甲基戊烷 2,2,4-trimethylpentane

烷烃的物理性质遵循甲烷的模式,并与烷烃的结构相一致。烷烃分子完全是由共价键连结起来的。这些键或是连结两个同类的原子,因而是非极性的;或是连结两个电负性相差很小的原子,因而只有很小的极性。而且这些键在方向上分布得非常对称,所以键的微弱的极性易于抵消。所以烷烃分子或是非极性的,或是极性很弱。把非极性分子结合在一起的作用力(范德华力)是弱的,而且作用力范围很小;它们仅在两个分子的紧密接触部分起作用,也就是在分子的表面间发生作用。因此,可以预料,在同一类化合物中,分子越大——因而它的表面积越大——分子间的作用力也越弱。表烷烃的某些物理常数列举了若干正烷烃的某些物理常数。我们知道,沸点和熔点随着碳原子数增加而升高。沸腾和熔融过程需要克服液体和固体的分子间作用力。分子变大时,分子间的作用力增大,因而沸点和熔点升高。烷烃的某些物理常数 名称 结构式 熔点(℃) 沸点(℃) 密度(20℃) 甲烷 CH4 -183 -162 乙烷 CH3CH3 -172 丙烷 CH3CH2CH3 -187 -42 正丁烷 CH3(CH2)2CH3 -138 0 正戊烷 CH3(CH2)3CH3 -130 36 正己烷 CH3(CH2)4CH3 -95 69 正庚烷 CH3(CH2)5CH3 98 正辛烷 CH3(CH2)6CH3 -57 126 正壬烷 CH3(CH2)7CH3 -54 151 正癸烷 CH3(CH2)8CH3 -30 174 正十一烷 CH3(CH2)9CH3 -26 196 正十二烷 (CH3(CH2)10CH3 -10 216 正十三烷 CH3(CH2)11CH3 -6 234 正十四烷 CH3(CH2)12CH3 252 正十五烷 CH3(CH2)13CH3 10 266 正十六烷 CH3(CH2)14CH3 18 280 正十七烷 CH3(CH2)15CH3 22 292 正十八烷 CH3(CH2)16CH3 28 308 正十九烷 CH3(CH2)17CH3 32 320 正二十烷 CH3(CH2)18CH3 36 异丁烷 (CH3)2CHCH3 -159 -12 异戊烷 (CH3)2CHCH2CH3 -160 28 新戊烷 (CH3)4C -17 异己烷 (CH3)2CH(CH2)2CH3 -154 60 3-甲基戊烷 CH3CH2CH(CH3)CH2CH3 -118 63 2,2-二甲基丁烷 (CH3)3CCH2CH3 -98 50 2,3-二甲基丁烷 (CH3)2CHCH(CH3)2 -129 58 除了很小的烷烃外,链上每增加一个碳,沸点升高20到30度;我们发现,每个碳原子使沸点增加20~30°不仅适用于烷烃,而且也适用于我们以后要研究的各种同系列。熔点的增高并不如此有规律,因为在晶体中,分子间的作用力不仅取决于分子的大小,而且也取决于他们在晶格中填充得多好。为C1-C4四个烷烃是气体,但是,由于沸点和熔点随着链长的增加而升高,以后的13个(C5~C17)是液体,含有18个碳或18个碳以上的是固体。 具有相同碳原子数但结构不同的烷烃,他们的沸点有微小的差别。丁烷、戊烷和己烷异构体的沸点可以看到,支链异构体比直链异构体具有较低的沸点,支链越多,沸点越低。因此,正丁烷的沸点是0°,而异丁烷的沸点是-12°。正戊烷的沸点是36°,而有一个支链的异戊烷是28°,有两个支链的新戊烷是°。支化作用对沸点的影响在各类有机化合物中可以观察到,支化作用使沸点降低是合理的;由于支化作用,使分子的形状趋向于呈球形,这样,表面积便降低,结果是分子间作用力变弱,因此就能在较低的温度被克服。与经验规律“相似相溶”相一致,烷烃溶解于苯、乙醚和氯仿等非极性溶剂,而不溶于水和其他极性强的溶剂。把烷烃作为溶剂时,液态烷烃能溶解极性弱的化合物,而不能溶解极性强的化合物。密度是随着烷烃分子的增大而增加的,但在左右时趋于稳定;因此,所有烷烃的密度都很小。大多数有机化合物的密度比水小,这并不奇怪,因为它们和烷烃一样,主要是由碳和氢组成的。一般说来,一个化合物的密度如果要比水大,必需含有一个溴或碘那样的原子,或含有几个氯那样的原子

极性分子就是分子的中心不在分子所构成的几何体体心上,水有一个108度的键角,这个图形的中心就不在直线上,所以是极性,甲烷是正四面体结构,氢在正四面体四个角上,碳正好是体心,故非极性

十二烷基苯磺酸钠论文

通过在装有搅拌器、温度计、滴液漏斗和回流冷凝器的250mL四口瓶中,加入十二烷基苯35mL(),搅拌下缓慢加入质量分数98%硫酸35mL,温度不超过40℃,加完后升温至60~70℃,反应2h。将上述磺化混合液降温至40~50℃,缓慢滴加适量水(约15mL),倒入分液漏斗中,静止片刻,分层,放掉下层(水和无机盐),保留上层(有机相)。配制质量分数10%氢氧化钠溶液80mL,将其加入250mL四口瓶中约60~70mL,搅拌下缓慢滴加上述有机相,控制温度为40~50℃,用质量分数10%氢氧化钠调节pH=7~8,并记录质量分数10%氢氧化钠总用量。于上述反应体系中,加入少量氯化钠,渗圈试验清晰后过滤,得到白色膏状产品,即为十二烷基苯磺酸钠。 相关化学反应为: 十二烷基苯磺酸钠是由十二烷基苯与发烟硫酸或三氧化硫磺化,再用碱中和制得。用发烟硫酸磺化的缺点是反应结束后总有部分废酸存在于磺化物料中。中和后生成的硫酸钠带入产品中,影响了它的纯度。目前,工业上均采用三氧化硫-空气混合物磺化的方法。三氧化硫可由60%发烟硫酸蒸出,或将硫磺和干燥空气在炉中燃烧,得到含SO34%~8%体积分数的混合气体。将该混合气体,通入装有烷基苯的磺化反应器中进行磺化。磺化物料进入中和系统用氢氧化钠溶液进行中和,最后进入喷雾干燥系统干燥。得到的产品为流动性很好的粉末。生产工艺流程: 直馏煤油经脱氢后,十二烯烃和苯由供料泵进入烷化器,再将生成的十二烷基苯(LAB)送入磺化器1,与进入磺化器的三氧化硫(3%~5%),瞬间发生磺化反应,产物经气液分离器2、循环泵3、冷却器4处理之后,部分回到反应器底部,用于磺酸的急冷,部分反应产物被送入老化器5,调整反应保持时间再进入水化器6成酸,最后经中和器7制得烷基苯磺酸钠(LAS)。尾气经除雾器8去酸雾,再经吸收塔9吸收后放空。

阴离子型表面活性剂。因生产成本低、性能好,因而用途广泛,是家用洗涤剂用量最大的合成表面活性剂,也生产一部分镁、钙等无机盐及三乙醇胺等有机胺盐。十二烷基苯磺酸钙[27176-87-0]具有优良的乳化性能,是配制各种农药用的混合型乳化剂的重要组成部分。可由苯与α-烯烃在三氯化铝催化剂下缩合,缩合液经碱洗、水洗后蒸出回收苯,真空蒸馏得到精制烷基苯。然后用发烟硫酸磺化、白灰中和(在2倍量乙醇中进行),得到十二烷基苯磺酸钙。用作丙烯酸酯乳液聚合的阴离子乳化剂。CAS No.: 25155-30-0是一种阴离子表面活性剂,其临界胶束浓度为*10-3mol/L 烷基苯磺酸钠是黄色油状体,经纯化可以形成六角形或斜方形强片状结晶.具有微毒性,已被国际安全组织认定为安全化工原料,可在水果和餐具清洗中应用。烷基苯磺酸钠在洗涤剂中使用的量最大,由于采用了大规模自动化生产,价格低廉。在洗涤剂中使用的烷基苯磺酸钠有支链结构(ABS)和直链结构(LAS)两种,支链结构生物降解性小,会对环境造成污染,而直链结构易生物降解,生物降解性可大于90%,对环境污染程度小。 烷基苯磺酸钠是中性的,对水硬度较敏感,不易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的阴离子表面活性剂。烷基苯磺酸纳对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。但烷基苯磺酸钠存在两个缺点,一是耐硬水较差,去污性能可随水的硬度而降低,因此以其为主活性剂的洗涤剂必须与适量螯合剂配用。二是脱脂力较强,手洗时对皮肤有一定的刺激性,洗后衣服手感较差,宜用阳离子表面活性剂作柔软剂漂洗。近年来为了获得更好的综合洗涤效果,LAS常与AEO等非离子表面活性剂复配使用。LAS最主要用途是配制各种类型的液体、粉状、粒状洗涤剂,擦净剂和清洁剂等。

分子式:C18H29NaO3S 分子量: CAS号:25155-30-0 简称: DBS, 性状: 固体 白色或淡黄色粉末, 溶解性: 易溶于水,易吸潮结块。 毒性: 无毒。由直链烷基苯(LAB)用三氧化硫或发烟硫酸磺化生成烷基磺酸,再中和制成。阴离子型表面活性剂。因生产成本低、性能好,因而用途广泛,是家用洗涤剂用量最大的合成表面活性剂,也生产一部分镁、钙等无机盐及三乙醇胺等有机胺盐。十二烷基苯磺酸钙 [27176-87-0]具有优良的乳化性能,是配制各种农药用的混合型乳化剂的重要组成部分。可由苯与α-烯烃在三氯化铝催化剂下缩合,缩合液经碱洗、水洗后蒸出回收苯,真空蒸馏得到精制烷基苯。然后用发烟硫酸磺化、白灰中和(在2倍量乙醇中进行),得到十二烷基苯磺酸钙。用作丙烯酸酯乳液聚合的阴离子乳化剂。[CAS No.: 25155-30-0]CAS No.: 25155-30-0是一种阴离子表面活性剂,其临界胶束浓度为*10-3mol/L 烷基苯磺酸钠是黄色油状体,经纯化可以形成六角形或斜方形强片状结晶.具有微毒性, 已被国际安全组织认定为安全化工原料,可在水果和餐具清洗中应用。烷基苯磺酸钠在洗涤剂中使用的量最大,由于采用了大规模自动化生产,价格低廉。在洗涤剂中使用的烷基苯磺酸钠有支链结构(ABS)和直链结构(LAS)两种,支链结构生物降解性小,会对环境造成污染,而直链结构易生物降解,生物降解性可大于90%,对环境污染程度小。 烷基苯磺酸钠是中性的,对水硬度较敏感,不易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的阴离子表面活性剂。烷基苯磺酸纳对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。但烷基苯磺酸钠存在两个缺点,一是耐硬水较差,去污性能可随水的硬度而降低,因此以其为主活性剂的洗涤剂必须与适量螯合剂配用。二是脱脂力较强,手洗时对皮肤有一定的刺激性,洗后衣服手感较差,宜用阳离子表面活性剂作柔软剂漂洗。近年来为了获得更好的综合洗涤效果,LAS常与AEO等非离子表面活性剂复配使用。LAS最主要用途是配制各种类型的液体、粉状、粒状洗涤剂,擦净剂和清洁剂等。

核酸与蛋白质的异同比较研究论文

蛋白质的元素有CHON,核酸的元素有CHONP,蛋白质由氨基酸组成,核酸由DNA或RNA组成。 蛋白质的分子结构是:氨基酸→多肽链→空间结构→蛋白质分子。核酸的分子结构:DNA:双螺旋结构,RNA:一般是单链 形成的场所。 蛋白质:所有的蛋白质都在核糖体内合成。 核酸:DNA:在细胞核内复制 RNA:在细胞核内合成。 主要功能: 蛋白质:是细胞和生物体的重要组成部分,调节细胞和生物体的代谢过程,有的蛋白质具有免疫作用。 核酸:是 一切 生物的遗传物质。DNA是主要的遗传物质,通过复制传递遗传信息,控制蛋白质的合成,使后代表达出与亲代相似的性状。 相互之间的关系: 蛋白质的合成受DNA控制,蛋白质的性质由核酸决定;DNA的复制要有酶(大部分为蛋白质)的参与,蛋白质控制了核酸代谢,两者之间相互作用,形成了细胞生命活动的一个自动控制体系,是生命活动的基本特征。都是自己打的呀

由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质合成过程中起着重要作用,其中转运核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。

1.元素组成不同:前都含C H O N P等,后者C H O N (S)等 2.基本组成单位不同:前者由核苷酸核构成,后者由氨基酸构成 3.结构也会不同的 要说相同的话:他们都是生物大分子(都是多聚体,由单体构成),有相同的组成元素(C H O N)等

1.元素组成不同:前都含C H O N P等,后者C H O N (S)等2.基本组成单位不同:前者由核苷酸核构成,后者由氨基酸构成3.结构也会不同的要说相同的话:他们都是生物大分子(都是多聚体,由单体构成),有相同的组成元素(C H O N)等

自然界的烷烃论文期刊

白色污染的主要来源有食品包装、泡沫塑料填充包装、快餐盒、农用地膜等。白色污染是我国城市特有的环境污染,在各种公共场所到处都能看见大量废弃的塑料制品,他们从自然界而来,由人类制造,最终归结于大自然时却不易被自然所消纳,从而影响了大自然的生态环境。

从节约资源的角度出发,由于塑料制品主要来源是面临枯竭的石油资源,应尽可能回收,但由于现阶段再回收的生产成本远高于直接生产成本,在现行市场经济条件下难以做到。

扩展资料

中美科学家2016年06月17日宣布在降解聚乙烯废塑料方面取得突破,不仅为解决被称为“白色污染”的废塑料污染提供了一种可能的新途径,而且降解产物还可用于生产清洁柴油,促进碳资源循环利用。

这项研究由中国科学院上海有机化学研究所黄正课题组和美国加利福尼亚大学欧文分校管治斌课题组合作完成。相关论文发表在新一期美国《科学进展》杂志上。

废塑料造成的“白色污染”是目前世界各国面临的最棘手环保问题之一。目前绝大部分废塑料主要通过填埋和焚烧处理,但前者占用土地资源且易污染地下水,后者则增加了碳排放还会造成大气污染。

在新研究中,科学家利用交叉烷烃复分解催化策略,使用廉价的低碳烷烃作为反应试剂和溶剂与聚乙烯发生重组反应,有效降低了聚乙烯的分子量和碳链长度。

低碳烷烃是在石油炼制中大量生成的副产品,不能作为燃油或天然气,使用价值非常有限。过量存在的低碳烷烃好比“剪刀”,多次和聚乙烯重组反应,直至把分子量上万、甚至上百万的聚乙烯降解为可作为清洁柴油的烷烃。

参考资料来源:人民网-破解“白色污染”有了新途径

参考资料来源:百度百科-白色污染

网上会有很多这样的论文期刊的~比如(有机化学研究、合成化学研究)等等这些~你可以去找下免费的论文参考就可以啦~

王琦,中国古陶瓷研究及收藏领域中一个几乎无人不晓的名字。因其位列民国“珠山八友”之首,传世作品常成为海内外各大拍卖公司的重要拍品,倍受关注程度有目共睹。王琦(1884-1937),号碧珍,别号陶迷道人,江西新建人。17岁至景德镇,初以捏面人为生,后改习瓷画。约在民国八年(1919年)时所绘瓷板画就已享誉瓷都。此时还以晚清海上画家钱慧安的作品为蓝本,尤以肖像画最受人珍爱。约在民国十一年(1922年)左右转师乾隆间“扬州八怪”之一黄慎。在这之前作品多饰印章很少题字。转学黄慎之后,常用草书长题,人物头部则衬以明暗结构准确,表情生动(其时号称“西法头子”即西洋画法绘人物头部),而衣褶则以写意法绘成,用笔潇洒奔放。晚期人物画姿态诙诡,形神兼备。1922年与同仁创建“景德镇瓷业美术研究社”,任社长(又据吴霭生墓志铭载,吴霭生为社长,王琦系副社长)。1928年又和王大凡、程意亭、汪野亭、邓碧珊、徐仲南、田鹤仙、刘雨岑等瓷画家一道组建“月圆会”,为“珠山八友”(亦称“八大名家”)之首。其传世作品见有粉彩或绛彩瓶、尊、笔筒、印盒、花盆、瓷板画及壶等,以人物题材为主。系“珠山八友”也是民国粉彩行业中成就最高影响最大的瓷画家。

王琦,男,博士,教授、博士生导师,浙江大学分子设计与分子热力学研究所所长。1983年,浙江大学,学士;1986年,浙江大学,硕士;1990年,浙江大学-美国Purdue大学,博士;1998年,日本大阪大学,博士后。1992年,副教授;1999年,教授;2000年,博士生导师。2000年,台湾科技大学,访问教授。主要从事分子模拟与分子设计、分子热力学、低温微量热学、薄膜成长与微电子材料等方面的研究工作。在国际著名学术刊物J Chem Phys, J Phys Chem B, Langmuir, Chem Phys Lett, Biopolymers, J Chem Eng Data及国内核心刊物(SCI、EI源期刊)上发表论文近70篇,其中6篇SCI影响因子在3以上,10篇在2以上,另有8篇获浙江省自然科学优秀论文奖。2项科研成果通过部级鉴定。曾获“业绩显著的浙江大学博士学位获得者”,“亿利达优秀教师奖”,多次评为“浙江大学优秀青年教师”。代表性科研成果:(1)流体在微孔和狭缝中的输运行为研究。重点研究了复杂极性流体在纳米级微孔和狭缝中的结构、扩散、粘度、导热等行为及其相对于体相流体的特殊性。(2)烷烃混合物在分子筛中的吸附与分离性能研究。重点研究了正、异构烷烃及其三元、四元混合物在各类分子筛上的选择性吸附与分离性能。(3)混合原子价化合物的超低温相变行为研究。重点研究了碘桥联一维复核铂配合物的混合原子价行为、镍配合物顺反磁性体间的相转变、及磁性体配合物在超低温(- ~ - ℃)下的磁相变等。(4)三螺旋结构的多聚糖重水溶液的结构有序性研究。重点研究了其介电驰豫、光学旋转与热容等行为。(5)设计建立了一套加压汽液平衡测定装置,研究了加压下的汽液平衡规律。在此基础上完成的丙二醇技术开发攻关项目,通过部级鉴定,获专家们一致好评,认为该成果达到国际先进水平。

  • 索引序列
  • 苯与烷烃酸性比较研究论文
  • 水和烷烃的极性比较研究论文
  • 十二烷基苯磺酸钠论文
  • 核酸与蛋白质的异同比较研究论文
  • 自然界的烷烃论文期刊
  • 返回顶部