首页 > 期刊论文知识库 > 毕业论文中线性代数的现状

毕业论文中线性代数的现状

发布时间:

毕业论文中线性代数的现状

《线性代数》教学的一些思考中华硕博网 2009年02月13日 点击数: 1 来源:中国论文下载中心中华硕博网核心提示: [摘要]《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与熟悉,提出《线性代数》教学抽象概念的[摘要]《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与熟悉,提出《线性代数》教学抽象概念的讲解应注重的几点问题,阐释了如何进行《线性代数》课程的课堂教学,并且能收到良好的教学效果。[关键词]线性代数数学概念教学方法《线性代数》是高等院校理、工类专业重要的数学基础课。它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域。不仅如此,这门课程对提高学生的数学素养、练习与提高学生的抽象思维能力与逻辑推理能力都有重要作用。但由于“线性代数”本身的特点,对其内容学生感到比较抽象,要深入理解与把握代数的基本概念与基本理论学生感到相当吃力、难以理解。因此,为培养与提高学生应用数学知识、解决实际问题的能力,进一步研究这门课程的教学思想和方法对提高教学效果甚为重要。一、加强基本概念的教与学线性代数这一抽象的数学理论和方法体系是由一系列基本概念构成的。行列式、矩阵、逆矩阵、初等矩阵、转置、线性表示、线性相关、特征值与特征向量等抽象概念根植于客观的现实世界,有着深刻的实际背景,即是比较直接抽象的产物。高等数学与初等数学在含义与思维模式上的变化必然会在教学中有所反映。线性代数作为中学代数的继续与提高,与其有着很大不同,这不仅表现在内容上,更重要的是表现在研究的观点和方法上。在研究过程中一再体现由具体事物抽象出一般的概念,再以一般概念回到具体事物去的辨证观点和严格的逻辑推理。新生刚进入大学,其思维方式很难从初等数学的那种直观、简洁的方法上升到线性代数抽象复杂的方式,故思维方式在短期内很难达到线性代数的要求。大部分同学习惯于传统的公式,用公式套题,不习惯于理解定理的实质,用一些已知的定理、性质及结论来推理、解题等。在概念的教学中,教师要研究概念的熟悉过程的特点和规律性,根据学生的熟悉能力发展的规律来选择适当的教学方式。因此,在概念教学中应注重以下几点。1。合理借助概念的直观性尽管抽象性是《线性代数》这门课的突出特点,直观性教学同样可应用到这门课的教学上,且在教学中占有重要地位。欧拉认为:“数学这门科学,需要观察,也需要实验,模型和图形的广泛应用就是这样的例子。”直观有助于概念的引入和形成。如介绍向量的概念,尽管抽象,但它具有几何直观背景,在二维空间、三维空间中,向量都是有向线段,由此教学中可从向量的几何定义出发讲解抽象到现有形式的过程,降低学生抽象思考的难度。2。充分利用概念的实际背景和学生的经验教师在教学中应充分利用学生已有的数学现实和生活经验,引导和启发学生进行概念发现和创造。如在讲解n阶行列式,首先从学生已把握的二元、三元一次方程组的求解入手,然后求出方程组的解由二阶、三阶行列式表示,分析二阶、三阶行列式的特点。二阶行列式,不难看出:它含有两项,若不考虑符号,每项均是来自不同行不同列的两个元素的乘积,那么会提出这样的问题:右边各项之前所带的正负号有什么规律?同样的,三阶行列式若不考虑符号,它含有3!=6项,每项也是来自不同行不同列的三个元素的乘积,并且包含了所有由不同行不同列的三个元素的组合。为解决n阶行列式,又引出排列的概念、性质,介绍奇偶排列后,又回到我们提出的问题上,可以发现,行标按自然排列,列标排列为奇排列时,该项为负;列标排列为偶排列时,该项为正(问题得到解决)。经过这一过程,学生对n阶行列式已有接触和了解,此时可给出n阶行列式定义,这样一来,学生就轻易理解和把握n阶行列式的性质了。3。注重概念体系的建立R。斯根普指出:“个别的概念一定要融入与其它概念合成的概念结构中才有效用。”数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。二、学生要把握科学的学习方法学习重在理解,学生必须在理解、领悟其深刻含义的基础上记忆定义、定理及一些结论,才能收到理想的效果。线性代数的最大特点就是:知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,教师课前的知识回顾以及学生提前预习是十分必要的。三、加强对学生解题的基本练习一定量的典型练习题能有助于学生深化对所学知识的理解,培养学生一题多解的能力,解题后反思,及时总结解题思路和方法。如证实抽象矩阵的可逆,就有很多方法,一是用定义。二是用秩的有关命题。三是借助于特征值理论。四是证实矩阵的行列式不为零等。四、培养与激发学生的学习爱好爱好是最好的老师。教师一方面在传授知识,另一方面要鼓励学生有针对性的设计他们的目标,这样,他们才肯自觉钻研,乐于钻研。同时,课堂教学中可选择近年来研究生入学考题及一些与实际联系较紧的题目讲解或练习,以激发学生的学习欲望,并给他们带来成功的满足。此外,还可以适当介绍一些有趣的应用典范或教学史来激发学生的学习热情,提高他们的学习爱好。五、发挥多媒体优势,增强教学效果多媒体教学成为当前高校教学模式的重要手段。教师只有把传统教学手段、教师自己的特色和多媒体辅助教学三者有机结合起来,才能真正发挥多媒体课堂教学的效果。总之,教师在教学中所做的一切,其目的应在于既教会他们有用的知识,又教会学生有益的思考方式及良好的思维习惯。参考文献:[1]张向阳.线性代数教学中的几点体会.山西财经大学学报(高等教育版),2006。[2]于朝霞.线性代数与空间解析几何.北京:中国科学技术出版社,2003。

线性代数是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便!为了提高效率。把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。可以把一个不太明白的结构用已经熟知的线性代数理论来处理,如果我们可以知道所研究的对象的维数(比如说是n),我们就可以把它等同为R^n,量决定了质!多么深刻而美妙的结论!上面我说的是代数的一个抽象特性。这个对我们的影响是思想性的!如果我们能够把他用在生活中,那么我们的生活将是高效率的。 下面简要谈一下线性代数的具体应用。线性代数研究最多的就是矩阵了。矩阵又是什么呢?矩阵就是一个数表,而这个数表可以进行变换,以形成新的数表。也就是说如果你抽象出某种变化的规律,你就可以用代数的理论对你研究的数表进行变换,并得出你想要的一些结论。 另外,进一步的学科有运筹学。运筹学的一个重要议题是线性规划,而线性规划要用到大量的线性代数的处理。如果掌握的线性代数及线性规划,那么你就可以讲实际生活中的大量问题抽象为线性规划问题。以得到最优解:比如你是一家小商店的老板,你可以合理的安排各种商品的进货,以达到最大利润。如果你是一个大家庭中的一员,你又可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用啊! 总之,线性代数历经如此长的时间而生命力旺盛,可见她的应用之广!多读读书吧,数学是美的,更是有用的!

数码相机里变焦算不算 图像的旋转算不算 模式识别算不算

线性代数论文3000字

线性代数是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便!为了提高效率。把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。可以把一个不太明白的结构用已经熟知的线性代数理论来处理,如果我们可以知道所研究的对象的维数(比如说是n),我们就可以把它等同为R^n,量决定了质!多么深刻而美妙的结论!上面我说的是代数的一个抽象特性。这个对我们的影响是思想性的!如果我们能够把他用在生活中,那么我们的生活将是高效率的。另外,进一步的学科有运筹学。运筹学的一个重要议题是线性规划,而线性规划要用到大量的线性代数的处理。如果掌握的线性代数及线性规划,那么你就可以讲实际生活中的大量问题抽象为线性规划问题。以得到最优解:比如你是一家小商店的老板,你可以合理的安排各种商品的进货,以达到最大利润。如果你是一个大家庭中的一员,你又可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用啊!总之,线性代数历经如此长的时间而生命力旺盛,可见她的应用之广!

线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 . Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre ) 一 书中提出的。 (1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物理学家 P. A. M. Dirac 提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的。 矩阵的发展是与线性变换密切相连的。到 19 世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由 Peano 于 1888 年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

线性代数教学中线性相关性的一种解释和理解[摘要]线性相关性的内容是线性代数课程中的重点和难点,特别是被表示向量组的线性相关性与被表示向量组中向量的个数以及表示向量组中向量的个数之间的关系的有关结论,对学生来说是很难理解的,在教学中,我们把线性相关解释为“多余”,线性无关解释为“没有多余”,在教学上可收到较好的效果。[关键词]线性相关线性无关多余没有多余线性相关性在线性代数课程中是一个重要内容,对学生来说是非常困难的内容,许多学生学完线性代数后还没有弄懂,有的学生学到这一内容时觉得很难学,就丧失信心。认为整个线性代数都很难学,甚至放弃学习。线性相关性是线性代数课程中教学的难点,它与后面线性方程组的解的理论有密切的联系,对于这一难点的处理是非常重要的。根据不同层次的学生采用不同的教学要求。使得学生正确的理解线性相关性的定义,定理。大多数经济类的本科线性代数课程的教材在叙述向量组的极大无关组和向量组的秩的理论时,由于这一章节的理论性比较强,一般都是从定理到定理,从证明到证明,例子较少。在教学中,在讲完线性相关的定义和有关定理后,在介绍向量的极大无关组之前,用”多余”来解释线性相关性,可使后面的问题简单化,直观化。我们以龚德恩等主编的《经济数学基础》的第二分册线性代数的教材为例进行说明。首先来看线性组合的概念。对于向量组α1,α2,…,αs和向量β,如果存在s个数k1,k2,…,ks使得β=k1α1+k2α2+…+ksαs则称向量β是向量组α1,α2,…,αs的线性组合。换句话说向量β相对于向量组α1,α2,…,αs是“多余”的向量。关于线性相关概念,对于向量组α1,α2,…,αs,如果存在不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0称向量组α1,α2,…,αs线性相关。因k1,k2,…,ks不全为零,不妨假设α1≠0则α1=-k2k1α2-…-ksk1αs。因此向量组α1,α2,…,αs线性相关,看成是向量组α1,α2,…,αs中至少有一个“多余”的向量。关于线性无关概念,对于向量组α1,α2,…,αs,如果仅当k1,k2,…,ks都等于零时,才能使得k1α1+k2α2+…+ksαs=0成立。称向量组α1,α2,…,αs线性无关。由于α1,α2,…,αs线性无关等价于其中任何一个向量不能由其余向量线性表示,因此向量组α1,α2,…,αs线性无关看成是α1,α2,…,αs中“没有多余”的向量。一些结论也可作相应的理解和解释。如:“如果一个向量组中的部分组线性相关,则整个向量组也线性相关”,解释为如果一个向量组中的部分组有多余的向量,则整个向量组也有多余的向量。“如果一个向量组线性无关,则它的任意一个部分组也线性无关”,解释为如果一个向量组中没有多余的向量,则该向量组去掉一些向量后也没有多余的向量。下面两个定理是学生们在学习向量组的线性相关性的过程中感到最难理解和掌握的。定理1设向量组(Ⅰ)α1,α2,…,αs可由向量组(Ⅱ)β1,β2,…,βt线性表示,且s>t,则α1,α2,…,αs线性相关。在课堂教学中我们是作如下解释的,向量组(Ⅰ)α1,α2,…,αs称为“被表示向量组”,向量组(Ⅱ)β1,β2,…,βt称为“表示向量组”。条件s>t,看成是有”多余”的向量。即“被表示向量组(Ⅰ)α1,α2,…,αs相对于表示向量组(Ⅱ)β1,β2,…,βt有多余的向量,则α1,α2,…,αs线性相关,这样解释便于学生理解和记忆。推论1如果一个向量组α1,α2,…,αs线性无关,并且可由向量组β1,β2,…,βt线性表示。则s≤t。推论1可解释为:如果“被表示向量组α1,α2,…,αs线性无关,则被表示的向量组α1,α2,…,αs相对于表示向量组β1,β2,…,βt没有多余的向量,即s≤t。推论2两个等价的线性无关向量组所含的向量的个数相同。两个向量组都线性无关,且彼此可相互线性表示,两个向量组彼此相对于另一个向量组都没有多余的向量,得两个向量组所含的向量的个数相同。下面再举一些例子进行说明。例1设向量组α1,α2,…,αs线性无关,且可由向量组β1,β2,…,βt线性表示,则必有()。

大数据时代的论文研究现状

发展历程:十年来大数据产业高速增长,我国信息智能化程度得到显著提升

我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。

市场规模:2020年市场规模超6000亿 维持高速增长

中国大数据产业联盟发布的《2021中国大数据产业发展地图暨中国大数据产业发展白皮书》指出,2018年以来,大数据技术的快速发展,以及大数据与人工智能、VR、5G、区块链、边缘智能等新技术的交汇融合,持续加速技术创新。与此同时,伴随新型智慧城市和数字城市建设热潮,各地与大数据相关的园区加速落地,大数据产业持续增长。

赛迪顾问的数据显示,2020年中国大数据产业规模达6388亿元,同比增长,预计未来三年保持15%以上的年均增速,到2023年产业规模超过10000亿元。

市场格局

——细分市场格局:软硬件占据行业主要市场

目前,我国的大数据产业尚处于初级建设阶段,从市场结构来分,大数据产业可划分为大数据硬件、软件以及服务三类市场。

根据《IDC全球大数据支出指南》,2020年中国大数据市场最大的构成部分仍然来自于传统硬件部分——服务器和存储,占比超过40%,其次为IT服务和商业服务,两者共占的比例,剩余由的大数据软件所构成。从软件角度来看,2020年中国最大的三个细分子市场依次为终端用户查询汇报分析工具(End-User Query, Reporting, and Analysis Tools)、人工智能软件平台(AI Software Platforms)以及关系型数据仓库(Relational Data Warehouses),并且IDC预计,三者总和占中国整体大数据软件市场的比例接近50%。

——应用市场格局:互联网、政府、金融为大数据主要应用领域

从具体行业应用来看,互联网、政府、金融和电信引领大数据融合产业发展,合计规模占比为。互联网、金融和电信三个行业由于信息化水平高,研发力量雄厚,在业务数字化转型方面处于领先地位;政府大数据成为近年来政府信息化建设的关键环节,与政府数据整合与开放共享、民生服务、社会治理、市场监管相关的应用需求持续火热。此外,工业大数据和健康医疗大数据作为新兴领域,数据量大、产业链延展性高,未来市场增长潜力大。

发展趋势与前景

——发展趋势:数据治理成为大数据发展的重要方向

——发展前景预测

据赛迪顾问预测,2023年中国大数据产业市场规模将超过10000亿元,2021-2023年增速将达到15%以上。在此基础上,前瞻测算,到2027年我国大数据产业市场规模将接近18000亿元。

—— 更多行业相关数据请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》

2015年左右,大数据相关政策规划密集出台,同期为大数据企业新增数量顶峰时期。近年来,我国大数据产业迎来新的发展机遇期,产业规模日趋成熟。大数据产业主体从“硬”设施向“软”服务转变的态势将更加明显,面向金融、政务、电信、医疗等领域的大数据服务将实现倍增创新。

大数据企业数量持续增长,增速与政策出台密切相关

根据IT桔子统计,大数据企业的快速增长阶段出现在2013-2015年,增长速度在2015年达到最高峰。2015年后,市场日趋成熟,企业新增开始趋于放缓,大数据产业逐渐走向成熟。

大数据新增企业数量的变化与新政策的出台密不可分。2015年8月国务院颁布《促进大数据发展行动纲要》,大数据由此正式上升为国家发展战略。2016年工信部印发了《大数据产业发展规划(2016-2020年)》,推动大数据产业进一步发展。另一方面,新一代信息技术、智慧城市、数字中国等发展战略逐步推动社会经济数字化转型,大数据的产业支撑得到强化,应用范围加速拓展,产业规模实现相应快速增长。

大数据企业地域分布以北上广为主

根据中国信息通信研究院监测统计,当前我国活跃的大数据企业超过3000家。我国大数据企业主要分布在北京、广东、上海、浙江等经济发达省份。受政策环境,人才创新,资金资源等因素影响,北京大数据产业实力雄厚,大数据企业数量约占全国总数的35%。依托京津冀大数据综合试验区,天津、石家庄、廊坊、张家口、秦皇岛等地大数据产业蓬勃发展,依靠良好的政策基础、科研实力、地理位置和交通优势,分别形成了大数据平台服务和应用开发、数字智能制造、旅游大数据等创新企业集聚中心,在信息产业领域形成了竞争优势。

行业应用领域丰富,企业服务、医疗健康、金融等细分领域前景可期

根据中国信通院对1404家涉及行业大数据应用的企业进行的统计整理,从中可以看出,金融、医疗健康、政务是大数据行业应用的最主要类型。除此之外依次是互联网、教育、交通运输、电子商务、供应链与物流、农业、工业与制造业、体育文化、环境气象、能源行业。

从融资细分领域分布来看,大数据行业融资企业分布在近20个领域,大数据行业迎来历史新机遇,在企业服务、医疗健康、金融等垂直细分领域的大数据应用展现出巨大潜力。大数据产业增量蓝海市场正在逐步打开,截止到2019年,企业服务领域的企业获投占比最高为62%,金融行业次之为13%,健康医疗为8%。随着互联网与移动互联网的进一步普及渗透,以及IT基础设施的逐步完善,企业服务市场仍将继续扩大。

—— 以上数据及分析均来自于前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。

华为大数据知识普及(四):我国大数据的发展现状与挑战

摘 要:大数据的产生给未来信息技术带来新的机遇与挑战。大数据对数据处理的有效性、实时性提出了更高要求,需要根据大数据的特点对当前数据处理技术实施变革,从而形成更有益于大数据采集、存储、处理、管理、分析、共享的新兴技术。本文从大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。

关键词 :大数据 物联网 信息处理 海量计算

一、大数据的产生与发展现状

随着物联网、云计算等信息技术的飞速发展,大数据技术(Big Data)也越发进入人们的视线。大数据是用传统方法或工具很难处理或分析的数据信息。目前,人们对大数据的理解还不够全面和深入,关于大数据的含义也没有一个统一的定义。亚马逊大数据科学家John Rauser认为:大数据是超过任何一台计算机处理能力的庞大数据量。Informatica 的中国区首席顾问但彬指出:大数据是海量数据与复杂类型的数据的结合。而维基百科则把大数据定义成诸多大而复杂的、难以用当前数据库处理的数据集合。

大数据研究受到国内外学术界和工业界的广泛关注,已成为当今信息时代全世界讨论的热点。2008年,Nature杂志就推出大数据专刊,计算社区联盟也在同一年发表了报告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,报告阐述了解决大数据问题所需的关键技术以及所面临的挑战。美国奥x政府于2012年3月在白宫网站发布了《大数据研究和发展倡议》,提出了通过收集、处理海量、复杂的数据信息,从而提升能力,加快科学和工程领域的创新步伐,转变学习教育模式,强化美国本土的安全”。2011年1月,微软公司同惠普公司合作开发了一系列能够提升生产力,同时提高决策速度的设备。此外,欧盟委员会也提出驾驳大数据浪潮的战略思路,日本发布的《面向 2020 的 ICT综合战略》也提出需要构造大量丰富的数据基础。

近年来,我国也积极开展对大数据的研究。2011年10月,工信部确认京沪深杭等 5 城市为“云计算中心”试点城市。2012年6月,中国计算机学会青年计算机科技论坛也举办了“大数据时代,智谋未来”学术报告研讨会。大数据及其科学研究方法涉及应用领域很广,并将与国计民生密切相关的科学决策、金融工程以及知识经济领域紧紧接合。

二、大数据的特点

目前,企业界和学术界都一致认为,大数据具有4个“V”特征,即:容量(Volume)、种类(Variety)、速度(Velocity)和至关重要的`价值(Value)。

(1) 容量(Volume)巨大。海量的数据集从TB 级别提升到PB 级别。

(2) 种类(Variety)繁多。大数据数据源有多种,数据格式和种类不同于以前所规定的结构化数据范畴。

(3)价值(Value)密度低。如视频的例子,在不间断连续监控的过程中,可能有意义的数据仅有一两秒。

(4)速度(Velocity)快。包含大量实时、在线数据处理分析的需求1秒钟定律。

三、大数据应用的领域

大数据产业的发展将推动全球经济由粗放型向集约型转变,这将对提升企业整体竞争力和政府监管能力具有意义深远的影响。

商业作为大数据的重要应用领域。沃尔玛公司通过对消费者购物行为等一系列非结构化数据的分析,了解不同顾客的购物习惯,公司从所销售的数据进行分析,从而选出适合在一起搭配出售的商品;淘宝也针对买家开设了大数据平台,为客户量身打造了一整套完善的网购体验产品。

大数据在金融业也起到了至关重要的作用。美国Equifax公司利用大数据技术,通过对其的数据库中与财务有关的记录海量信息进行索引处理和交叉分享,从而得到客户的个人信用等级,以推断出客户的支付需求与能力。

随着大数据在医疗与生命科学研究过程中的广泛应用和不断扩展。2010年,中国公布的《十二五规划》指出:要重点建设国家级、省级和地市级三级医疗卫生信息平台,建设电子病历和电子档案两个最为基础的数据库。各级医院也将在医疗信息仓库、数据中心等领域加大投入,医疗数据信息的存储将愈加被关注,医疗信息中心的关注焦点也将由传统的计算领域转为存储领域。

除此之外,大数据在制造业领域也有着广阔的应用。制造业企业积累了广泛的数据信息,在开展对业务数据进行技术管理的同时,企业需要通过大数据处理技术来帮助决策者从数据库储存的海量信息中找到有价值的信息,并且对其进行分析处理,从而增强决策的正确性、规避风险。

四、大数据所面临的挑战

大数据技术使人们能够更好地利用之前不能使用的各个数据类型,找出被忽略的信息,促进企业组织更加高效、智能。但随着对大数据研究的不断深入,人们也更加意识到当大数据技术向人们敞开“方便之门”的同时,也带来了众多的挑战:

(1)大数据需要更为专业化的管理技术人才。

(2) 大数据的合理利用需要解决容量大、类别多和时效性高的数据处理问题。

(3)大数据的利用对信息安全提出了更高要求。

(4)大数据的集成与管理问题。

这些挑战已成为关系到未来大数据发展的重要因素,同时也成为未来引领大数据发展的推动力。

五、结束语

大数据已经逐步渗透到人们工作生活的诸多领域中,对于大数据的研究也在不断的深化。本文针对大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。大数据的发展还处于初级阶段,还有更为广阔的空间需要人们不断开拓,如何合理地利用大数据、更加高效地处理大数据来为人们服务仍需要广大研究者不断地研究和探索。

参考文献:

[1]刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报,2014,46(6):957- 972.

[2]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,23(4):168-172.

[3]刘俊.基于大数据流的Multi-Agent系统模型研究[J].计算机技术与发展, 2007,17(5):166-169.

有关线性代数的研究方向论文

如何学习线性代数论文

《线性代数》课程是高校理工科专业、经管专业开设的重要基础课之一,课程本身具有很强的抽象性与逻辑性,使得很多学生在学习的过程中很难接受理解和掌握。因此,教学内容、教学方法是《线性代数》这门课程的重点问题,如何根据这门课程的特点,找到理论内容的衔接关系,将零散的知识点进行逻辑关联,形象生动的表达给学生,激发学生对这门课程的学习兴趣,加强学生对课程内容的理解,提高学生的学习效率是非常重要的。学好《线性代数》可以培养学生良好的逻辑思维能力、分析解决实际问题的能力。因此,本文就如何学好这门课程,提出以下几点心得。

1、上好第一节课

上好第一节课很重要,好的开端是成功的一半,对这门课程感不感兴趣,开篇很重要。在第一节课,我们要介绍《线性代数》这门课程的历史,通过科学家的奇闻异事,引入课程的基本计算单元:行列式、矩阵和向量,引起学生对这门课程的强烈的好奇心。讲一讲《线性代数》在数学、物理学和技术科学中的重要地位,说一说在计算机高度发达的今天,大数据时代的今天,《线性代数》在图像识别、密码学和大数据处理上处的主要地位和作用,提高学生对这门课程的强烈的求知欲望。

2、引入MOOC

MOOC的概念是2008年的一项在线课程实践中首次提出。接下来几年各国学者对其进行了深入研究,2013年国内知名高校逐渐加入MOOC的建设行列中,很多高校的课程是以MOOC的模式设计和开设课程,《线性代数》这门课程也在其中,基于MOOC的混合式教学模式有自己的课堂优势:它可以将传统的课堂讲授与在线的网络学习很好地融合在一起,发挥两者的优势,强强联合。在这种混合式教学过程中强调了老师的主导作用、学生的主体地位,教师讲授内容学生可以时刻在线观看、反复回看,可以使学生在最短的时间内通过混合式学习这种方式对课程讲授的内容理解、吸收和掌握,从而消除学生因为没听懂一点而导致后续断片,进而讨厌学习这门课程的现象,提高了学生学习的积极性和主动性。也避免了传统教学中教师课堂灌输,没有办法根据学生的个体差异,因材施教而抹杀了一部分同学学习的积极性。有了MOOC还可以改变对学生的考核方式,采取灵活多样的考核方式,全面考核学生在学习过程中的能力,过程性评价学生的学习情况:在线课堂测试的成绩、MOOC作业的完成情况,自评互评得分,都可以作为学生最终考核的一部分。

3、翻转课堂

翻转课堂这个概念第一次出现是由美国科罗拉多州的林地公园高中的两位化学老师提出来的,他们录制了上课的教学PPT和同步讲解教学内容的视频,上传到网络给缺课的学生自我学习。翻转课堂跟传统的教学模式不同,不再是课上教师讲解,课后学生自己复习、消化吸收,而是变成课前学生先自我学习,找到不理解的问题,讲课过程中学生提出疑问,然后教师讲解答疑,之后学生根据网络上的PPT和教学视频结合上课过程中教师的答疑来巩固学习的内容。这种新的教学方式充分体现了学生的主体地位,教师以辅导的形式出现在整个教学过程中,更能提高学生的自我学习积极性和学习效率。此外,翻转课堂的实现需要很多优秀的视频资源,这就要求教师花费大量的时间和精力来做好课程内容的设计,对教师来说这是非常有挑战性的。

4、结束语

本文首先讨论了教师如何通过讲好第一节线性代数课程,使学生了解这门课程的发展史,这门课程在现代的社会科各个领域的重要应用,激发学生学习这门课程的兴趣,提高学习积极性,了解学好这门课程的重要性。然后,线性代数是一门数学基础课程,包含的内容很抽象,学习难度很大,但是应用很广,要求学生要很好的掌握相关知识,才能做到学以致用,因此,有必要把传统的教学模式和现代的教学手段相结合:MOOC作为一种全新的学习形式被引入到线性代数教学中,可以避免学生上课的盲目性,提高听课效率,提升了学生的学习效率,另外,也是对学习内容的补充,可以让学生学到更多课堂上学不到的新知识;翻转课堂改变了传统的教学模式,学生可以课前通过视频自主学习,课中与教师互动探讨疑惑,使学生为主教师为辅全新的尝试和变革,这种新的教学模式在一定程度上提高了学生的学习效率,激发了学生的学习兴趣,给课程的学习注入新的活力和生命力,提高线性代数教学效果。总之,我们不断地更新教学方法和手段,整合资源,利用好网络资源的给学生更合适的教学方式。

线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 . Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre ) 一 书中提出的。 (1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物理学家 P. A. M. Dirac 提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的。 矩阵的发展是与线性变换密切相连的。到 19 世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由 Peano 于 1888 年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

线性代数论文题目有哪些

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

223390359QQ

大学线性代数的题目类型有很多,包括线性方程组、矩阵计算、向量空间、线性变换、矩阵分解、矩阵求导、矩阵微积分等等。每个题目的难度也不一样,有些题目可能比较简单,有些题目可能比较难。

大学线性代数的题目是不同的,取决于每个教授的教学方法和课程内容。但是,通常情况下,大学线性代数的题目都会涉及到矩阵、向量、线性变换、线性空间、线性方程组、行列式、特征值、特征向量等内容。

  • 索引序列
  • 毕业论文中线性代数的现状
  • 线性代数论文3000字
  • 大数据时代的论文研究现状
  • 有关线性代数的研究方向论文
  • 线性代数论文题目有哪些
  • 返回顶部