《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质。 《实变函数》主要引进了一种新的积分-Lebesgue积分,用来研究不连续函数的积分问题。 《复变函数》主要研究定义域为复数的函数的微积分以及幂级数展开等性质。可以理解为复数函数的《数学分析》。但内容上有所增加。 在我国的数学系课程中,二者的联系并不大,研究的方法也不同。可以说《实变函数》要更深一些。如果要深入了解它们之间的联系,可以看一下这本书Walter Rudin的《Real and Complex Analysis》(有中译本),它是美国大学数学系研究生用书,其中包括了《实变函数》和《复以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。[编辑本段]实变函数论的产生 微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。 也正是在那个时候,数学家逐渐发现分析基础本身还存在着学多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。 十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有导数。这个证明使许多数学家大为吃惊。 由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,我们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?…… 上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。[编辑本段]实变函数的内容 以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。 实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度。 什么实测度呢?简单地说,一条线段的长度就是它的测度。测度的概念对于实变函数论十分重要。集合的测度这个概念实由法国数学家勒贝格提出来的。 为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。 勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。 自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。 什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况。 和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。 总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征。 实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响。
从柯西1814年论文脚注增补内容和1825年的论文可以看出,他是通过长期刻苦的思考才认识到,引进复量后可以用简单形式表达实函数对之间的关系,1830-1838柯西在都灵和布拉格期间发表的工作是不连贯的,后来《分析与数学物理练习》(四卷,1840-1847)重新整理了这些工作。 他在1831年的论文中指出下述定理:函数f(z)可以按麦克劳林公式展开为幂级数,对所有z绝对值小于那些使函数或其导数无穷或不连续的z收敛(那时柯西知道的奇点只是我们现在称为极点的奇点),他证明这个级数逐项按绝对值小于一个收敛的几何级数,其和数为 ,其中Z是使f(z)不连续的第一个值,f(z)上划线是对所有绝对值为|Z|的z而言|f(z)|的最大值。他给出了函数可展为麦克劳林级数的一个有力易用的判别法则,它用了现在称为强级数的比较级数。他首先证明 再将分式展开证明定理。在定理中他假定了函数本身的连续性必推出导数的存在性和连续性,也曾经在定理叙述中补充到:收敛区域止于使函数及其导数无穷或不连续的z值,但他没有确信必须对导数加些条件,后来又把这句补充删掉了。在另一篇论文中,柯西把[解析的]f(z)=u+iv沿一个[单连通]区域边界曲线的积分和展布在这个区域上的积分联系起来,得到了一个与路径无关的基本定理新证明。他对一个矩形证明定理后推广到了不自交的闭曲线(魏尔斯特拉斯1842年独立得出)。柯西早期可能受到了格林1828年工作的影响,因为他将结果推广到了曲面上的区域。 到1846年他改变了对复函数的观点,不像1826年以前关心实积分及其求值,而是为复函数理论本身建立基础,他给出了关于沿一条任意闭曲线的积分 的新叙述:如果曲线包围一些极点,那么积分值是函数在这些极点上留数之和的2πi倍。 他还着手处理了多值函数的积分,并进一步考虑积分号下的多值函数。如果被积函数是一个代数方程或超越方程的根,如 (其中w^3=z),且如果沿着一条闭路径积分并又回到起点,那么被积函数就表示另外一个根,在这些情形中沿着闭路径积分的值依赖于起点,而沿着路径的延拓产生积分的不同值。但若环绕路径充分多次使ω回到原始值,那么积分的值将重复出现,是z的一个周期函数。积分的周期模不再像单值函数那样可以用留数表示。 柯西关于多值函数积分的概念依然是模糊的。1821年起的二十几年里,柯西独自发展了复函数理论,1843年才有法国数学家继续他的工作,皮埃尔·阿方斯·洛朗(Pierre Alphonse Laurent,1813-1854)在1843年得到了一个重要结果,他证明当一个函数在一孤立点上不连续时,必须用变数的升幂及降幂展开式来代替泰勒展开式,如果函数和其导数在一个圆环内单值且连续,这个圆环的中心是孤立点a,则函数以相反方向沿圆环的两个边界圆所取的积分适当展开,给出z的升幂及降幂展开式,它在圆环内收敛。这个洛朗展开式是 ,它是泰勒展开式的一个推广。魏尔斯特拉斯1841年得到该结果,但未发表。 皮瑟(Victor Alexandre Puiseux,1820 -1883)在1850年发表了关于多值函数的论文,论f(u,z)=0给出的复代数函数,其中f是u和z的多项式,他首次区分极点与支点(柯西未发觉其中区别)并引入本性奇点(一个无穷阶的极点)概念(魏尔斯特拉斯也曾独立提出),比如e^(1/z)=0在z=0。虽然柯西在1846年的论文中考虑了简单多值函数沿着包围支点的几条路径的变化,但皮瑟证明如果u1是f(u,z)=0的一个解,且z沿着某一条路径变化,则u1的最后值并不依赖于路径,只要路径不包围使u1为无穷或其它解(即支点)的任何点。 皮瑟还证明z的函数在支点z=a处附近的展开式必须含有z-a的分数次幂,于是改进了柯西把函数展开为麦克劳林级数的定理,他得到f(u,z)=0的解u的一个展开式,它不是展成z的幂而是z-c的幂,所以展开式在一个以c为中心,且不含极点或支点的圆内正确,然后皮瑟让c沿着一条路径变化,使那些收敛圆部分重叠,并使在一个圆内的展开式可以延伸到另一个圆。这样从u在一点的值开始,可以沿任何一条路径了解其变化。 通过皮瑟对多值函数、多值函数在复平面上的支点、以及多值函数积分的研究,皮瑟把柯西的函数论工作发展到第一阶段完毕,多值函数的理论中仍有困难需要克服。柯西写了一些关于多值函数的论文,试图跟上皮瑟的工作。虽然他引入分支切割的概念,但仍未区分极点和支点。代数函数及其积分的课题要交给黎曼继续进行。 柯西在1851年的论文中对复函数性质作了更谨慎的叙述,他肯定了复函数本身及其导数的连续性对幂级数展开式是必需的。他指出u作为z的函数,在z=a处的导数与x+iy平面上z趋于a的方向无关,且u满足u对x的二阶导+u对y的二阶导=0。在这篇论文中他还引入了新的术语,称一个永不为无穷的、恰有一个导数的单值函数为synectique,后来Charles Briot(1817-1822)和Jean-Claude Bouquet(1819-1885)用holomorphic(全纯)代替了synectique,并用meromorphic(亚纯)指在区域中只有极点的函数。
实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。
复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。
对虚数存在意义的两次认知早在一周前,便写了以论复数中虚数部分存在性为题的一篇论文,由于时间较为紧张,不得要领,颇为浅薄,甚至有很多不科学的漏洞。之前对虚数域的认识,完全在于一个虚字。因为对于复变产生的意义,书中是这样给出的:由于解代数方程的需要,人们引出了复数。复数的出现,使得基本运算中的开方运算不再存在无解情况,n此多项式也不再存在增根,这为人类在某些逻辑领域的运算提供了帮助。为了说明两次认知所进行的探索,以下便是我在之前的论文中所论述的部分内容(这一部分是在我认为虚数是完全虚构的认知下的论述):“复数的集合——复平面是一个二维平面,但却并非我们所在的三维世界中的任何一个二维平面。可以说复平面在现实世界中完全找不到具体的一一对应,是一个纯粹缔造出来的二维平面。对这种想法的抽象性我颇为好奇,故希望找到正解。而就在最近我通过一个论坛的争论弄清了两个概念:数学与科学。结论为:数学不是科学。数学不属于科学的范畴,是一种逻辑学,作为工具的学科;而科学则是理论的集合。哪怕是假命题如地心说,也是科学。而区别一个学科是否是科学的,则需要另一门学科作为其判定依据:证伪学。最终令我信服秉洁说的一个理论是:可被证明或证伪的属于科学;而数学,是不可被证伪的。这一定程度上说明了数学是一门形而上学的学科,甚至包括几何学在内。而在数学当中,在我看来复数领域的形而上学兴则更加突出。曾见过有人在论述形而上学时拿虚数和量子理论作为例证。我也曾一度认为量子理论中无观察者的不可知的事物量子状态可以用虚数来表示。当然现在看来,这是一种很浅薄的想法。就好比将著名的佯谬——薛定谔的猫的生死与否映射到复数域上。我高中时曾对此作过一个很粗浅而缺乏科学性的类似性形而上学的证明,若将猫的生死,即铀的衰变与否映射到复数域上,那么为了对应铀的衰变概率分布的均匀,不妨将其对应到一队共轭复数上。当观察者出现,猫的生死被确定,不确定性即消失,那么其映射的复数的不存在性也应该消失,即将复数反映到实数域上,相应的运算即取模,可知共轭复数的模是相等的,这与确定后猫的生死的不同是矛盾的。当然,这种简单的推理本身便不甚科学。但结论应为正解:不确定不等于不存在,二者不可相互映射。这至少说明了数学领域外的学科中,复数的存在有可能是孤立的。世界观的完全形而上学化是不现实的。”以上。在这篇想法很幼稚的论文完成后,感到自己对复平面及虚数的存在意义并没有做任何深入的知识性的理解,仅为一些个人想法,颇觉不妥。为了更加准确而科学地对这个问题进行深入的认知,我查阅了一些相关资料。首先,虚数的发展历史是这样的:Pt 世纪意大利米兰学者卡当(1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家菜不尼茨(1664—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如 ,的数字都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达兰贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是 的形式(a、b都是实数)。法国数学家棣莫佛(1667—1754)在1730年发现著名的探莫佛定理。欧拉在1748年发现了有名的关系式 ,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。Pt 2.“虚数”是人类在发展数学上的解题技术时,以人为定义方式发明的一种虚拟的数,在现实生活中不存在,在实务的商用数学中也用不着。“复数”可以解决一些物理数学上的问题,解题到最后经过转化所得到的实数解,才有物理上的意义,带有虚数的复数届时没有意义的。至此,虚数在物理学中不存在的理论在我的认识中仍然是正确的。至到看到时间的空间矢量代数法则:时间有空间的方向性,它能做矢量代数。过去我们做代数运算时,虚数就是时间。多普勒效应是证明四维时间存在的实验基础之一。虚数是的确不存在于三维世界中的,但却被定义为第四维的时间。虚数时间只是用数学呈现的方法,是一种处理方式。就像RCL电路我们也用虚数去处理相角关系,但电感本身并不是虚的。这是人为的定义,但这也在一定意义上揭示了虚数有可能存在的某些物理特征。之后我又得到了物理学中有关快子的概念:快子是理论上预言的粒子。它具有超过光速的局部速度(瞬时速度)。它的质量是虚数,但能量和动量是实数。有人认为这种粒子无法检测,但实际未必如此。影子和光斑的例子就说明超过光速的东西也是可以观测到的。目前尚无快子存在的实验证据,绝大多数人怀疑它们的存在。有人声称在测氚的贝塔衰变放出的中微子质量的实验中有证据表明这些中微子是快子。这很让人怀疑,但不能完全排除这种可能。快子虽未被科学界认可,但至少已经人类已将虚数应用到物理学中。其一旦被证明,虚数不存在物理意义的观点即被打破。这无疑是人类对虚数存在意义的两次深入的探索!下面这段话我认为很客观而积极的展现了虚数的现实意义:“代数学的主要任务就是对这个问题给出尽可能多的答案。通过引入虚数,那些‘没有意义”的根式就根本不成其为一个问题。可是在历史上虚数的存在性及它的意义曾经引起一场激烈的论战。虚数被讥笑为‘数的鬼魂’,一些象笛卡尔这样的大数学也拒绝承认它。这场争论一直要到一八零零年左右几何解释虚数成功后才慢慢平静下来。对实用主义者而言,虚数当然是一个计算的工具,只要它有用就行了,但对于严肃的数学家来说却并非如此。高斯就曾经说过,关键不在于应用,而在于如果歧视这些虚量,整个分析学就会失去大量的美和灵活性。为什么认为“歧视虚数”就不美呢?我想这是由于数学中第二个关于美的法则在起作用:对称性法则。当我们把虚数和实数认为是同样真实,只是分别属于一个统一的复平面的横轴和竖轴时,所有的代数方程的解对于实数和虚数而言就具有了一种对称性。而任何人为的‘歧视’都将打破这种对称。”通过课程的学习,我们可以了解到,复数可以应用的现实中的数学建模,其在很多运算中都有者不可思议的性质和规律。复数的引入为人们解决实数域和物理科学提供了许多新的途径,打开了很多原本无法畅通的道路,无论是神奇的留数,还是保角映射,都为人类在解决非复领域上的问题提供了全新的思路与方便。虚数,无论其客观存在与否,都是美丽的!我的一点见解,你再整理下啊,我也要写复变的论文,但我还要写积分变换的
复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。
复变函数复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。
1. 生活中处处有数学 2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养6、谈小学、初中数学的衔接 7、容斥原理及其应用8、从高中课程改革看大学课程改革 9、信息化教育问题10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索 14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识 20、关于探索性命题的若干问题 21、数学实验教学模式探究22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神 26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维 28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质 30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见 32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用 34. 谈谈类比法 35. 数学教学设计随笔 36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题 38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识 40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析 42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用 44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习 46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便 48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识 50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改 52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力 54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用 56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则 58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考 60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学 62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计 64. 注重创新性试题的设计 以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题1.关于数学教学目的问题; 2.关于数学思维问题; 3.关于数学教学方法问题; 4.关于学习的迁移问题; 5.关于数学教学的评价问题; 6.关于熟练技能与深刻理解的关系问题; 7.数学的实用功能与数学的文化教育功能相关关系的研究; 8.数学教学的德育功能研究; 9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用; 10.数学发现法(探究式)教学可实施的基本内容、对象和范围; 11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究; 12.中学生数学学习习惯与学习方法的调查分析; 13.诊断和鉴别数学学习困难学生的方法探析; 14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究; 15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究; 16.教法与学法的双向作用研究; 17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究; 18.数学新课程实施中转变学生学习方式的途径; 19.学生数学观念或数学意识的形成机制和培养途径的实验研究; 20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。 21.中学数学教育的地位与作用。 22.形象思维与数学教学。 23.直观思维与数学教学。 24.非智力因素与数学学习。 25.数学美与数学教学。 26.在数学教学中怎样培养学生的数学能力。 27.数学作图及图形的教学。 28.数学解题错误的探讨。 29.怎样配备数学习题。 30.数学解题常用的一些思维方法。 31.怎样提高学生的自学能力。 32.怎样培养学生学习数学的兴趣。二、《概率论与数理统计》参考题 1.有关概率论发展的历史。 2.随机性与必然的数学基础与认识。 3.随机变量的直观认识与数学描述。 4.古典概率型的计算技巧。 5.几何概率型的分析处理。 6.有关概率论之介绍。 7.概率论中数学期望概念。 8.利用期望概率统一引人矩阵概率。 9.期望概率在概率论中的地位和作用。 10.特征函数与因数在概率论中的作用及其含义。 11.关于独立性。 12.大数定律与中心定律之含义。 13.大数定律与概率的统计定义。 14.有关概率不等式。 15.条件概率与条件期望。 16.Bayes公式的扩展。 17.概率在其它学科中的应用。 18.其它数学分支在概率论中的应用。 19.概率题目计算的多解性。 20.数理统计概念。 21.数理统计的过去与现在。 22.数理统计在客观现实中的作用。 23.假设检验的实质与作用。 24.参数估计的作用与处理方法。 25.数理统计在你自己工作实践中的应用(实例)。 26.学习概率统计的实践与体会。 27.概率统计中的错题分析。 28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。 29.利用回归分析方法处理问题。 30.回归分析理论中存在的问题与解决的设想。三、《微分几何》参考题 1.空间曲线的基本公式及其在曲线论中的作用。 2.渐近线与渐缩线。 3.空间曲线弯曲性的研究。 4.曲率与挠率。 5.曲面的第一基本形式在曲面论中的作用。 6.等矩映象与曲面的内在几何。 7.曲面的第二基本形式在曲面论中的作用。 8.曲面上的曲率线,渐近曲线,测地线。 9.曲面的内在几何与外在几何的相依性。 10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。 11.高斯曲率的意义与作用。 12.等矩映射与等角映射及等积映射的关系。 13.高斯与波涅公式的意义与作用。 14.伪球面与罗氏几何。四、《复变函数》参考题 1.复变函数在一点解析的等价定义。 2.幅角多值性所导出的问题汇集。 3.小结复变函数的积分。 4.解析与调和函数的关系。 5.漫谈复数∞。 6.0,∞与函数 7.多值函数单值分支的表达与计算。 8.分式线性函数全体对乘法——函数复合——构成群。 9.∞和∞邻域的引进使扩充复平面的为紧空间。 lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。 11.谈复数的比较大小问题。 五、《实变函数》参考题, 1.关于积分号下取极限(积分与极限交换次序问题)。 ①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。 ②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。 ③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。 2.关于微积分基本定理(牛顿一菜布尼兹公式) ①什么是微积分基本定理,它的重要意义在哪里? ②黎曼积分情形,相应定理的条件是什么?有什么不足之处? ③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题? ④应用例题。 3.关于绝对连续函数。 ①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。 ②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。 ③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。 ④绝对连续函数全体组成线性空间。 4.关于勒贝格积分。 ①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处? ②说明勒贝格积分在几何上仍是“曲边梯形的面积”。 ③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。 ④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。 ⑤勒贝格积分有许多重要性质,带来一些什么好处? 5.关于测度。 ①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。 ②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。 ③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。 6.关于可测函数。 ①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。 ②全体可测函数构成线性空间,构成环。 ③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。 7.关于可测函数列的各种收敛概念。 ①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。 ②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。 8.关于点集上的连续函数。 ①定义,性质。 ②与数学分析中讲的连续的关系。 9.集合论和点集论的方法在实变函数论中的意义。 从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。 以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。
实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。
文复变函数。毕业论文按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节。复变函数毕业论文文复变函数最好写,毕业论文为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!
中职数学教学论文题目
1、线性方程的叠加原理及其应用
2、作为函数的含参积分的分析性质研究
3、周期函数初等复合的周期性研究
4、“高等代数”知识在几何中的应用
5、矩阵初等变换的应用
6、“高等代数”中的思想 方法
7、中职数学教学中的数学思想和方法
8、任N个自然数的N级排列的逆序数
9、“高等代数”中多项式的值,根概念及性质的推广
10、线性变换“可对角化”的条件及“对角化”方法
11、数域概念的等价说法及其应用
12、中职数学教学与能力培养
13、数学能力培养的重要性及途径
14、论数学中的基本定理与基本方法
15、论电脑、人脑与数学
16、论数学中的收敛与发散
17、论小概率事件的发生
18、论高等数学与初等数学教学的关系
19、论数学教学中公式的教学
20、数学教学中学生应用能力的培养
21、数学教与学的心理探究
22、论数学思想方法的教与学
23、论数学家与数学
24、对称思想在解题中的应用
25、复数在中学数学中应用
26、复变函数论思想方法在中学数学教学中的应用
27、复变函数论思想方法在中学数学竞赛中的应用
28、代数学基本定理的几种证明
29、复变函数的洛必达法则
30、复函数与实函数的级数理论综述
31、微积分学与哲学
32、实数完备性理论综述
33、微积分学中辅助函数的构造
34、闭区间上连续函数性质的推广
35、培养学生的数学创新能力
36、教师对学生互动性学习的影响
37、学生数学应用意识的培养
38、数学解题中的 逆向思维 的应用
39、数学直觉思维的培养
40、数学教学中对学生心理素质的培养
41、用心理学理论指导数学教学
42、开展数学活动课的理论和实践探索
43、《数学课程标准》解读
44、数学思想在数学教学中的应用,学生思维品质的培养
45、数形结合思想在中学数学中的应用
46、运用化归思想,探索解题途径
47、谈谈构造法解题
48、高等数学在中学数学中的应用
49、解决问题的策略思想--等价与非等价转化
50、挖掘题中的隐含条件解题
51、向量在几何证题中的运用
52、数学概念教学初探
53、数学 教育 中的问题解决及其教学途径
54、分类思想在数学教学中的作用
55、“联想”在数学中的作用研究
56、利用习题变换,培养学生的思维能力
57、中学数学学习中“学习困难生”研究
58、数学概念教学研究
59、反例在数学教学中的作用研究
60、中学生数学问题解决能力培养研究
61、数学教育评价研究
62、传统中学数学教学模式革新研究
63、数学研究性学习设计
64、数学开放题拟以及教学
65、数学课堂 文化 建设研究
66、中职数学教学设计及典型课例分析
67、数学课程标准的新增内容的尝试教学研究
68、数学课堂教学安全采集与研究
69、中职数学选修课教学的实话及效果分析
70、常微分方程与初等数学
71、由递推式求数列的通项及和向量代数在中学中的应用
72、浅谈划归思想在数学中的应用
73、初等函数的极值
74、行列式的计算方法
75、数学竟赛中的不等式问题
76、直觉思维在中学数学中的应用
77、常微分方程各种解的定义,关系及判定方法
78、高等数学在中学数学中的应用
79、常微分方程的发展及应用
80、充分挖掘例题的数学价值和 智力开发 功能
小学数学教学论文题目参考
1、小学数学教师几何知识掌握状况的调查研究
2、小学数学教师教材知识发展情况研究
3、中日小学数学“数与代数”领域比较研究
4、浙江省Y县县域内小学数学教学质量差异研究
5、小学数学教师教科书解读的影响因素及调控策略研究
6、中国、新加坡小学数学新课程的比较研究
7、小学数学探究式教学的实践研究
8、基于教育游戏的小学数学教学设计研究
9、小学数学教学中创设有效问题情境的策略研究
10、小学数学生活化教学的研究
11、数字 故事 在小学数学课堂教学中的应用研究
12、小学数学教师专业发展研究
13、中美小学数学“统计与概率”内容比较研究
14、数学文化在小学数学教学中的价值及其课程论分析
15、小学数学教师培训内容有效性的研究
16、小学数学课堂师生对话的特征分析
17、小学数学优质课堂的特征分析
18、小学数学解决问题方法多样化的研究
19、我国小学数学新教材中例题编写特点研究
20、小学数学问题解决能力培养的研究
21、渗透数学思想方法 提高学生思维素质
22、引导学生参与教学过程 发挥学生的主体作用
23、优化数学课堂练习设计的探索与实践
24、实施“开放性”教学促进学生主体参与
25、数学练习要有趣味性和开放性
26、开发生活资源,体现数学价值
27、对构建简洁数学课堂的几点认识和做法
28、刍议“怎样简便就怎样算”中的“二指技能”现象
29、立足现实起点,提高课堂效率
30、宁缺毋滥--也谈课堂教学中有效情境的创设
31、如何让“生活味”的数学课堂多一点“数学味”
32、有效教学,让数学课堂更精彩
33、提高数学课堂教学效率之我见
34、为学生营造一片探究学习的天地
35、和谐课堂,让预设与生成共精彩
36、走近学生,恰当提问--谈数学课堂提问语的优化策略
37、谈小学数学课堂教学中教师对学生的评价
38、课堂有效提问的初步探究
39、浅谈小学数学研究性学习的途径
40、能说会道,为严谨课堂添彩
41、小学数学教学中的情感教育
42、小学数学学困生的转化策略
43、新课标下提高日常数学课堂效率的探索
44、让学生参与课堂教学
45、浅谈新课程理念下如何优化数学课堂教学
46、数学与生活的和谐之美
47、运用结构观点分析教学小学应用题
48、构建自主探究课堂,促进学生有效发展
49、精心设计课堂结尾巩固提高教学效果
50、浅谈数学课堂提问艺术
51、浅谈发式教学在小学数学教学中的运用
52、浅谈数学课堂中学生问题意识的培养
53、巧用信息技术,优化数学课堂教学
54、新课改下小学复式教学有感
55、让“对话”在数学课堂中焕发生命的精彩
56、小学几何教学的几点做法
初中数学教学论文题目
1、翻转课堂教学模式在初中数学教学中的应用研究
2、数形结合思想在初中数学教学中的实践研究
3、基于翻转课堂教学模式的初中数学教学设计研究
4、初中数学新教材知识结构研究
5、初中数学中的研究性学习案例开发实施研究
6、学案导学教学模式在初中数学教学中的实践与研究
7、从两种初中数学教材的比较看初中数学课程改革
8、信息技术与初中数学教学整合问题研究
9、初中数学学习困难学生学业情绪及其影响因素研究
10、初中数学习题教学研究
11、初中数学教材分析方法的研究
12、初中数学教师课堂教学目标设计的调查研究
13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究
14、初中数学教师数学教学知识的发展研究
15、数学史融入初中数学教科书的现状研究
16、初中数学教师课堂有效教学行为研究
17、数学史与初中数学教学整合的现状研究
18、数学史融入初中数学教育的研究
19、初中数学教材中数学文化内容编排比较研究
20、渗透数学基本思想的初中数学课堂教学实践研究
21、初中数学教师错误分析能力研究
22、初中数学优秀课教学设计研究
23、初中数学课堂教学有效性的研究
24、初中数学数形结合思想教学研究与案例分析
25、新课程下初中数学教科书的习题比较研究
26、中美初中数学教材难度的比较研究
27、数学史融入初中数学教育的实践探索
28、初中数学课堂教学小组合作学习存在的问题及对策研究
29、初中数学教师数学观现状的调查研究
30、初中数学学困生的成因及对策研究
31、“几何画板”在初中数学教学中的应用研究
32、数学素养视角下的初中数学教科书评价
33、北师大版初中数学教材中数形结合思想研究
34、初中数学微课程的设计与应用研究
35、初中数学教学生成性资源利用研究
36、基于问题学习的初中数学情境教学模式探究
37、学案式教学在初中数学教学中的实验研究
38、数学文化视野下的初中数学问题情境研究
39、中美初中数学教材中习题的对比研究
40、基于人教版初中数学教材中数学史专题的教学探索
41、初中数学教学应重视学生直觉思维能力的培养
42、七年级学生学习情况的调研
43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考
44、新课程背景下学生数学学习发展性评价的构建
45、初中数学学生学法辅导之探究
46、合理运用数学情境教学
47、让学生在自信、兴趣和成功的体验中学习数学
48、创设有效问题情景,培养探究合作能力
49、重视数学教学中的生成展示过程,培养学生 创新思维 能力
50、从一道中考题的剖析谈梯形中面积的求解方法
51、浅谈课堂教学中的教学机智
52、从《确定位置》的教学谈体验教学
53、谈主体性数学课堂交流活动实施策略
54、对数学例题教学的一些看法
55、新课程标准下数学教学新方式
56、举反例的两点技巧
57、数学课堂教学中分层教学的实践与探索
58、新课程中数学情境创设的思考
59、数学新课程教学中学生思维的激发与引导
60、新课程初中数学直觉思维培养的研究与实践
2021各阶段数学教学论文题目相关 文章 :
★ 优秀论文题目大全2021
★ 大学生论文题目大全2021
★ 大学生论文题目参考2021
★ 优秀论文题目2021
★ 2021毕业论文题目怎么定
★ 2021教育学专业毕业论文题目
★ 2021优秀数学教研组工作总结5篇
★ 2021数学教学反思案例
★ 2021交通运输方向的论文题目及选题
★ 小学数学教学论文参考(2)
对初中数学锐角三角函数教学的几点思考论文
锐角三角函数作为初中数学中重点教学内容,掌握好该知识点不但有助于学生取得良好成绩,同时更重要的是能够为其今后更高层次几何学习奠定坚实基础,为此这就要求广大教师必须做好该方面教学。然而结合笔者实践来看,由于受到诸多因素所影响,当前锐角三角函数教学效果普遍不佳,如此一来不但严重地影响教学质量,同时更会对后续三角函数教学任务有效开展造成极大的阻碍,对此教师必须认清该知识点的重难点,紧抓学生常见认识误区和思维障碍,采取有效策略进行教学。
一、锐角三角函数与学生常见认识误区和思维障碍分析
锐角三角函数是中学阶段几何学基础知识,是在学生学习了相似三角形和勾股定理之后进一步学习,通过对其开展研究能够使得学生可以后续其他知识学习奠定基础,该知识点呈现正弦函数概念上遵循“从特殊到一般,从实践探索到证明”的方式,让学生体会实验、观察、归纳、猜想、证明的求知过程,有利于学生角度与数值之间对应关系的建立,深化函数思想;在解决实际问题时,强调数学模型的构建,凸现数学建模的思想;重视分析图形特点,强化数形结合思想。对于锐角三角函数知识,学生常见的认知误区和思维障碍主要有以下几方面:(1)不能准确理解锐角三角函数的概念;(2)容易混淆正弦函数、余弦函数和正切函数;(3)过分依赖计算器,对于常用的30°、45°、60°等函数值不能熟记;(4)解直角三角形,特别在解圆中的直角三角形时,易把直角边当做斜边;(5)在解决实际问题中,学生很难通过身体建模来解决问题;(6)容易把坡度与正弦函数混淆。
二、初中数学锐角三角函数教学策略思考与探讨
1.揭示三角函数相关概念产生的思维过程
在传统的教学模式下,许多教师对于三角函数的教学都是采用平铺直叙、照本宣科的方式进行教授,通过让学生反复朗读、书写的方式对概念进行记忆,而很少运用实践操作或探究活动等形式让学生理解相关概念。这种教学方式虽然也能让学生牢牢地记住三角函数的概念,但是这种方式是呆板的,非常影响学生创新思维的发展,因此,教师在教学过程中应该采用通过向学生揭示三角函数概念产生的思维过程的方式加深学生对概念内涵的理解与掌握。
2.重视对直角三角形的讲解
学生掌握好直角三角形的边角关系对于锐角三角函数的学习和掌握有很大促进作用,因而这就要求广大教师必须重视并做好对其教学。直角三角形除直角外的5个元素之间关系:
(1)三边之间的关系:a2+b2=c2(勾股定理);
(2)两锐角之间的关系:∠A+∠B=90°。
利用这些关系,首先要理解好对边与角的关系,这5个元素中,如果知道2个(其中至少有一个是边),就可以求出其余3个。即“在直角三角形中,角定边的比值也确定了,反之,边的比值确定了,角的大小也确定”,并通过在解题过程中不断强调,对学生进行强化理解。数形结合思想对于锐角三角函数的学习与运用也非常的重要,在理解概念、推理论证、计算化简的过程中,通过画图分析,可以让学生在具体、直观中理解直角三角形边与角之间的关系。
3.结合实际生活,促进学生对三角函数相关知识的`理解与掌握
在教学中,教师应尽量选用贴近学生生活的素材来加深学生对三角函数的理解与掌握。结合生活实际不仅可以让学生体会锐角三角函数和解三角形的理论来源于实际,是实际的需要,还可以让学生看到它们在解决实际问题中所起的作用,感受由实际问题抽象出数学问题,通过解决数学问题得到答案,再将数学问题的答案回归到实际问题的这种“实践-理论-再实践”的认识过程。这过程符合人的认知规律,又利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。直角三角形的学习为学生学习锐角三角函数做好了充分的准备。教师在讲解直角三角形的过程中,就可以利用确定台阶的倾斜程度问题引出正切函数,也可以例举学生熟悉的跷跷板问题等等。
4.对锐角范围内同角或等角的三角函数值相等的内涵和外延进行明晰
明晰锐角范围内同角或等角的三角函数值相等对于学生理解和灵活运用三角函数解决问题显得尤为重要。但是在实际教学过程中,部分教师对此重视不够,在求解某个锐角的相应三角函数值时,该锐角往往置于直角三角形中,学生易形成惯性思维,当需求三角函数值的锐角置于一般三角形时,部分学生缺乏对锐角范围内同角或等角的三角函数值相等的理解。
例如图1所示,点E(0,4),O(0,0),C(6,0)在⊙A上,BE是⊙A中的一条弦,则tan∠OBE=。
许多学生遇到这类题时,很容易出错或者无从下手,教师经过与学生交流、了解做错的原因,就会发现其实很多学生在解答过程中已经意识到要先连接EC(如图2所示),然后由同弧所对的圆周角相等推知∠OBE=∠OCE,但到这一步,学生就陷入了困惑,因为△EOC是直角三角形,而△OBE不是直角三角形。由此可见,学生对于这类题型无法解答或出错的根本原因就在于对同角或等角的三角函数值相等内涵的实质的理解不够透彻。
5.引导学生形成规范的解题过程
引导学生形成规范解题过程有利于他们理清思路,从而达到有效提升其能力与成绩之目的。数学学科一个突出的特点就是逻辑性比较强,对逻辑思维的要求也较高。因此,在解决锐角三角函数问题时,学生通过规范解题过程,按照步骤来进行解题就更加能够便利地找到相应的解题思路,从而掌握相应的数学知识。同时,对于解题思路的梳理很重要,首先要明确具体的问题是什么;其次,针对问题寻找解题突破点,并作出解答的计划;最后,按照计划一步步进行解题,并整理回顾。总之,解题过程规范了,步骤明确了,解题思路也就清晰了。
原文链接:几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具. 1. 角函数的计算和证明问题 在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握: (1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论. 注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina. (2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出). 例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是( ) (A)锐角 (B)钝角 (C)直角 分析 对A分类,结合sinA和cosA的单调性用枚举法讨论. 解当A=90°时,sinA和cosA=1; 当45°<A<90°时sinA>,cosA>0, ∴sinA+cosA> 当A=45°时,sinA+cosA= 当0<A<45°时,sinA>0,cosA> ∴sinA+cosA> ∵1, 都大于. ∴淘汰(A)、(C),选(B). 例2(1982年上海初中数学竞赛题)ctg67°30′的值是( ) (A)-1 (B)2- (C)-1 (D) (E) 分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.
因为对于任意a∈r,都有在(a,a+π)内,f(x)与y=0有且只有两个交点又因为函数为三角函数,且在区间长度为π的区间内恒成立!所以π为该函数的一个周期!因为函数为f(x)=sin(wx)。所以w=2π/π=2