• 回答数

    4

  • 浏览数

    345

吃生鱼片的猫
首页 > 职称论文 > 复变函数多值函数论文研究

4个回答 默认排序
  • 默认排序
  • 按时间排序

爱紫色的射手

已采纳

《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质。 《实变函数》主要引进了一种新的积分-Lebesgue积分,用来研究不连续函数的积分问题。 《复变函数》主要研究定义域为复数的函数的微积分以及幂级数展开等性质。可以理解为复数函数的《数学分析》。但内容上有所增加。 在我国的数学系课程中,二者的联系并不大,研究的方法也不同。可以说《实变函数》要更深一些。如果要深入了解它们之间的联系,可以看一下这本书Walter Rudin的《Real and Complex Analysis》(有中译本),它是美国大学数学系研究生用书,其中包括了《实变函数》和《复以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。[编辑本段]实变函数论的产生 微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。 也正是在那个时候,数学家逐渐发现分析基础本身还存在着学多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。 十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有导数。这个证明使许多数学家大为吃惊。 由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,我们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?…… 上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。[编辑本段]实变函数的内容 以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。 实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度。 什么实测度呢?简单地说,一条线段的长度就是它的测度。测度的概念对于实变函数论十分重要。集合的测度这个概念实由法国数学家勒贝格提出来的。 为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。 勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。 自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。 什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况。 和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。 总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征。 实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响。

127 评论

左家庄与特8

从柯西1814年论文脚注增补内容和1825年的论文可以看出,他是通过长期刻苦的思考才认识到,引进复量后可以用简单形式表达实函数对之间的关系,1830-1838柯西在都灵和布拉格期间发表的工作是不连贯的,后来《分析与数学物理练习》(四卷,1840-1847)重新整理了这些工作。 他在1831年的论文中指出下述定理:函数f(z)可以按麦克劳林公式展开为幂级数,对所有z绝对值小于那些使函数或其导数无穷或不连续的z收敛(那时柯西知道的奇点只是我们现在称为极点的奇点),他证明这个级数逐项按绝对值小于一个收敛的几何级数,其和数为 ,其中Z是使f(z)不连续的第一个值,f(z)上划线是对所有绝对值为|Z|的z而言|f(z)|的最大值。他给出了函数可展为麦克劳林级数的一个有力易用的判别法则,它用了现在称为强级数的比较级数。他首先证明 再将分式展开证明定理。在定理中他假定了函数本身的连续性必推出导数的存在性和连续性,也曾经在定理叙述中补充到:收敛区域止于使函数及其导数无穷或不连续的z值,但他没有确信必须对导数加些条件,后来又把这句补充删掉了。在另一篇论文中,柯西把[解析的]f(z)=u+iv沿一个[单连通]区域边界曲线的积分和展布在这个区域上的积分联系起来,得到了一个与路径无关的基本定理新证明。他对一个矩形证明定理后推广到了不自交的闭曲线(魏尔斯特拉斯1842年独立得出)。柯西早期可能受到了格林1828年工作的影响,因为他将结果推广到了曲面上的区域。 到1846年他改变了对复函数的观点,不像1826年以前关心实积分及其求值,而是为复函数理论本身建立基础,他给出了关于沿一条任意闭曲线的积分 的新叙述:如果曲线包围一些极点,那么积分值是函数在这些极点上留数之和的2πi倍。 他还着手处理了多值函数的积分,并进一步考虑积分号下的多值函数。如果被积函数是一个代数方程或超越方程的根,如 (其中w^3=z),且如果沿着一条闭路径积分并又回到起点,那么被积函数就表示另外一个根,在这些情形中沿着闭路径积分的值依赖于起点,而沿着路径的延拓产生积分的不同值。但若环绕路径充分多次使ω回到原始值,那么积分的值将重复出现,是z的一个周期函数。积分的周期模不再像单值函数那样可以用留数表示。 柯西关于多值函数积分的概念依然是模糊的。1821年起的二十几年里,柯西独自发展了复函数理论,1843年才有法国数学家继续他的工作,皮埃尔·阿方斯·洛朗(Pierre Alphonse Laurent,1813-1854)在1843年得到了一个重要结果,他证明当一个函数在一孤立点上不连续时,必须用变数的升幂及降幂展开式来代替泰勒展开式,如果函数和其导数在一个圆环内单值且连续,这个圆环的中心是孤立点a,则函数以相反方向沿圆环的两个边界圆所取的积分适当展开,给出z的升幂及降幂展开式,它在圆环内收敛。这个洛朗展开式是 ,它是泰勒展开式的一个推广。魏尔斯特拉斯1841年得到该结果,但未发表。 皮瑟(Victor Alexandre Puiseux,1820 -1883)在1850年发表了关于多值函数的论文,论f(u,z)=0给出的复代数函数,其中f是u和z的多项式,他首次区分极点与支点(柯西未发觉其中区别)并引入本性奇点(一个无穷阶的极点)概念(魏尔斯特拉斯也曾独立提出),比如e^(1/z)=0在z=0。虽然柯西在1846年的论文中考虑了简单多值函数沿着包围支点的几条路径的变化,但皮瑟证明如果u1是f(u,z)=0的一个解,且z沿着某一条路径变化,则u1的最后值并不依赖于路径,只要路径不包围使u1为无穷或其它解(即支点)的任何点。 皮瑟还证明z的函数在支点z=a处附近的展开式必须含有z-a的分数次幂,于是改进了柯西把函数展开为麦克劳林级数的定理,他得到f(u,z)=0的解u的一个展开式,它不是展成z的幂而是z-c的幂,所以展开式在一个以c为中心,且不含极点或支点的圆内正确,然后皮瑟让c沿着一条路径变化,使那些收敛圆部分重叠,并使在一个圆内的展开式可以延伸到另一个圆。这样从u在一点的值开始,可以沿任何一条路径了解其变化。 通过皮瑟对多值函数、多值函数在复平面上的支点、以及多值函数积分的研究,皮瑟把柯西的函数论工作发展到第一阶段完毕,多值函数的理论中仍有困难需要克服。柯西写了一些关于多值函数的论文,试图跟上皮瑟的工作。虽然他引入分支切割的概念,但仍未区分极点和支点。代数函数及其积分的课题要交给黎曼继续进行。 柯西在1851年的论文中对复函数性质作了更谨慎的叙述,他肯定了复函数本身及其导数的连续性对幂级数展开式是必需的。他指出u作为z的函数,在z=a处的导数与x+iy平面上z趋于a的方向无关,且u满足u对x的二阶导+u对y的二阶导=0。在这篇论文中他还引入了新的术语,称一个永不为无穷的、恰有一个导数的单值函数为synectique,后来Charles Briot(1817-1822)和Jean-Claude Bouquet(1819-1885)用holomorphic(全纯)代替了synectique,并用meromorphic(亚纯)指在区域中只有极点的函数。

126 评论

apples0081

实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。

206 评论

小树小树小树

复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

335 评论

相关问答

  • 三角函数最值研究论文

    对初中数学锐角三角函数教学的几点思考论文 锐角三角函数作为初中数学中重点教学内容,掌握好该知识点不但有助于学生取得良好成绩,同时更重要的是能够为其今后更高层次几

    喵小贝贝 3人参与回答 2023-12-06
  • 函数最值问题的研究论文

    【摘要】高中数学函数求最值问题是高中数学最重要的课程之一,由于求最值问题的内容较散,方法难以选择,因此最值问题求解一直困扰我们的学习。最值问题是数学考试中常用的

    一谷鱼vegfish 2人参与回答 2023-12-06
  • 研究性学习论文复合函数

    研究性学习:“数学在生活中的应用”结题报告一、课题研究背景:数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深

    飞龙在天了 4人参与回答 2023-12-06
  • 三角函数最值问题的研究论文

    最值问题是高中数学中永恒的话题,可综合地考查函数的性质、导数、均值不等式、线性规划、向量等知识的应用;涉及到代数、三角、几何等方面的内容;体现数学中的数形结合、

    散步的猫撒 4人参与回答 2023-12-07
  • 复变函数多值函数论文研究

    《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质

    吃生鱼片的猫 4人参与回答 2023-12-09