首页 > 期刊论文知识库 > 论文人脸识别算法研究现状

论文人脸识别算法研究现状

发布时间:

论文人脸识别算法研究现状

人脸识别技术流程

人脸识别的技术原理主要包括三大步骤:首先是建立人脸图像数据库,其次是通过各种方式来获得当前要进行识别的目标人脸图像,最后是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选,其技术流程如下:

应用场景广泛,安防和考勤门禁占比较高

目前,人脸识别在考勤/门禁领域的应用最为成熟,约占行业市场的40%左右;安防作为人脸识别最早应用的领域之一,其市场份额占比在30%左右;金融作为人脸识别未来重要的应用领域之一,其市场规模在逐步扩大,目前约占行业的20%。

三维人脸识别技术是发展主流

从人脸识别技术发展过程来看,未来三维人脸识别是人脸识别主要技术手段,二维人脸识别只是人脸识别发展的过渡阶段。实验结果显示,二维人脸识别系统在人脸左右偏转达到40度识别率迅速下降到50%以下;而采用三维人脸识别后,识别率可以提高至少10-20个百分点。

——以上数据来源于前瞻产业研究院《中国人脸识别行业市场前瞻与投资战略规划分析报告》。

身边的图像识别、人脸识别、文字识别应用案例,还有网络延迟方面的改进或创新之处。

1、金融领域。人脸识别当前在金融领域的应用最为广泛,当前国内金融领域监管要求严格,金融相关产品都需要实名认证,并且具有较高的安全性要求,活体识别,银行卡ocr识别,身份证ocr识别,人证对比等在各大手机银行,金融app,保险app等都已经成为不可或缺的一个环节。

2、安保领域。目前大量的企业,住宅,社区,学校等安全管理越来越普及,人脸门禁系统已经成为非常普及的一种安保方式。

3、通行领域。很多城市的火车站已经安装了人脸识别通行设备,进行人证对比过检,有些城市的地铁站也可以通过人脸识别的方式进行地铁进出站通行。

人脸识别技术在中国的发展起步于上世纪九十年代末,经历了技术引进-专业市场导入-技术完善-技术应用-各行业领域使用等五个阶段。目前,国内的人脸识别技术已经相对发展成熟,该技术越来越多的被推广到安防领域,延伸出考勤机、门禁机等多种产品,可以全面覆盖煤矿、楼宇、银行、军队、社会福利保障、电子商务及安全防务等领域,人脸识别的全面应用时代已经到来。

人脸识别技术介绍

(1)人脸识别技术流程

人脸识别的技术原理主要包括三大步骤:首先是建立人脸图像数据库,其次是通过各种方式来获得当前要进行识别的目标人脸图像,最后是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选,其技术流程如下:

(2)人脸识别的主要方法

人脸识别技术是一个跨越多个学科领域知识的高端技术研究工作,涉及图像处理、生理学、心理学、模式识别等知识,目前比较常见的人脸识别方法包括基于特征脸的方法、基于几何特征的方法、基于深度学习的方法、基于支持向量机的方法以及其他综合方法。

(3)常用人脸数据库介绍

目前世界较为常用的人脸数据库包括:ERET人脸数据库、CMU Multi-PIE人脸数据库、YALE人脸数据库、YALE人脸数据库B、MIT人脸数据库、ORL人脸数据库、BioID人脸数据库、年龄识别数据集IMDB-WIKI等。

人脸识别技术具有非侵犯性

人脸识别是生物特征识别技术的一个重要方向,不同的生物识别技术在细分技术上各具优势,人脸识别技术是非接触和不需要主动接受的,具有非侵犯性。此外,人们对这种技术的排斥心理最小,因此人脸识别技术是一种最友好的生物特征识别技术,并且图像采集可以由安防中的摄像头完成,不需要重新再布置新的采集设备。

行业技术环境十分活跃

截至2019年底,在soopat专利搜索引擎上以“人脸识别”为关键词检索得到20208项专利申请记录,行业技术环境十分活跃。

从申请年来看,2010-2018年,我国专利申请数逐年增长,2018年增加至5618项,为近年来最高,2019年我国人脸识别相关专利申请数达3024项。

从公开年来看,我国最早于2002年有人脸识别相关专利公开,当年公开数量为1项,随后专利公开量保持快速增长态势,2019年我国人脸识别相关专利公开数量为6700项。

中国人脸识别技术发明专利申请量超六成

在超2万项的人脸识别技术专利中,发明专利的申请量最多,达12407项,占比为;其次为实用新型专利,占比为。

G06K专利申请量过万

从我国人脸识别相关热门专利技术申请分布领域来看,G06K(数据识别、数据表示、记录载体、记录载体的处理)申请量最多,达10134项;其次为G07C(时间登记器或出勤登记器、登记或指示机器的运行、产生随机数、投票或彩票设备、未列入其他类目的核算装置),申请数量为1302项。

人脸识别错误率逐年降低

经过了40多年的发展,人脸识别技术取得了长足进步,根据LFW测试成绩显示,目前最优的系统在千万分之一的误报下达到识别准确率准确率已经超过,甚至超过了人类的识别程度,错误验证率也控制在以下。

即使是采用评测标准最严格的FRVT测试,根据2019年7月3日NIST公布的FRVT最新报告显示了全球人脸识别算法的最高水平可以做到在千万分之一误报率下,漏报率降低于,这意味着千万分位误报下的识别准确率已经超过99%,人脸识别技术的不断进步无疑会促进其在更广泛范围内的应用。

应用场景广泛,安防和考勤门禁占比较高

目前,人脸识别在考勤/门禁领域的应用最为成熟,约占行业市场的40%左右;安防作为人脸识别最早应用的领域之一,其市场份额占比在30%左右;金融作为人脸识别未来重要的应用领域之一,其市场规模在逐步扩大,目前约占行业的20%。

三维人脸识别技术是发展主流

从人脸识别技术发展过程来看,未来三维人脸识别是人脸识别主要技术手段,二维人脸识别只是人脸识别发展的过度阶段。实验结果显示,二维人脸识别系统在人脸左右偏转达到40度识别率迅速下降到50%以下;而采用三维人脸识别后,识别率可以提高至少10-20个百分点。

以上数据来源于前瞻产业研究院《中国人脸识别行业市场前瞻与投资战略规划分析报告》。

人脸识别研究现状的论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。

为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1所示。

该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。

下面对三个阶段的研究进展情况作简单介绍:

第一阶段(1964年~1990年)

这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeature based)的方法。

这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。

人工神经网络也一度曾经被研究人员用于人脸识别问题中。

较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。

金出武雄于1973年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。

他所在的研究组也是人脸识别领域的一支重要力量。

总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。

第二阶段(1991年~1997年)

这一阶段尽管时间相对短暂,但却是人脸识别研究的 *** 期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt系统。

美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。

其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(NormalizedCorrelation)方法一道成为人脸识别的性能测试基准算法。

这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于1992年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方法。

这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。

贝尔胡米尔(Belhumeur)等提出的Fisherface人脸识别方法是这一时期的另一重要成果。

该方法首先采用主成分分析(Principalponent Analysis,PCA,亦即特征脸)对图像表观特征进行降维。

在此基础上,采用线性判别分析(LinearDiscriminant Analysis, LDA)的方法变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。

该方法目前仍然是主流的人脸识别方法之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别方法以及近期的一些基于核学习的改进策略。

麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。

该方法通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别。

人脸识别中的另一种重要方法——弹性图匹配技术(Elastic GraphMatching,EGM) 也是在这一阶段提出的。

其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征——Gabor变换[12]特征,称为Jet;边的属性则为不同特征点之间的几何关系。

对任意输入人脸图像,弹性图匹配通过一种优化搜索策略来定位预先定义的若干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。

最后通过计算其与已知人脸属性图的相似度来完成识别过程。

该方法的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。

近来还出现了一些对该方法的扩展。

局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。

LFA在本质上是一种基于统计的低维对象描述方法,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。

LFA技术已商业化为著名的FaceIt系统,因此后期没有发表新的学术进展。

由美国国防部反毒品技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。

FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。

该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。

该项目分别于1994年,1995年和1996年组织了3次人脸识别评测,几种最知名的人脸识别算法都参加了测试,极大地促进了这些算法的改进和实用化。

该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。

柔性模型(Flexible Models)——包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。

ASM/AAM将人脸描述为2D形状和纹理两个分离的部分,分别用统计的方法进行建模(PCA),然后再进一步通过PCA将二者融合起来对人脸进行统计建模。

柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。

柔性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。

总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别商业公司。

从技术方案上看, 2D人脸图像线性子空间判别分析、统计表观模型、统计模式识别方法是这一阶段内的主流技术。

第三阶段(1998年~现在)

FERET’96人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。

因此,光照、姿态问题逐渐成为研究热点。

与此同时,人脸识别的商业系统进一步发展。

为此,美国军方在FERET测试的基础上分别于2000年和2002年组织了两次商业系统评测。

基奥盖蒂斯(Gehiades)等人提出的基于光照锥 (Illumination Cones) 模型的多姿态、多光照条件人脸识别方法是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥——即光照锥。

为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉方法进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的7幅同一视点图像恢复物体的3D形状和表面点的表面反射系数(传统光度立体视觉能够根据给定的3幅已知光照条件的图像恢复物体表面的法向量方向),从而可以容易地合成该视角下任意光照条件的图像,完成光照锥的计算。

识别则通过计算输入图像到每个光照锥的距离来完成。

以支持向量机为代表的统计学习理论也在这一时期内被应用到了人脸识别与确认中来。

支持向量机是一个两类分类器,而人脸识别则是一个多类问题。

通常有三种策略解决这个问题,即:类内差/类间差法、一对多法(one-to-rest)和一对一法(one-to-one)。

布兰兹(Blanz)和维特(Vetter)等提出的基于3D变形(3D Morphable Model)模型的多姿态、多光照条件人脸图像分析与识别方法是这一阶段内一项开创性的工作。

该方法在本质上属于基于合成的分析技术,其主要贡献在于它在3D形状和纹理统计变形模型(类似于2D时候的AAM)的基础上,同时还采用图形学模拟的方法对图像采集过程的透视投影和光照模型参数进行建模,从而可以使得人脸形状和纹理等人脸内部属性与摄像机配置、光照情况等外部参数完全分开,更加有利于人脸图像的分析与识别。

Blanz的实验表明,该方法在CMU-PIE(多姿态、光照和表情)人脸库和FERET多姿态人脸库上都达到了相当高的识别率,证明了该方法的有效性。

2001年的国际计算机视觉大会(ICCV)上,康柏研究院的研究员维奥拉(Viola)和琼斯(Jones)展示了他们的一个基于简单矩形特征和AdaBoost的实时人脸检测系统,在CIF格式上检测准正面人脸的速度达到了每秒15帧以上。

该方法的主要贡献包括:1)用可以快速计算的简单矩形特征作为人脸图像特征;2)基于AdaBoost将大量弱分类器进行组合形成强分类器的学习方法;3)采用了级联(Cascade)技术提高检测速度。

目前,基于这种人脸/非人脸学习的策略已经能够实现准实时的多姿态人脸检测与跟踪。

这为后端的人脸识别提供了良好的基础。

沙苏哈(Shashua)等于2001年提出了一种基于商图像[13]的人脸图像识别与绘制技术。

该技术是一种基于特定对象类图像集合学习的绘制技术,能够根据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件下的合成图像。

基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。

巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)表示光照、用卷积过程描述朗博反射的方法解析地证明了一个重要的结论:由任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。

这意味着一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子空间来近似。

这不仅与先前的光照统计建模方法的经验实验结果相吻合,更进一步从理论上促进了线性子空间对象识别方法的发展。

而且,这使得用凸优化方法来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。

FERET项目之后,涌现了若干人脸识别商业系统。

美国国防部有关部门进一步组织了针对人脸识别商业系统的评测FRVT,至今已经举办了两次:FRVT2000和FRVT2002。

这两次测试一方面对知名的人脸识别系统进行了性能比较,例如FRVT2002测试就表明Cognitec, Identix和Eyematic三个商业产品遥遥领先于其他系统,而它们之间的差别不大。

另一方面则全面总结了人脸识别技术发展的现状:较理想条件下(正面签证照),针对37437人121,589 幅图像的人脸识别(Identification)最高首选识别率为73%,人脸验证(Verification)的等错误率(EER[14])大约为6%。

FRVT测试的另一个重要贡献是还进一步指出了目前的人脸识别算法亟待解决的若干问题。

例如,FRVT2002测试就表明:目前的人脸识别商业系统的性能仍然对于室内外光照变化、姿态、时间跨度等变化条件非常敏感,大规模人脸库上的有效识别问题也很严重,这些问题都仍然需要进一步的努力。

总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。

而非线性建模方法、统计学习理论、基于Boosting[15]的学习技术、基于3D模型的人脸建模与识别方法等逐渐成为备受重视的技术发展趋势。

总而言之, 人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。

国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。

这些成果更加深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。

尽管在海量人脸数据比对速度甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。

这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。

但从模式识别和计算机视觉等学科的角度判断,这既可能意味着我们尚未找到对面部信息进行合理采样的有效传感器(考虑单目摄像机与人类双眼系统的差别),更可能意味着我们采用了不合适的人脸建模方法(人脸的内部表示问题),还有可能意味着我们并没有认识到自动人脸识别技术所能够达到的极限精度。

但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。

相信随着研究的继续深入,我们的认识应该能够更加准确地逼近这些问题的正确答案。

题名 题名相当于论文的标签,是简明、确切地反映论文最重要特点内容、研究范围和深度的最恰当的词语的逻辑组合,通常是读者最先浏览的内容,也是检索系统首先收录的部分,是体现论文水平与范围的第一重要信息。 总结起来有如下几个要求:(1)题文相扣,概念表达准确 题名要准确表达论文的内容和主题,恰当反映研究的范围和深度,与论文内容要互相匹配,紧扣-题要扣文,文要扣题。切忌题名过大,而应该限定到问题或者所使用的解决方法层面,例 如: 太笼统的题名:人脸识别研究; 限定到方法:一种基于感受野学习的人脸识别新方法。(2)题目长度适中,以及语序正确性 题目用词要简短精炼、太长或太短都不好。一般过长的题目中都有废话,包括但不限于“调查”“研究”以及一些冠词“a”等。我们在小学语文中就做过这样的练习,把一句比较长的话改短,又不改变其原来的意思。例如: 机器人定位与导航若干神经计算方法的研究; 因为导航包括定位,去掉冗余后:机器人导航若干神经计算方法的研究。 此外,题名像一条标签,忌用冗长的主、谓、宾语结构的完整语句,习惯上常用以名词或名词性词组为中心的偏正词组,一般不用动宾结构。英语题名,建议将表达核心内容的主题词放在题名的开头。例如: Age invariant face recognition and retrieval byCoupled auto-encoder。(3)注意术语的使用 术语在科技论文中大量出现,特别在通讯领域,拥有众多各类术语。很多术语即便是内行也难以辨别。因此,除非是众所周知的缩略语,否则不简写。例如: Image-to-Image Translation with ConditionalAdversarial Networks, 而非 Image-to—Image Translation with Conditional GAN, 因为GAN(生成对抗网络)这个词最近2年才出来,即便在机器学习领域,也有很多人对它很陌生。摘要 摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。 摘要具有独立性和自主性,能充分反映研究的创新点,拥有论文同等量的主要信息,即不阅读全文就能获得必要的信息。摘要字数通常不超过论文字数5%。摘要的基本结构及内容 摘要本质上是一篇高度浓缩的论文,其基本结构与论文的结构是对应的。摘要主要包括以下内容的梗概: (1)目的。研究工作的前提、目的、任务及所涉及的主题范围。 (2)方法——所用的理论、技术、材料、手段、设备、算法、程序等 (3)结果—观测、实验的结果和数据,得到的效果、性能和结论,创新与独到之处。摘要规范表达一般原则 1)摘要篇幅应尽量简短,切忌把应在前沿中出现的篇幅较长的内容写入摘要,而且不得有对论文的正式进行补充和修改的内容,尤其不要进行评价。 2)摘要的内容在正文应该出现,但不宜简单地重复。中文摘要多用第三人称来写,建议采用“对…进行了研究",“报告了…现状"等记述方法。 3)摘要要使用公知公用的规范的术语和符号,新术语应写出全称。一般不要使用公式和化学结构式。英文摘要规范表达 英文摘要时态的运用应以简练为佳,常用一般现在时、一般过去时,少用现在完成时、过去完成时,基本不用进行时和其他复合时态。 一般现在时用于说明研究目的、叙述研究内容、描述研究结果、得出研究结论、提出建议或讨论等。涉及公认事实、自然规律、永恒真理等,用一般现在时。 如: In order to study the rigidity coeficient.…, the stress and strain model is concluded.与之相反,一般过去时用于叙述过去某一时刻(时段)的发现、某一研究过程。 如The heat pulse technique was aplied to study two main tree species in July and August, 1996. a.介绍背景资料时,句子内容不受时间影响的普遍事实,应用现在时,对某种趋势的概述,用现在完成时。 b.叙述研究目的或主要研究活动,多使用现在时。 C.叙述实验程序、方法和主要结果常用现在时。 d.叙述结论或建议时可使用现在时,或may, should, could等助动词。关键词 关键词(key words)是为了满足文献标引或计算机检索及国际计算机联机检索工作的需要, 而从论文题名和正文中选出来的能够反映论文主题内容的词或词组。关键词应为规范的术语,通常位于摘要之后。 关键词:股票市场;在线股评;相关分析引言 一般来说,引言部分通常需要14页的篇幅。基本内容应包括研究背景、存在的问题和研究目的等。 通常先介绍范围较宽泛的一般性事实,为说明研究工作与过去工作的关系,须要回顾国内外研究历史(文献回顾或文献综述),并对研究情况横向比较,写明前人在本课题相关领域所做的工作及存在的空白或不足。 然后将重点逐渐转入与论文所探讨的问题有密切联系的主题,指出有某个问题或现象仍值得进一步研究,进而将焦点转到要探讨的研究问题上最后阐述研究目的,将作者的研究任务具体化,还可根据情况说明作者在已有工作基础上的贡献或创新。 对篇幅较长、结构复杂的论文,其引言的结尾部分还应有简略说明研究的主要结论以及论文构架的内容。引文规范写作原则 1)按写作要求和内容逐渐展开,不要将引言写成摘要的注释,不讨论,不重复摘要内容。 2)要慎重而有保留第叙述前人工作的欠缺及自己研究的创新,一般不用评价式的用语。 3)研究背景应该准确、简洁,不宜过于分散和琐碎。正文 正文写作过程中,不论小节层次,还是次小节层次,都应该遵循自上而下的细化方法。这种金字塔式的细化方法也应该体现论文的总体结构层次。也就是说,创建高层次的小节,用以描述搞层次的思想,然后使用低级别的章节层次结构描述更多的技术细节。每个段落都应该有一个中心论点,称为中心句或主题句,通常段 落以此为起始句。之后,围绕这中心论点进行更加细致的阐释。结论 结论可以是中心思想的重申、研究结果或主要观点的归纳,也可以是某些启示性的解释或考虑,以及在研究结果基础上所进行的预测等。主要包含: 1)本研究有什么新发现,得到了什么规律性的东西,解决了什么理论与实际问题,适用范围是什么? 2)研究的创新点,研究工作与他人已有研究成果的异同 3)研究的局限性、不足之处或遗留问题,以及可能的应用前景和进一步深入的研究方向。参考文献 参考文献是指为撰写论文而引用前人(包括作者自己)已发表的有关文献,是科技论文不可缺少的重要组成部分。 按规定,在科技论文中,凡是引用前人或他人(包括本人)已发表的文献中的观点、数据和材料等,都要在引用处予以标明,在文末(结论之后,,如有致谢,则在致谢之后)列出参考文献表称为参考文献的著录。一、参考文献著录的目的和作用 1)提高科学依据,表明广度和深度 著录参考文献反映出了科技论文作者的科学态度,并为论文提供了真实、广泛的科学依据。所著录的参考文献数量多少以及发表时间,就能衡量该科技论文研究的广度与深度。 2)区分研究成果,尊重他人成果 3)节省论文篇幅,避免资料堆积 适当引用参考文献,可避免过多介绍他人的工作,避免一般性表述和资料堆积。 4)便于读者查找,达到资源共享。二、著录的原则 1)只著录必要的最新的文献。 2)采用标准化的著录格式。各个期刊都有各自的规定,可在投稿前看相关期刊的文献著录格式。 3)一般只著录已公开发表的文献。三、标注方法 正文中引用文献的标注方法可以采用顺序编码或著者—出版年制,相应地文后的参考文献表按顺序编码或者著者-出版年制组织。 1)顺序编码制引文采用序号标注,参考文献表按引文的顺序列出在同一处引用多篇参考文献时,只需在方括号内全部列出,例如:用多种优化模型[3,5,12—15]. 参考文献做主语的时候,例如:与文献[6,7]中的分析一致。引用英文人名时,要注意文献人名表达形式的统一性和特殊性。如作者姓氏相同,则应写全名,如"LEE Y S"和"LEE C W”.

刷脸支付人脸识别算法毕业论文

刷脸支付是基于人脸识别算法与现有支付技术进行融合,实现了刷脸就能支付、转账、交易和结算的功能。而刷脸支付项目是支付宝和微信等提供的刷脸支付设备的地推项目。刷脸支付设备主要是指“支付宝—蜻蜓”、“微信—青蛙”等一系列针对实体商家开发的线下刷脸支付工具。结合了会员营销功能、刷脸支付功能、扫码支付功能等,是壹台可独立收银的便捷收银工具。现阶段想要推广刷脸支付设备,主流的方法就是成为Z·W的Visa服务商或成为Visa服务商的下属代理商。由于,申请Visa服务商需要具备一定的产品开发能力,很多小微企业及个人,并不具备相关的能力与资质,这导致了支付宝和微信虽然对所有人开放了Visa服务商的申请权限,但并不是所有人都能成为Visa服务商。所以想要参与刷脸支付项目,就需要找到一家具备 Visa服务商资质的公司,成为其下属代理。也就是加盟!

互联网是没有边界的,并没有局部区域代理一说,刷脸支付招商是全国性的,有设备还要有一套好的系统,满足商户的会员营销等功能,太米的系统还是不错的,性价比很高,推荐你,可以上他们的官网联系黄经理。

可以。 毕业论文是可以用别人训练出来的,但是自己也要有创新,不能全部使用,不然是不会过的。毕业论文(graduation study)是专科及以上学历教育为对本专业学生集中进行科学研究训练而要求学生在毕业前撰写的论文。毕业论文一般安排在修业的最后一学年(学期)进行,论文题目由教师指定或由学生提出,学生选定课题后进行研究,撰写并提交论文,目的在于培养学生的科学研究能力,加强综合运用所学知识、理论和技能解决实际问题的训练,从总体上考查学生大学阶段学习所达到的学业水平。

脸识别和指纹识别、掌纹识别、视网膜识别、骨骼识别、心跳识别等都是人类生物特征识别技术。它们都是随着光电技术、微机技术、图像处理技术和模式识别等技术的迅速发展而产生的。它能快速、准确、卫生地识别身份,不可复制。即使经过整容手术,这项技术也能从数百项面部特征中找出“原来的你”

人脸识别法律问题研究论文

人脸识别法学论文题目书写:人脸识别就是通过观察比较人脸来区分和确定人的身份的.不被察觉的特点会使识别方法不令人反感,而且不容易引起人注意

法律分析:人脸识别涉及到个人信息保护,还有可能侵犯公民的隐私权。相关主体在收集、使用个人信息时,应当遵循合法、正当、必要的原则,明示收集、使用信息的目的、方式和范围,并经过同意。

法律依据:《中华人民共和国民法典》 第一百一十一条 自然人的个人信息受法律保护。任何组织或者个人需要获取他人个人信息的,应当依法取得并确保信息安全,不得非法收集、使用、加工、传输他人个人信息,不得非法买卖、提供或者公开他人个人信息。

第一千零三十二条 自然人享有隐私权。任何组织或者个人不得以刺探、侵扰、泄露、公开等方式侵害他人的隐私权。隐私是自然人的私人生活安宁和不愿为他人知晓的私密空间、私密活动、私密信息。

人脸识别论文研究内容

摘 要 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等,有着非常广泛的应用价值。随机森林以它自身固有的特点和优良的分类效果在众多的机器学习算法中脱颖而出。随机森林算法的实质是一种树预测器的组合,其中每一棵树都依赖于一个随机向量,森林中的所有的向量都是独立同分布的。本文简单介绍了随机森林的原理,并对近几年来随机森林在姿势识别和人脸识别中的应用进行讨论。 1.人体识别概述 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等。其研究方法几乎囊括了所有的模式识别问题的理论与技术,例如统计理论,变换理论,上下文相关性,分类与聚类,机器学习,模板匹配,滤波等。人体识别有着非常广泛的应用价值。 绝大多数人脸识别算法和人脸表情分析算法在提取人脸特征之前,需要根据人脸关键点的位置(如眼角,嘴角)进行人脸的几何归一化处理。即使在已知人脸粗略位置的情况下,人脸关键点精确定位仍然是一个很困难的问题,这主要由外界干扰和人脸本身的形变造成。 当前比较流行的算法有:基于启发式规则的方法、主成分分析(PCA)、独立元分析(ICA)、基于K-L 变换、弹性图匹配等。 2.随机森林综述 随机森林顾名思义,使用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的死后,就让森林的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类能被选择最多,就预测这个样本为那一类。 随机森林是一种统计学习理论,其随机有两个方面:首先是在训练的每一轮中,都是对原始样本集有放回的抽取固定数目的样本点,形成k个互不相同的样本集。第二点是:对于每一个决策树的建立是从总的属性中随机抽取一定量的属性作分裂属性集,这样对于k个树分类器均是不相同的。由随机生成的k个决策树组成了随机森林。 对于每一个决策树来讲,其分裂属性是不断的选取具有最大信息增益的属性进行排列。整个随机森林建立后,最终的分类标准采用投票机制得到可能性最高的结果。 下图是随机森林构建的过程: 图1 随机森林构建过程 3.随机森林在人体识别中的应用 随机森林应用于姿势识别 以[1]一文来讨论,论文中所涉及到的人体识别过程主要分为两步,首先是,身体部位标记:对于从单张景深图像中对人体进行分段,并标记出关键节点。之后进行身体关节定位,将标记的各个人体部分重新映射到三维空间中,对关键节点形成高可靠的空间定位。 图2 深度图像-身体部位标记-关节投影 文的最主要贡献在于将姿势识别的问题转化成了物体识别的问题,通过对身体不同部位的空间位置的确定来实现,做到了低计算消耗和高精确度。在身体部位标记的过程中,将问题转化成了对每个像素的分类问题,对于每个像素点,从景深的角度来确定该点的局域梯度特征。该特征是点特征与梯度特征的良好结合。 举个例子,对于不同点的相同属性值的判别,如下图,图a中的两个测量点的像素偏移间均具有较大的景深差,而图b中的景深差则明显很小。由此看出,不同位置像素点的特征值是有明显差别的,这就是分类的基础。 图3 景深图像特质示例 文中对于决策树的分裂属性的选择来说。由于某两个像素点、某些图像特征选取的随意性,将形成大量的备选划分形式,选择对于所有抽样像素对于不同的分裂属性划分前后的信息熵增益进行比较,选取最大的一组ψ=(θ, τ)作为当前分裂节点。(信息增益与该图像块最终是否正确地分类相关,即图像块归属于正确的关键特征点区域的概率。) 图4 决策时分类说明 决策树的建立后,某个叶子节点归属于特定关键特征点区域的概率可以根据训练图像最终分类的情况统计得到,这就是随机森林在实际检测特征点时的最重要依据。 在人体关节分类中,我们由形成的决策森林,来对每一个像素点的具体关节属性进行判断,并进行颜色分类。随机森林这种基于大量样本统计的方法能够对由于光照、变性等造成的影响,实时地解决关键特征点定位的问题。 如图所示,是对于景深图像处理后的结果展示。 图5 姿势识别处理结果 应该这样说,这篇文章在算法的层面对随机森林没有太大的贡献。在划分函数的形式上很简单。这个团队值得称道的地方是通过计算机图形学造出了大量的不同体型不同姿势的各种人体图像,用作训练数据,这也是成为2011年CVPR Best Paper的重要原因。正是因为论文的成果运用于Kinect,在工业界有着巨大的作用,落实到了商用的硬件平台上,推动了随机森林在计算机视觉、多媒体处理上的热潮。 随机森林应用于人脸识别 基于回归森林的脸部特征检测通过分析脸部图像块来定位人脸的关键特征点,在此基础上条件回归森林方法考虑了全局的脸部性质。对于[2]进行分析,这篇论文是2012年CVPR上的论文,本文考虑的是脸部朝向作为全局性质。其主要描述的问题是如何利用条件随机森林,来确定面部10个关键特征点的位置。与之前不同的是,在随机森林的基础上,加入了面部朝向的条件约束。 图6 脸部10个特征点 对于面部特征标记的问题转化成了对大量图像块的分类问题。类似于人体识别中的局域梯度特征识别。本文中,对于每一个图像块来说,从灰度值、光照补偿、相位变换等图像特征,以及该图像块中心与各个特征点的距离来判断图像块的位置特征。在决策树的分裂属性确定过程,依然使用“最大信息熵增益”原则。 图7 条件随机森林算法说明 文中提出了更进一步基于条件随机森林的分类方法,即通过设定脸部朝向的约束对决策树分类,在特征检测阶段能够根据脸部朝向选择与之相关的决策树进行回归,提高准确率和降低消耗。此论文还对条件随机森林,即如何通过脸部朝向对决策进行分类进行了说明,但这与随机森林算法没有太大关系,这里就不再继续讨论了。随机森林这种基于大量样本统计的方法能够对由于光照、变性等造成的影响,实时地解决关键特征点定位的问题。 另一篇文章[3]对于脸部特征标记,提出了精确度更高、成本更低的方法。即,基于结构化输出的随机森林的特征标记方式。文中将面部划分为20个特征点,对于各个特征点来说,不仅有独立的图像块分类标记,还加入了例如,点4,对于其他嘴唇特征点3,18,19的依赖关系的判断。这样的方法使特征点标记准确率大大增加。 该方法依然是使用随机森林的方法,有所不同的是引入了如式中所示的与依赖节点之间的关系。对于决策树的建立依然是依赖信息熵增益原则来决定,叶子节点不仅能得到特征的独立划分还会得到该特征对依赖特征的贡献,最终特征节点的判断会综合原始投票及空间约束。 图8 脸部特征标记 图9 决策树依赖关系 例如当对下图中人脸特征点进行分类时,使用简单的随机森林方法,经过判断会将各个点进行标注,可以看到 红色的点,标注出的鼻子特征。如果利用依赖节点进行判断,鼻子的点会被局限在其他鼻子特征点的周围,进行叠加后,得到了这个结果。显然,对于此节点的判断,利用结构输出的方式,准确度更高了。 图10 结构化输出结果 4.随机森林总结 大量的理论和实证研究都证明了RF具有很高的预测准确率,对异常值和噪声具有很好的容忍度,且不容易出现过拟合。可以说,RF是一种自然的非线性建模工具,是目前数据挖掘算法最热门的前沿研究领域之一。具体来说,它有以下优点: 1.通过对许多分类器进行组合,它可以产生高准确度的分类器; 2.它可以处理大量的输入变量; 3.它可以在决定类别时,评估变量的重要性; 4.在建造森林时,它可以在内部对于一般化后的误差产生不偏差的估计; 5.它包含一个好方法可以估计遗失的资料,并且,如果有很大一部分的资料遗失,仍可以维持准确度。 6.它提供一个实验方法,可以去侦测变量之间的相互作用; 7.学习过程是很快速的; 8.对异常值和噪声具有很好的容忍度,且不容易出现过拟合; 随机森林的缺点: 1.对于有不同级别的属性的数据,级别划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的; 2.单棵决策树的预测效果很差:由于随机选择属性,使得单棵决策树的预测效果很差。 参考文献: [1] Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A., “Real-time human pose recognition in parts from single depth images,”Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on , vol., no., , 20-25 June 2011 [2] Dantone M, Gall J, Fanelli G, et al. Real-time facial feature detection using conditional regression forests[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 2578-2585. [3] Heng Yang, Ioannis Patras, “Face Parts Localization Using Structured-output Regression Forests”, ACCV2012, Dajeon, Korea. 本文转自:,仅供学习交流

题名 题名相当于论文的标签,是简明、确切地反映论文最重要特点内容、研究范围和深度的最恰当的词语的逻辑组合,通常是读者最先浏览的内容,也是检索系统首先收录的部分,是体现论文水平与范围的第一重要信息。 总结起来有如下几个要求:(1)题文相扣,概念表达准确 题名要准确表达论文的内容和主题,恰当反映研究的范围和深度,与论文内容要互相匹配,紧扣-题要扣文,文要扣题。切忌题名过大,而应该限定到问题或者所使用的解决方法层面,例 如: 太笼统的题名:人脸识别研究; 限定到方法:一种基于感受野学习的人脸识别新方法。(2)题目长度适中,以及语序正确性 题目用词要简短精炼、太长或太短都不好。一般过长的题目中都有废话,包括但不限于“调查”“研究”以及一些冠词“a”等。我们在小学语文中就做过这样的练习,把一句比较长的话改短,又不改变其原来的意思。例如: 机器人定位与导航若干神经计算方法的研究; 因为导航包括定位,去掉冗余后:机器人导航若干神经计算方法的研究。 此外,题名像一条标签,忌用冗长的主、谓、宾语结构的完整语句,习惯上常用以名词或名词性词组为中心的偏正词组,一般不用动宾结构。英语题名,建议将表达核心内容的主题词放在题名的开头。例如: Age invariant face recognition and retrieval byCoupled auto-encoder。(3)注意术语的使用 术语在科技论文中大量出现,特别在通讯领域,拥有众多各类术语。很多术语即便是内行也难以辨别。因此,除非是众所周知的缩略语,否则不简写。例如: Image-to-Image Translation with ConditionalAdversarial Networks, 而非 Image-to—Image Translation with Conditional GAN, 因为GAN(生成对抗网络)这个词最近2年才出来,即便在机器学习领域,也有很多人对它很陌生。摘要 摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。 摘要具有独立性和自主性,能充分反映研究的创新点,拥有论文同等量的主要信息,即不阅读全文就能获得必要的信息。摘要字数通常不超过论文字数5%。摘要的基本结构及内容 摘要本质上是一篇高度浓缩的论文,其基本结构与论文的结构是对应的。摘要主要包括以下内容的梗概: (1)目的。研究工作的前提、目的、任务及所涉及的主题范围。 (2)方法——所用的理论、技术、材料、手段、设备、算法、程序等 (3)结果—观测、实验的结果和数据,得到的效果、性能和结论,创新与独到之处。摘要规范表达一般原则 1)摘要篇幅应尽量简短,切忌把应在前沿中出现的篇幅较长的内容写入摘要,而且不得有对论文的正式进行补充和修改的内容,尤其不要进行评价。 2)摘要的内容在正文应该出现,但不宜简单地重复。中文摘要多用第三人称来写,建议采用“对…进行了研究",“报告了…现状"等记述方法。 3)摘要要使用公知公用的规范的术语和符号,新术语应写出全称。一般不要使用公式和化学结构式。英文摘要规范表达 英文摘要时态的运用应以简练为佳,常用一般现在时、一般过去时,少用现在完成时、过去完成时,基本不用进行时和其他复合时态。 一般现在时用于说明研究目的、叙述研究内容、描述研究结果、得出研究结论、提出建议或讨论等。涉及公认事实、自然规律、永恒真理等,用一般现在时。 如: In order to study the rigidity coeficient.…, the stress and strain model is concluded.与之相反,一般过去时用于叙述过去某一时刻(时段)的发现、某一研究过程。 如The heat pulse technique was aplied to study two main tree species in July and August, 1996. a.介绍背景资料时,句子内容不受时间影响的普遍事实,应用现在时,对某种趋势的概述,用现在完成时。 b.叙述研究目的或主要研究活动,多使用现在时。 C.叙述实验程序、方法和主要结果常用现在时。 d.叙述结论或建议时可使用现在时,或may, should, could等助动词。关键词 关键词(key words)是为了满足文献标引或计算机检索及国际计算机联机检索工作的需要, 而从论文题名和正文中选出来的能够反映论文主题内容的词或词组。关键词应为规范的术语,通常位于摘要之后。 关键词:股票市场;在线股评;相关分析引言 一般来说,引言部分通常需要14页的篇幅。基本内容应包括研究背景、存在的问题和研究目的等。 通常先介绍范围较宽泛的一般性事实,为说明研究工作与过去工作的关系,须要回顾国内外研究历史(文献回顾或文献综述),并对研究情况横向比较,写明前人在本课题相关领域所做的工作及存在的空白或不足。 然后将重点逐渐转入与论文所探讨的问题有密切联系的主题,指出有某个问题或现象仍值得进一步研究,进而将焦点转到要探讨的研究问题上最后阐述研究目的,将作者的研究任务具体化,还可根据情况说明作者在已有工作基础上的贡献或创新。 对篇幅较长、结构复杂的论文,其引言的结尾部分还应有简略说明研究的主要结论以及论文构架的内容。引文规范写作原则 1)按写作要求和内容逐渐展开,不要将引言写成摘要的注释,不讨论,不重复摘要内容。 2)要慎重而有保留第叙述前人工作的欠缺及自己研究的创新,一般不用评价式的用语。 3)研究背景应该准确、简洁,不宜过于分散和琐碎。正文 正文写作过程中,不论小节层次,还是次小节层次,都应该遵循自上而下的细化方法。这种金字塔式的细化方法也应该体现论文的总体结构层次。也就是说,创建高层次的小节,用以描述搞层次的思想,然后使用低级别的章节层次结构描述更多的技术细节。每个段落都应该有一个中心论点,称为中心句或主题句,通常段 落以此为起始句。之后,围绕这中心论点进行更加细致的阐释。结论 结论可以是中心思想的重申、研究结果或主要观点的归纳,也可以是某些启示性的解释或考虑,以及在研究结果基础上所进行的预测等。主要包含: 1)本研究有什么新发现,得到了什么规律性的东西,解决了什么理论与实际问题,适用范围是什么? 2)研究的创新点,研究工作与他人已有研究成果的异同 3)研究的局限性、不足之处或遗留问题,以及可能的应用前景和进一步深入的研究方向。参考文献 参考文献是指为撰写论文而引用前人(包括作者自己)已发表的有关文献,是科技论文不可缺少的重要组成部分。 按规定,在科技论文中,凡是引用前人或他人(包括本人)已发表的文献中的观点、数据和材料等,都要在引用处予以标明,在文末(结论之后,,如有致谢,则在致谢之后)列出参考文献表称为参考文献的著录。一、参考文献著录的目的和作用 1)提高科学依据,表明广度和深度 著录参考文献反映出了科技论文作者的科学态度,并为论文提供了真实、广泛的科学依据。所著录的参考文献数量多少以及发表时间,就能衡量该科技论文研究的广度与深度。 2)区分研究成果,尊重他人成果 3)节省论文篇幅,避免资料堆积 适当引用参考文献,可避免过多介绍他人的工作,避免一般性表述和资料堆积。 4)便于读者查找,达到资源共享。二、著录的原则 1)只著录必要的最新的文献。 2)采用标准化的著录格式。各个期刊都有各自的规定,可在投稿前看相关期刊的文献著录格式。 3)一般只著录已公开发表的文献。三、标注方法 正文中引用文献的标注方法可以采用顺序编码或著者—出版年制,相应地文后的参考文献表按顺序编码或者著者-出版年制组织。 1)顺序编码制引文采用序号标注,参考文献表按引文的顺序列出在同一处引用多篇参考文献时,只需在方括号内全部列出,例如:用多种优化模型[3,5,12—15]. 参考文献做主语的时候,例如:与文献[6,7]中的分析一致。引用英文人名时,要注意文献人名表达形式的统一性和特殊性。如作者姓氏相同,则应写全名,如"LEE Y S"和"LEE C W”.

这边有过敛技术 各类都能过 很全 需要的佳企鹅 衣玲午午酒尔尔酒尔酒

  • 索引序列
  • 论文人脸识别算法研究现状
  • 人脸识别研究现状的论文
  • 刷脸支付人脸识别算法毕业论文
  • 人脸识别法律问题研究论文
  • 人脸识别论文研究内容
  • 返回顶部