首页 > 期刊论文知识库 > 数列毕业论文

数列毕业论文

发布时间:

数列毕业论文

如何写论文的摘要_论文的摘要怎么写 如何写论文的摘要编写摘要(文摘)虽然并不复杂,但不少作者不得要领,缺乏编写经验。因此,掌握一定编写方法还是必要的。摘要是论文的重要组成部分,它是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。根据我国《文摘编写规则》 GB6447-86规定,摘要必须有目的、方法、结果和结论。 摘要的主要功能是: 1.使读者只看摘要就可以了解到论文的主要内容。 2.为科技情报人员和计算机检索提供方便。 因此,摘要应具有独立性和自明性,即它自身就能独立成文,不阅读全文就能获得必要的信息。摘要大致分为报道性、指示性、报道/指示性三类。指明文献实质性内容的摘要叫做报道性摘要。学术性期刊多采用此类,它相当于简介,篇幅在300字以内。一般在100~200字左右。主要注意事项: 1.要客观、如实地反映一次性文献,排除本学科领域已成为常识的内容,切不可把应在引言中出现的内容写入文摘,不要对论文作诠释和评论(尤其是自我评价)。 2.要着重反映新内容和作者特别强调的观点。 3.不得简单重复论文题名已有的信息。比如论文题名是“一种数字定值温控器的研制”,摘要开头为“提出了一种数字定值温控器的研制”。显然,摘要中这句话只是简单地重复了题名,没有任何信息价值。 4.书写要合乎语法,保持上下文的逻辑关系;结构严谨,表达简明,语义确切;一般不分段落。 “摘要”是原文简明扼要的代替文献,通常它只要求向读者提供原文的信息性内容而不对其进行陈述,撰写摘要的目的是使读者充分了解原文信息,以帮助他们确定是否需要获取原文。根据有关专家对国内学术期刊中摘要的分析,目前普遍存在着摘要撰写不规范,不能使读者通过阅读摘要而对原文的主要内容产生客观、准确、充分理解的问题。为此我们参照国际权威检索系统中论文摘要的标准,对撰写学术论文摘要提出如下要求: 1.为了向读者或检索系统提供重要的信息,必须认真仔细地撰写摘要。作者要有对科学工作中关键概念的敏锐识别能力,并能有条理性地将这些概念组织起来,用通顺、简炼的语言加以表达。2.论文摘要应具有独立性和自含性,即不阅读全文,也能获得必要的信息,得到与原文同等量的主要信息。 3.摘要可以是陈述式的,也可以是信息式的,或者二者兼而有之。作为一般的学术论文,通常采用信息式的摘要,其内容主要包括:研究课题的目的、研究方法、所获结果及结论;评论、综述性[1] [2] 下一页 本文来自: 一流设计吧() 详细出处参考:

摘要本文主要讨论线性素变数方程的可解性问题,这是经典解析数论研究的重要问题之一本文考虑Gofbd‘卜vinogrdaov定理在算术数列中的推广,我们的结果是:设人,,七2,无3是任意正整数,11,12,13是整数,满足(l,,枯)=1,1兰J三3,再设N是充分大的奇数,满足N三l,+12+13(mod(k,,kZ,k3)),(l‘+lj一N,权,kj)=i,1三乞<夕三3,则存在一个实效常数。<占<1,使得当K三N占时,方程N=pi+脚+p3,岛三勺(饥Od勺),J=1,2,3有素数解pl,脚,仍,其中K=mxa{2,无1,k2,无3}.我们的结果包括了解析数论中的两个重要的经典结论:一是的三素数定理:每个充分大的奇数可表示为三个奇素数的和;二是关于算术数列中最小素数上界估计的结果:存在绝对常数。使得可k,O《kc,p=+lkn,n=1,2,·…事实上,在我们的定理中取无1=k:=无3==1,即得前者;取k卜kZ,k3>1,即得后者.本文结果的证明使用了Hardy一Littelwodo圆法.为此,对余区间上积分的处理,我们使用算术数列中素变数线性三角和的vinogrdaov形式的结果.对主区间上积分的处理,我们使用了关于素数分布的显式结果,广义Guass和,以及DirihcetlL函数密度估计等方面的深刻结果.

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文

★ 大学生数学毕业论文  ★

大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

毕业论文教学设计数列

数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。

【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。

【关键词】高中数学;数列;课堂教学

高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。

一、数列部分教学内容概述

数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。

二、数列教学的有效性策略简析

数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。

1.对比数学问题,归纳共性特点,培养探究习惯和能力

在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。

2.与其他数学知识相综合,建立数学知识体系的网络化综合化

数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。

3.通过练习和小测试来巩固课堂教学的效果

传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。

三、高中数学数列部分课堂教学设计要点

课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素:

1.要细致了解学生在数列学习和解决数列问题中的切身体验

应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。

2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板

数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。

3.重视数学史渗透和用数学工具解决实际问题的能力

数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。

4.重视数列学习中组合学习的魅力

人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。

5.教师应该注重自我提高,从别人的课堂教学中汲取营养

老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。

四、结束语

高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。

摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。

关键词:高中数学;数列;教学

一、引言

在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。

二、高中数学数列教学体会

1、以生为本,以学定教

1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。

2)以学定教,采用适合本班同学的数学教学方式进行有效教学

在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。

2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识

1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。

2)多媒体课件辅助教学可以让学生更加直观地理解数学知识

教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。

3、高中数学数列教学的创新

数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。

(一)数列教学应注重问题情境的创设

为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。

(二)创新理念下的“数学概念”

对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。

在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。

在大学数学教学中,数学文化是一个非常重要的组成部分,是学习数学的精髓。下面是我为大家整理的,供大家参考。

一、在数学教学中渗透语言的艺术美

斯托利亚曾说:“数学教学也就是数学语言的教学。”数学作为一门逻辑性非常强的学科,虽然和其他学科相比具有其特殊性,但其语言和其他学科语言一样,也是一门艺术,因此,数学教学语言的艺术技巧显得非常重要。为此,数学教师要不断锤炼自己的语言,用精准、简明、形象、生动的数学语言激发学生的兴趣、启迪学生思维,并积极鼓励学生不断探索,可以有效地优化数学教学效果。如:在学习高中数学必修一幂函式性质时,我很神秘地说:同学们,你们知道的365次方和的365次方分别约等于多少?当同学们不知所措时,我给出答案:的365次方约等于,的365次方约等于,并解释这道题蕴含的哲理是:的365次方也就是说你每天进步一点,即使只有,一年365天后,你将进步很大,远远超过1;的365次方也就是说你每天退步一点点,即使只有,一年365天后,你将远远小于1,几乎接近于0,远远被人抛在后面。通过这样的语言,学生很快认识了幂函式的值如何随底数变化而变化。同时鼓励同学们珍惜时间,不断努力,坚持下去,一定会有进步。富有艺术之美的语言在数学教学中具有强大的生命力,教师要创造机会,让学生体会艺术的语言给我们带来的数学之美,让学生在语言中逐渐理解、提升。

二、在数学教学中感受、欣赏艺术美

通过讲解共轭复数、对称多项式、对称矩阵等,让学生感受数学代数对称之美;通过讲解轴对称、中心对称、互补、互逆、相似等,让学生感受数学几何对称之美等。在学习选修内容《数系的扩充与复数》时,讲到历史上曾一度被看做是“幻想中的数”的虚数,由于它带有某种奇异色彩,更能使学生产生幻想和揭示其奥妙的欲望,这也正是数学的神秘之美。学生在教师充满艺术美的教学中感美、欣赏美,学生的学习劲头倍增,必定会达到意想不到的效果。

三、在数学教学中建立艺术化教学环境

在学习高中数学必修五数列知识时,我请一位同学用电子琴现场表演节目,同学们一下子就被这个新颖、独特的课前引入吸引,在观看表演后不禁问,老师葫芦里卖什么药。接着我简要介绍电子琴的键盘,让学生了解到琴的键中其中5个黑键恰好就是著名的斐波那契数列中的前几个数。在同学们追问什么是斐波那契数列时,我说:同学想知道什么是斐波那契数列,那么就要先学习好是数列,这样一步一步带领学生探索知识。教育家罗伯特•特拉弗斯说:“教学之所以被称为具有独特的表演艺术,它区别于其他任何表演艺术,就是由教师与那些观看表演的人的关系所决定的。”毫无疑问,掌握一定课堂教学艺术的教师,就能够取得较好的教学效果。

四、总结

综上所述,把艺术教育巧妙地渗透到数学教学中,使数学教学的课堂变得丰富多彩,充满活力,让学生在学习数学知识的同时促进艺术教育的发展。

一、限制职业学校数学教学发展的主要因素

一学生数学基础普遍较差

从职业学校的生源来看,学生以初中生为主。他们对数学基础知识的掌握普遍较差,缺少数学学习的积极性和自信心。大部分学生对数学思想的掌握不够全面,没有清晰的数学思维和逻辑,对数学中的很多概念性知识的理解不到位,缺少解决综合问题的能力。由于训练量的缺失,很多学生的运算能力不过关,很容易在数学运算中出现错误。

二数学课程安排不尽合理

近些年来,职业学校纷纷提高了对专业课程教学和实习的重视,为专业课程安排了更多的教学课时。这大大压缩了数学教学的时间,使得职业学校数学教师们面临着课时少、内容多的难题。很多数学教师只能将教学重心放到追赶教学进度上,对于很多重难点做不到细致的讲解,课堂练习的机会更是少之又少,从而大大影响了数学课堂的教学质量。

二、职业学校数学课堂教学的改革方向

一深化思想认识,端正学生学习态度

要想真正提高职业学校数学课堂教学质量,必须从思想认识上提高重视程度,从学校和学生两个层面配合数学教学工作。职业学校在保证专业课程教学时间的同时,还要尽量增加数学教学的课时,避免出现教学时间少、教学任务重、数学教师满负荷工作的现象。教师要加强与学生的交流,充分了解学生对数学课程的看法,教会学生数学学习的方法,帮助学生端正数学学习的态度,让学生能够自觉配合教师工作,更积极地参与到数学教学中。

二转变教学方式,激发学生学习兴趣

深化职业学校数学课堂教学改革必须加快教学方式的转变,数学教师要注重培养学生学习主动性和积极性,改变传统“一言堂”的灌输式教学,突出学生的主体地位,将课堂还给学生。为此,数学教师在课堂中要注重角色的转变,从课堂的主导者转变为引导者,通过构建情境、设定问题等方式让学生对教学内容进行自主探究,让学生在不断的学习成功中获得自信,从而达到激发学生学习兴趣,提高学生课堂参与度的目的。

三注重能力培养,灵活安排内容

职业学校数学课程不仅是为了提高学生数学运算能力,还要为学生日后的专业实习和工作打好基础。数学教师在安排课堂教学内容时,虽然做到了面面俱到,各类数学知识点都有涉及,但这种重理论轻应用的教学安排,使得数学的实用性和灵活性受到限制。所以,在职业学校数学课堂教学改革中,数学教师要灵活安排教学课堂内容,将数学教学与教育实际相结合,提高专业的针对性,针对不同专业的学生安排不同的教学内容和教学方式,提高学生在专业范畴内解决问题的能力,让数学真正为学生的专业学习、工作提供帮助。

四改善师生关系,实现课下教学拓展

良好的师生关系对激发学生学习积极性、提高课堂学习质量有重要帮助。数学教师在课堂教学中,要努力利用生动、幽默的课堂语言拉近与学生的距离,消除学生对数学学习的恐惧感和牴触情绪,对于学生面临的数学难题,教师要耐心解答。除了在课堂学习中的帮助,教师在平时的生活中也要加强与学生的沟通,加深与学生之间的感情,并及时了解学生对教师教学方法的想法,以便及时对教学方法和教学内容进行调整,提高数学课堂的教学效果。数学课程是职业学校不可或缺的基础课程。深化职业学校数学课堂教学改革必须从深化思想认识、转变教学方式、注重能力培养、改善师生关系等方面入手,达到激发学生学习积极性、提高数学课堂的教学质量的目的,让职业学校为社会提供更多的创造性人才和实用型人才。、

数列通项求法毕业论文

书本上不是有许多数列公式的,能用到的公式是那些,记熟在多算算就行了。

通项的求法:

一、观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。

二、累加法:

形如an+1=an+f(n)型的递推数列(其中f(n)是关于n的函数)

将上述n-1个式子两边分别相加,可得:an=f(n-1)+f(n-2)+…+f(2)+f(1)+a1,(n≥2)

①若f(n)是关于n的一次函数,累加后可转化为等差数列求和;

② 若f(n)是关于n的指数函数,累加后可转化为等比数列求和;

③若f(n)是关于n的二次函数,累加后可分组求和;

④若f(n)是关于n的分式函数,累加后可裂项求和.

如果数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式(general formulas)。有的数列的通项可以用两个或两个以上的式子来表示。没有通项公式的数列也是存在的,如所有质数组成的数列。

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做这个数的项,各项依次叫做第1项(或首项),第2项,...,第n项,...。数列也可以看作是一个定义域为自然数集N(或它的有限子集{1,2,3,...,n})的函数,当自变量从小到大依次取值时对应的一列函数值。

数列的一般形式可以写成a1,a2,...,an,...,其中an是数列的第n项,也可简记为{an}.

如果数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式。

就是那几个求数列通项公式基本方法,还有通过观察计算猜测出通项。

等差数列

对于一个数列{ an },如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为 d ;从第一项 a1到第n项 an的总和,记为Sn 。

那么 , 通项公式为

,其求法很重要,利用了“叠加原理”的思想:

将以上 n-1 个式子相加, 便会接连消去很多相关

的项 ,最终等式左边余下an ,而右边则余下a1和 n-1 个d,如此便得到上述通项公式。

此外, 数列前 n 项的和

,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,

,也即,前n项的和Sn 除以 n 后,便得到一个以a1 为首项,以 d /2 为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列

对于一个数列 {an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比 q ;从第一项a1 到第n项an 的总和,记为Tn 。

那么, 通项公式为

(即a1 乘以q 的 (n-1)次方,其推导为“连乘原理”的思想:

a2=a1 * q,

a3= a2 * q,

a4= a3 * q,

````````

an=an-1 * q,

将以上(n-1)项相乘,左右消去相应项后,左边余下an , 右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。

此外, 当q=1时 该数列的前n项和

当q≠1时 该数列前n 项的和

=

数列极限和函数极限毕业论文

极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:

关系

虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。

它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。

区别

1、从研究的对象看区别:数列是离散型函数。 而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。

2、取值方面的区别:数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。

3、从因变量趋近方式看区别:数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。

扩展资料

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。

常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

参考资料

百度百科——海涅定理

百度百科——函数极限

函数极限的一般概念:在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这个变化过程中的函数极限。 主要有两种情形: 1. 自变量X任意的接近于有限值X0 或者说趋于有限值X0 对应函数值的变化情形 2. x的绝对值趋于无穷,对应于函数值的变化。可以把数列看成是自变量为N的函数,数列的极限就是N趋于正无穷时数列收敛的值。可以说是函数极限的一个特殊情况。 而且数列的N取值是正整数,一般函数的X取值是连续的。这样,可以理解,数列具有离散性。而函数,有连续型的,也有离散型的。

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

毕业论文表格列数据太多

可以采取以下方法:

按照学校论文要求的格式 进行标注一下就行了啊

弄完终于很多数据表格,我认为这些数据还是有可信度的,因为如果要写论文的这些数据都是需要实地考察的。

是word文件中的表格吗,可以把此表格改成横向排,具体做法是在表格所在页的前后各插入一个争节符,通过页面设置把本页设成横向排。若还排不下就难了,可以把表格改成几个部分分别插入。从道理上说在论文中插入一个无比庞大复杂的表格也是不明智的,谁去看啊,要简单明了,说明问题就行了。

  • 索引序列
  • 数列毕业论文
  • 毕业论文教学设计数列
  • 数列通项求法毕业论文
  • 数列极限和函数极限毕业论文
  • 毕业论文表格列数据太多
  • 返回顶部