首页 > 期刊论文知识库 > 甲酸甲酯回收毕业论文

甲酸甲酯回收毕业论文

发布时间:

甲酸甲酯回收毕业论文

生产方法 甲醇羰基化法制甲酸甲酯/甲酸甲酯水解制甲酸. 主反应: CO+CH3OH→HCOOCH3 ⑴ HCOOCH3+H2O——→HCOOH+CH3OH ⑵ 吨产品理论物耗: CO (1000/60)×28=(100%) CH3OH (1000/60)×32= l/t(100%) 小时物料消耗: CO × Nm3/h CH3OH × =(含回收甲醇) (其中H2O≤) 甲酸甲酯的制备和精制工艺简述: 经检验合格的甲醇、CO、催化剂按一定的比例,经严格计量后进入甲酸甲酯反应器,在55℃~125℃及 MPa~ MPa的条件下进行MF的合成反应;反应液中MF粗产品(其中MF18%~25%)通过MF反应精馏工艺由塔顶采出(MF~82%、甲醇~18%),其物料进入精馏分离系统后,MF产品由精馏塔塔顶分离采出,经冷却后进入产品储槽(充氮或恒温正压保护);随MF粗产品进入分离塔的甲醇由塔底侧线气相采出(水含量≤%),经冷却收集后返回MF反应器;水等重组分由塔底定期排放,经集中回收其中的甲醇后,其残液与催化剂盐泥一起掺混入燃料煤中焚烧处理. 在反应器中,因进入反应器的CO气体中夹带有少量惰性气体,经一定反应后会不断积累(考虑CO的循环利用措施),所以必须对需排放气体中所夹带的少量MF作必要的回收后再排放.合成路线怎么打.打不上啊 工艺流程是图,传不上

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

丙烯酸甲酯毕业论文目录

1.勉强吧,2-N什么意思?2.能做出来吗?3.太普通了,课本里的东西4.早做过了5.常识介绍?6,7.太宽泛了,可以做书名不明白楼主想做什么,最好把目的写清楚些

Based on the theory and the polymerization of new technology, new technologies, especially at home and abroad silicone modified acrylic emulsion of a comprehensive summary of progress on the basis of a methyl methacrylate (MMA) , Butyl acrylate (BA), 4-4 4 vinyl Central siloxane (ViD4) as raw materials, use of vinyl 4-4 4 siloxane Central acrylate chemical modification of the Semi-continuous use of the principle of pre-core-shell emulsion polymerization method used ammonium sulfate (APS) as the initiator system had acrylic - silicone emulsion. Emulsion on the Synthesis of emulsifier in the best dosage and the polymerization of determining the appropriate choice of temperature, the amount of emulsifier the best: 4%, polymerization temperature :75-80 ℃. Also explore the surface tension, emulsifier, the reaction temperature on the emulsion performance of the series, and the infrared spectra of the polymer. It was found that the amount of emulsifier and the different temperature of the emulsion stability, viscosity and surface tension there is a clear impact.

丙烯酸甲酯毕业论文计算

希夫碱的合成是胺和醛在酸催化下,以醇作为溶剂,通过缩合反应而合成的[10]。研究发现,含有巯基的有机化合物具有更好的抗菌、抗毒、抗肿瘤生物活性,含巯基的锡配合物就具有良好的抗肿瘤功效[11-12]。另外,巯基席夫碱化合物在生物免疫检测方面也具有重要用途,湖南大学俞汝勤课题组在石英等离子晶片上自组装了一层含巯基的二亚胺,研制了一种新型的质量传递型免疫传感器。含巯基希夫碱也能用于荧光分析中,在胺与含巯基的醛类化合物缩合成巯基的希夫碱过程中,由于苯胺本身的共轭体系发生变化从而产生荧光。Williams课题组开发出含巯基希夫碱的荧光探针[13],用于检测人体内谷氨酸的含量;郭课题组发展了TMPAB-I巯基希夫碱荧光探针[14],用于抗癌药物的检测。由于含巯基席夫碱广泛的生物活性和重要的潜在用途,席夫碱的合成研究具有重要意义。

Based on the theory and the polymerization of new technology, new technologies, especially at home and abroad silicone modified acrylic emulsion of a comprehensive summary of progress on the basis of a methyl methacrylate (MMA) , Butyl acrylate (BA), 4-4 4 vinyl Central siloxane (ViD4) as raw materials, use of vinyl 4-4 4 siloxane Central acrylate chemical modification of the Semi-continuous use of the principle of pre-core-shell emulsion polymerization method used ammonium sulfate (APS) as the initiator system had acrylic - silicone emulsion. Emulsion on the Synthesis of emulsifier in the best dosage and the polymerization of determining the appropriate choice of temperature, the amount of emulsifier the best: 4%, polymerization temperature :75-80 ℃. Also explore the surface tension, emulsifier, the reaction temperature on the emulsion performance of the series, and the infrared spectra of the polymer. It was found that the amount of emulsifier and the different temperature of the emulsion stability, viscosity and surface tension there is a clear impact.

探究水处理陶瓷膜制备与应用技术研究进展论文

膜技术被认为是21 世纪最优前景的水处理技术之一,膜材料技术、膜分离技术在近十几年得到很大发展,在水处理领域得到了广泛应用。水处理陶瓷膜的过滤、分离性能与膜孔径大小及其分布、孔隙率、表面形貌等有密切关系。陶瓷膜的活性分离层是颗粒以任意堆积方式形成的,孔隙率通常为30 ~ 35%,且曲折因子调控较为困难,陶瓷膜的水处理效能受到局限。研究陶瓷膜制备、修饰、工艺优化新技术以提高其过滤、分离、抗污染效能是水处理陶瓷膜领域的研究重点。

1. 水处理陶瓷膜制备技术

致孔剂制备技术

致孔剂是提高水处理陶瓷孔隙率简单又经济的方法,致孔剂可分为无机物和有机物两类。无机致孔剂有碳酸铵、碳酸氢铵和氯化铵等高温易分解的盐类或无机碳如石墨、煤粉等;有机致孔剂主要包括天然纤维、高分子聚合物,如锯末、淀粉、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)等。Yang 等 以Al2O3 为膜基体,以膨润土为烧结助剂,以玉米淀粉作为造孔剂通过挤出、交联、干燥、烧结等过程制备陶瓷膜。研究发现随着淀粉含量的增加,Al2O3 支撑体的最大孔径和平均孔径均有所增大,陶瓷膜的孔隙率可有24% 提高至38%。

模板剂制备技术

模板剂可有效控制所合成材料的形貌、结构和大小,并制备出孔结构有序、孔径均一、孔隙率大的微孔、介孔和大孔材料。模板剂法具有丰富的选材和灵活的调节手段,采用模板剂法制备水处理陶瓷膜极具前景。Xia 等 以有机聚苯乙烯微球为模板剂,采用UV 聚合的方法制备出孔径为100nm 的三维有序聚氨酯大孔材料。Sadakane 等 以PMMA 为模板剂制备出具有三维有序大孔的金属氧化物材料,其孔隙率范围为66 ~ 81%。表面活性剂在溶液中可以形成胶束、微乳、液晶、囊泡等自组装体,也常被用作自组装技术中的有机物模板剂。利用表面活性剂十六烷基三甲基溴化铵为模板剂可制备出有序的介孔分子筛MCM41,具有多种对称性能的孔道,孔径在2 ~ 50nm 的.范围内。Choi 等以Tween80 为模板剂制备了具有梯度孔径结构的TiO2-Al2O3 陶瓷膜,陶瓷膜的渗透性能大大提高。

纤维层积制备技术

陶瓷纤维材料在成膜过程中可以迅速在支撑体表面沉积搭桥,明显减少了膜层的内渗,并且容易得到较高的孔隙率和比表面积,对膜材料渗透性能的提高具有显著作用。Ke 等 以TiO2 纤维为原料,通过旋涂法制备出平均孔径在50nm 的陶瓷纤维膜,对球形粒子截留率超过95%,膜通量在900Lm-2h-1 以上。

溶胶- 凝胶制备技术

溶胶- 凝胶技术主要是通过调整材料尺寸控制陶瓷膜分离层的分离精度。溶胶- 凝胶法可形成纳米级别的溶胶,得到的陶瓷膜层孔径小、孔径分布窄,适用于高渗透选择性的超滤膜和纳滤膜的制备。Tsuru 等 利用聚合溶胶路线制备出平均孔径 ~ 的TiO2 纳滤膜,对PEG 的截留分子量为500 ~ 000Da,对Mg2+ 的截留率为88%。

2. 水处理陶瓷膜修饰技术

化学气相沉积修饰技术

采用化学气相沉积法(CVD)在陶瓷膜表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及过滤性能,是一项非常有效的手段。Lin 等 采用CVD 技术对平均孔径为4nm 的Al2O3 陶瓷膜进行修饰,制备出孔径范围为 ~ 的SiO2 陶瓷膜。CVD 的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性。

原子层沉积修饰技术

原子层沉积技术(ALD)可将物质以单原子膜形式层层沉积在陶瓷膜表面,从而构建陶瓷膜表面微纳结构。Li 等 在平均孔径50nm 的陶瓷膜表面上通过原子层沉积氧化铝层,通过控制原子层沉积次数来调控膜的平均孔径,改性后陶瓷膜对BSA的截留率由 升至。

表面接枝修饰技术

表面接枝技术常被用来调控膜材料的表面性质,接枝过程将改变膜的孔结构,达到减小孔径的目的。陶瓷膜表面一般会吸附水形成大量羟基,通过接枝有机硅烷的方法在介孔膜表面可以修饰一层有机分子层。通过调控接枝分子的链长与官能团等特性可以实现调控孔径大小的目的,且能获得特殊的表面性质。Singh 等 发现接枝硅烷偶联剂可以使多孔陶瓷膜孔径进一步变小。Cohen 等 将亲水性PVP 接枝在陶瓷超滤膜表面上,改性后的膜孔径减小,截留性能提高,抗污染性能得以改善,可用于油水分离。

3. 水处理陶瓷膜制备与修饰工艺优化

陶瓷膜材料、添加剂选取

水处理陶瓷膜的制备主要集中于原材料及烧结工艺,通过添加烧结助剂以降低烧结温度、采用低成本易烧结原料以降低原料成本,以及利用先进的烧结工艺以达到低成本控制是陶瓷膜的研究重点。陶瓷膜制备过程中常在基膜材料中加入一些液相型或者固相型烧结助剂。高岭土、钾长石等天然硅酸盐黏土矿物在较低温度下便能熔融形成液相,在颗粒间毛细管力的作用下润湿并包裹膜材料基体颗粒,并将颗粒黏结起来,辅以多孔陶瓷膜良好的机械强度。氧化钛、氧化锆等金属氧化物能与陶瓷膜基体形成多元氧化物固熔物而使烧结温度下降,有利于陶瓷膜制备。

陶瓷膜烧制过程优化

多孔陶瓷膜必须经过多次烧结,存在烧结工艺周期长、能耗高的问题。除采用烧结助剂或采用易烧结材料以降低烧结温度外,减少烧结时间或缩短制备周期也能达到降低烧结工艺成本的目的。在减少烧结时间方面,微波烧结技术是一种非接触技术,热通过电磁波的形式传递,可直达材料内部,最大限度地减少了烧结的不均匀性,可在缩短烧结时间的同时,降低烧结温度。微波技术大多用于制备几近致密的陶瓷复合物,同时由于其可改善材料组织、提高材料性能,亦可用于多孔陶瓷复合物的制备。在缩短烧结周期方面,一些研究者借鉴低温共烧陶瓷技术在多层结构陶瓷元器件封装领域的成功应用,提出采用共烧结技术来减少烧结次数,从而降低烧结成本。

4. 结论

水处理陶瓷膜制备技术以提高陶瓷膜整体性能为目的,通过调控陶瓷膜微结构可实现陶瓷膜制备技术的突破。目前,致孔剂制备技术、模板剂制备技术、纤维层积制备技术、溶胶- 凝胶技术、固态粒子烧结技术等陶瓷膜制备技术已日益得到关注。水处理陶瓷膜制备技术研究将引领和推动陶瓷膜技术及产业的发展,缓解水厂升级改造、提升水质品质的瓶颈压力。

The text is coming together to the lotion of theories and new craft, new technique, especially at domestic and international the organic Huo change sex C Xi sour ester lotion of research make progress carry on overall the foundation of the overview up, with A Ji C Xi sour AN ester(MMA), C the Xi sour D ester(BA), four A Ji four vinyl wreath four Huo oxygen alkane(ViD4) for raw material, make use of four A Ji four vinyl wreath four Huo oxygen alkane to C Xi the sour ester chemistry change sex of principle adoption half continuous prepare to emulsify a method usage that check hull lotion's come together over the ammonium sulfate(APS) conduct and actions cause system C Xi sour ester-organic Huo synthesize to emulsify the best dosage of and come together reaction in the craft to the lotion accommodation temperature choice really settle, it emulsify the best dosage of for:4%, come together reaction temperature for:75-80 ℃ .Also in the meantime study surface tension, emulsify, reaction temperature to the series function of the lotion influence, and carried on polymer of red outside spectrum experiment detection emulsify a dosage and reaction temperature of dissimilarity to lotion of each item stability, surface tension and glue a degree to have obvious of influence.

二甲基苯甲酸的研究论文下载

最佳回答:酯化的速度的大小排序:苯甲酸,邻甲基苯甲酸,2,6-二甲基苯甲酸。原因是甲基是电子基团,导致羧基电离度降低,酸性弱。

找了一篇专利描述,不知道对你有没有些微帮助。

--------------------------------------------------------------------

一种利用固体核磁碳谱检测煤结构参数的定量分析方法与流程

文档序号:11197378

导航: X技术> 最新专利>测量装置的制造及其应用技术

本发明涉及固体核磁碳谱分析技术领域,特别涉及一种利用固体核磁碳谱检测煤结构参数的定量分析方法。

背景技术:

煤是一种由多种官能团、多种化学键组成的复杂有机大分子。了解煤大分子结构模型对认识煤的物理化学性质有重要意义。从煤有机分子的碳结构角度,可以揭示煤液化产物的碳结构变化,为推导煤液化反应机理奠定良好的基础。对煤组成结构深入研究,与工艺性能相结合,能更好的指导工业生产,实现煤炭清洁高效的利用。

煤中只有少部分是可溶于各种溶剂的小分子化合物,其余的大部分是不能被溶解的大分子骨架结构。运用固体核磁共振技术可以在对煤进行非破坏性研究情况下,直接检测煤样,得到煤碳结构参数。由于13C核天然丰度低,13C的NMR信号弱、探测灵敏度低,而且由于外磁场中核的各种相互作用以及固体中化学位移各向异性,磁核之间的直接偶极相互作用引起了谱线增宽、不对称线型,分辨率下降情况。直到70年代中期,随着固体核磁交叉极化(CP)和魔角旋转(MAS)等技术发展,固体13C-NMR逐渐应用于煤的研究中。CP技术增强了稀核信号,提高灵敏度,解决碳原子的纵向弛豫时间(T1)太长的问题;而MAS技术则消除化学位移的各向异性;边带压制技术(TOSS)消除样品快速旋转时使得某些原子核的共振谱线产生较大的旋转边带。所以为了窄化谱线、增加灵敏度,得到高分辨率的固体13C-NMR图谱时通常联合使CP、MAS和TOSS等几种技术,这已成为当今研究煤分子结构的普遍方法。

80年代固体核磁技术在常规固体高分辨核磁共振谱的基础上又发展了偶极相移技术,可以区分质子化碳和非质子化碳,提供芳碳率、芳氢率及脂碳率等新的结构信息。到了90年代,利用常规固体技术和偶极相移技术结合谱图分段积分方法得到更为详细的碳结构参数,但是偶极相移技术操作较复杂,需要多次实验,耗时甚多。1996年Koh Kidena等人运用CP和SPE 13C-NMR测试PM煤碳结构,通过分峰拟合(拟合软件为MacAlice)的方法将碳信号分为11类含碳官能团信号,如表1所示。

表1 13C NMR中不同类型碳对应的化学位移

如今基于不同类型碳的不同化学位移归属,结合计算机辅助技术—分峰拟合技术能够直观、精细和快速的得到多种不同类型碳的含量,得到不同碳材料的结构参数。

由于13C CP/TOSS/MAS NMR中CP技术将丰核(1H)较大的自旋状态极化转移给较弱的稀核(13C),使稀核(13C)极化而迅速恢复平衡,缩短了测试时间,但在对氢去耦过程中增强了碳原子能量,使得碳谱谱线增强。简而言之,当分子内两个磁核之间空间位置相近时,对氢核去耦时达到饱和的氢核会将能量转移到碳核上,从而使得碳谱谱线增强,该现象称为碳核Overhause效应(NOE)。因此13C CP/TOSS/MAS NMR谱图中碳原子谱线的强度并不能定量的反映分子内不同化学环境下碳原子的相对数量,交叉极化实验中,接触时间的不足、射频场的不均匀性、NOE效应的存在都使得固体核磁定量不准确,与理论碳结构参数存在误差,不能准确进行碳材料的定量研究。液体核磁中运用门控去耦技术已消除了核Overhause效应,可以很好的进行碳结构定量。而固体核磁定量大多是通过对谱仪硬件的提升以及脉冲序列的巧妙设计,以达到定量效果,但还未见到快速、有效方便的定量方法。90年代Robert 等在研究中就表明CP技术的运用主要使季碳芳香碳的磁化比例比质子化碳低,所测得的芳香度要偏低。所以对于大量不带质子碳原子的高成熟煤样,如无烟煤测出的误差要相对小一些,而对于大量带质子碳原子的低阶煤中误差就比较大。所以煤结构分析中煤固体核磁碳结构参数定量分析就显得尤为重要。

煤的组成结构模型一直是煤化学研究的核心问题之一。在煤结构方面,中国专利CN 104091504A蔺华林等人通过对煤样固体核磁表征以及对煤液化油气质联用分析构建了煤大分子模型。通过固体核磁碳谱测试表征煤的详细碳结构参数,能够为煤结构模型准确构建奠定坚实的基础,所以获得固体核磁碳结构参数的准确合理性就显得尤为重要。由于核Overhause效应等因素的存在,运用13C CP/TOSS/MAS NMR测试结果对碳材料直接分析,表征碳结构参数不够准确,测定的参数存在一定的误差。

技术实现要素:

本发明的目的在于修正煤中固体核磁碳谱测定碳结构参数的误差,得到相对准确的碳结构参数,提供了一种利用固体核磁碳谱检测煤结构参数的定量分析方法。

所述方法包括如下步骤:

S1)选取模型化合物;

所述模型化合物包括一系列带脂肪侧链和/或含杂原子官能团的固体芳香化合物,各所述模型化合物的芳香度不同,所述芳香度为不饱和碳原子数与总碳原子数之比;

S2)测定各模型化合物的固体核磁碳谱;

S3)建立校正固体核磁碳谱测试误差的回归曲线方程;

根据不同类型碳原子位移归属和步骤S2测定的固体核磁碳谱,运用分峰拟合方法拟合得到各模型化合物的不同类型碳原子含量拟合值,求和分别计算出各模型化合物的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%;

再将各模型化合物的饱和碳原子含量拟合值X%分别与各模型化合物的饱和碳原子含量理论值进行回归分析,获得饱和碳校正固体核磁测试误差的回归曲线方程(Ⅰ),

X’=f(X) (Ⅰ);

将各模型化合物的不饱和碳原子含量拟合值Y%分别与各模型化合物的不饱和碳原子含量理论值进行回归分析,获得不饱和碳校正固体核磁测试误差的回归曲线方程(Ⅱ),

Y’=f(Y) (Ⅱ);

其中X’、Y’分别为与X和Y对应的修正值;

S4)验证回归曲线方程准确性;

将已知结构的验证化合物按照步骤S2相同的测试条件测定固体核磁碳谱,所述验证化合物也为带脂肪侧链和/或含杂原子官能团的固体芳香化合物;同样通过分峰拟合得到验证化合物的不同类型碳原子含量拟合值,求和分别计算出验证化合物的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归曲线方程(Ⅰ)和(Ⅱ)得到对应的修正值X’和Y’,再将修正值与验证化合物的理论值比较,验证回归曲线方程的准确性;若验证化合物的饱和碳原子含量和不饱和碳原子含量的修正值与理论值相对误差大于10%,说明准确性不高,重新调整模型化合物的种类和数量,重复步骤S1~S3,直到验证化合物的饱和碳原子含量和不饱和碳原子含量的修正值与理论值相对误差小于10%;

S5)待测煤样碳结构参数的测定及修正;

将待测煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到待测煤样的不同类型碳原子含量拟合值,求和分别计算出待测煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰ)和(Ⅱ)得到待测煤样对应的修正值X’和Y’,再根据X’和待测煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,根据Y’和待测煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值。上述修正值即为修正后的待测煤样碳结构参数。

所述饱和碳原子含量指饱和碳原子(本文中又称脂肪碳)在总的碳原子中的占比,不饱和碳原子含量指不饱和碳原子(本文中又称芳香碳)在总的碳原子中的占比,下同。

优选的,所述模型化合物选自苯系、萘系和蒽菲系化合物中的至少三种化合物,各化合物纯度大于98%,其中芳香度最低的为30~40%,最高的为90~95%。

优选的,所述模型化合物包括:3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘和9-甲基蒽。

优选的,所述验证化合物也选自苯系、萘系和蒽菲系化合物。

优选的,所述验证化合物为9,10-二甲基蒽。

优选的,步骤S2、S4和S5中,模型化合物、验证化合物及待测煤样在测定固体核磁碳谱前,粉碎研磨至80目以下并在65℃下真空干燥24h。

优选的,步骤S2、S4和S5中,固体核磁碳谱测试条件为:脉冲序列为CP/TOSS,13C共振频率与仪器相匹配,交叉极化接触时间为1~5ms,循环延迟时间为1~10s,魔角转速为3~7k Hz,转子外径为4~7mm。

优选的,步骤S3中,选用Origin软件进行模型化合物非性回归分析,曲线的相关系数R2大于后得到相应的回归曲线方程。

本发明的一些较佳实施例中,回归曲线方程(Ⅰ)和(Ⅱ)均为非线性二次函数,通式如下:

X’=a1+b1X+c1X2

Y’=a2+b2Y+c2Y2

式中:a1,b1,c1,a2,b2,c2为曲线回归系数。

本发明具有以下优点和有益效果:

本发明的所述方法以一系列带脂肪侧链和/或含杂原子官能团的苯系、萘系和蒽菲系化合物作为模型化合物,通过测定模型化合物的固体核磁碳谱,确定不同模型化合物碳结构参数误差,将模型化合物碳谱分峰拟合的脂肪碳和芳香碳拟合值与样品碳结构的理论值进行回归分析,得到脂肪碳和芳香碳的校正固体核磁碳谱测试误差回归曲线方程,同时再运用已知结构的模型化合物验证回归方程的准确性;通过对不同模型化合物的固体核磁测定及回归分析,利用回归曲线方程对待测煤样的拟合参数进行修正,可有效解决固体核磁碳谱测试中碳结构参数的误差,实现固体核磁碳谱定量分析。本发明的所述方法为13C CP/TOSS/MAS NMR技术与非线性回归方程相结合,能够快速方便的获得相对准确的不同类型碳结构参数,为煤中碳结构分析提供了新的技术保障,提供了一种简便易行的结构参数修正方法。应用所述方法能够相对准确的测定煤结构参数,从而可以从有机碳角度更好的了解煤的结构和性质,为煤结构的解析提供新的技术支撑,对煤的高效转化和利用起指导作用。

所述的方法不仅适用于煤中碳结构的分析,同样适用于油页岩矿产类含碳固体物质及生物质类含碳固体物质中的固体核磁碳谱的分析。

附图说明

图1为不同模型化合物脂肪碳拟合值与理论值回归曲线图;

图2为不同模型化合物芳香碳拟合值与理论值回归曲线图;

图3为淖毛湖褐煤的分峰拟合图;

图4为小龙潭褐煤的分峰拟合图;

图5为黑山次烟煤的分峰拟合图。

具体实施方式

以下结合具体实施例,对本发明作进一步说明。应理解,以下实施例仅用于本发明而非用于限定本发明的范围。

实施例1新疆淖毛湖褐煤(NMH)碳结构参数的分析

S1)样品及预处理

待测煤样:新疆淖毛湖褐煤。

模型化合物:3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘、9-甲基蒽;如表2所示,其中十二烷基苯磺酸钠的芳香度最低为%,9-甲基蒽的芳香度最高为%,其余的间于两者之间。

验证化合物:9,10-二甲基蒽,芳香度为%。

预处理:将上述待测煤样、模型化合物和验证化合物分别粉碎研磨至80目以下,煤样在65℃下真空干燥24h,干燥、均匀稳定的样品能保证样品在高速旋转或受到强电磁辐射时不爆炸。

S2)测定各模型化合物的固体核磁碳谱

分别将约150mg研磨均匀后的3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘、9-甲基蒽分别装入4mm ZrO2转子中,在BrukerAVANCEIII500型核磁共振波谱仪上选用脉冲序列为CP/TOSS进行固体核磁碳谱测试,选用4mm固体高分辨率魔角旋转探头。测试条件为:13C共振频率,交叉极化接触时间为1ms,循环延迟时间为3s,魔角转速为 Hz,转速为5600r/s。

S3)建立校正固体核磁碳谱测试误差的回归曲线方程

根据表1所示的不同类型碳位移归属和步骤S2测定的固体核磁碳谱,运用分峰拟合方法拟合得到各模型化合物的各个类型碳原子含量的拟合值(X3%,Xa%,X2%,X1+X*%,XO%,YH%,YB%,YS%,YO%,YCC1%,YCC2%),求和分别计算出各模型化合物的脂肪碳含量拟合值X%和芳香碳含量拟合值Y%,

X=X3+Xa+X2+X1+X*+XO,Y=YH+YB+YS+YO+YCC1+YCC2。

将各模型化合物的芳香碳和脂肪碳的拟合值与其理论值进行误差比较,结果见表2所示。

表2不同模型化合物碳结构理论值与实测值误差

由表2可知,通过上述常规的测定固定核磁碳谱以及分峰拟合的方法测得的碳结构拟合值与理论值误差较大,原因就是由于核Overhause效应等因素使得芳香碳和脂肪碳谱线强度增量不一致。

将步骤S2)中分峰拟合得到的各模型化合物的脂肪碳和芳香碳含量拟合值与各模型化合物的脂肪碳和芳香碳含量理论值进行回归分析,分析结果见图1和图2,相应的,得到脂肪碳校正固体核磁碳谱测试误差非线性回归曲线方程:

X’=(R2=,n=2) (Ⅰa)

以及芳香碳校正固体核磁碳谱测试误差非线性回归曲线方程:

Y’=(R2=,n=2) (Ⅱa)

式中X’、Y’分别为与X和Y对应的修正值。

脂肪碳的理论值与拟合值以及芳香碳的理论值和拟合值有良好的相关性,相关系数R2=;换言之固体核磁碳谱测试误差可以用响应非线性二次函数进行修正。。

S4)回归曲线方程准确性验证

将9,10-二甲基蒽按照步骤S2中相同的测试条件测定固体核磁碳谱,分峰拟合得到9,10-二甲基蒽的不同类型碳原子含量拟合值,求和分别计算出9,10-二甲基蒽的饱和碳原子含量和饱和不碳原子含量的拟合值X和Y,然后分别代入回归曲线方程(Ⅰa)和(Ⅱa)得到的X’和Y’为修正值,将9,10-二甲基蒽的饱和碳原子含量和不饱和碳原子含量修正前后的拟合值与理论值比较,结果见表3,修正后脂肪碳和芳香碳与其理论值相对误差均在10%以内,故运用非线性回归方法可以很好的修正固体核磁碳谱测试中的脂肪碳和芳香碳含量误差,可以得到较为准确的结构参数。

表3 9,10-二甲基蒽中碳结构实测值和理论值误差

S5)淖毛湖褐煤(NMH)结构参数的测定及修正

将淖毛湖褐煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到淖毛湖褐煤煤样的不同类型碳原子含量拟合值,求和分别计算出淖毛湖褐煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到淖毛湖褐煤煤样对应的修正值X’和Y’,再根据X’和淖毛湖褐煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表4,根据Y’和待测煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表5。

表4修正前后淖毛湖褐煤不同类型脂肪碳分布

表5修正前后淖毛湖褐煤不同类型芳香碳分布

同时对煤样作元素分析,元素分析结果如表6所示。

以H/C作为对比参数,煤结构中氢原子以脂肪氢和芳香氢的形式存在,其中脂肪氢部分包括甲基、次甲基以及亚甲基形式,而芳香氢中则主要以质子化氢以及羧基中的氢存在,不考虑酚类,则煤的H/C原子比可根据公式估算:H/C=(YH+(1-Y)×)/100。修正前后淖毛湖褐煤H/C原子比及芳香度(芳香碳含量)见表6。

表6修正前后淖毛湖褐煤H/C及芳香度

由表6可知,运用非线性回归曲线方程对NMH煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对NMH煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

实施例2小龙潭褐煤(XLT)碳结构参数的分析

按照实施例1的分析步骤对小龙潭褐煤进行分析

步骤S5中,将小龙潭褐煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到小龙潭褐煤煤样的不同类型碳原子含量拟合值,求和分别计算出小龙潭褐煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到小龙潭褐煤煤样对应的修正值X’和Y’,再根据X’和小龙潭褐煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表7,根据Y’和小龙潭褐煤煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表8。

表7修正前后小龙潭煤不同类型脂肪碳分布

表8修正前后小龙潭煤不同类型芳香碳分布

同样对小龙潭褐煤进行元素分析,元素分析结果以及修正前后小龙潭煤的H/C原子比及芳香度(芳香碳含量)见表9。

表9修正前后小龙潭煤H/C及芳香度

由表9可知,运用非线性回归曲线方程对XLT煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对XLT煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

实施例3黑山次烟煤(HS)碳结构参数的分析

按照实施例1的分析步骤对黑山次烟煤进行分析

步骤S5中,将黑山次烟煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到黑山次烟煤煤样的不同类型碳原子含量拟合值,求和分别计算出黑山次烟煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到黑山次烟煤煤样对应的修正值X’和Y’,再根据X’和黑山次烟煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表10,根据Y’和黑山次烟煤煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表11。

表10修正前后黑山次烟煤不同类型脂肪碳分布

表11修正前后黑山次烟煤不同类型芳香碳分布

同样对黑山次烟煤煤进行元素分析,元素分析结果以及修正前后黑山次烟煤的H/C原子比及芳香度(芳香碳含量)见表12。

表12修正前后黑山次烟煤H/C及芳香度

由表12可知,运用非线性回归曲线方程对HS煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对HS煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

综上所述,本发明通过测定不同模型化合物固体核磁碳谱测试误差,将不同模型化合物碳谱分峰拟合的脂肪碳和芳香碳测试值与样品碳结构的理论值进行回归分析,得到脂肪碳和芳香碳的校正固体核磁碳谱测试误差的回归曲线方程,同时再运用已知结构的模型化合物验证回归方程的准确性;通过对不同模型化合物的固体核磁测定及回归分析,解决了由于核Overhause效应等因素引起的碳结构参数的误差,13C CP/TOSS/MAS NMR技术与回归曲线方程相结合能够快速方便的获得相对准确的不同类型碳结构参数,为煤碳结构分析提供了新的技术保障,提供了一种简便易行的结构参数修正方法。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

更正,应是二甲氧基苯甲酸,昨天查了资料,用硫酸二甲酯故今天决定放弃。多谢大家。

2-甲基苯甲酸无臭。2-甲基苯甲酸大多为白色颗粒,无臭或微带安息香气味,味微甜,有收敛性,易溶于水,白色结晶粉未,熔点173-177℃,医药中间体。邻甲基苯甲酸是一种化学品,分子式是C8H8O2,用于农药、医药及有机化工原料的合成,是生产除草剂稻无草的主要原料。

甲酸制氢的催化剂毕业论文

1500元。根据查询相关公开信息,甲酸原料成本低,来源多种多样,除了目前主流的甲酸甲酯水解,目前市场价在1500元每升。

催化剂活性中心转化为吸附的甲酸根和碳酸根,进一步加氢为甲烷。在制备甲烷的原理方面,就是先使用催化剂活性中心上转化为吸附的甲酸根和碳酸根,进一步加氢气为甲烷。讲完由一个碳原子以及四个氢原子组成,是结构最简单的烷类,也是天然气的主要成分,在地球上有很高的相对丰度,也是最具有发展潜力的一种燃料。

甲酸制氢和电解水制氢是两种常见的制氢方法,它们有以下比较:1. 原理不同:甲酸制氢是一种化学反应过程,通过甲酸和碱性氢氧化物反应产生氢气和二氧化碳。而电解水制氢则是利用电力将水分解为氢气和氧气。2. 能源来源不同:甲酸制氢主要用化石燃料、生物质等作为甲酸的原料,而电解水制氢则可使用可再生能源作为电力来源,如风能、太阳能、水能等。3. 能效比较:电解水制氢的总能量效率较高,目前已经能够达到80%以上。而甲酸制氢的总能量效率则较低,一般在50%左右。4. 生产成本比较:电解水制氢的生产成本一般较高,主要由电力、水和设备等因素决定。而甲酸制氢的生产成本相对较低,主要是由甲酸、碱性氢氧化物等原材料和设备成本决定。但是,甲酸制氢的生产过程中也会产生二氧化碳等环境问题。总体来说,电解水制氢虽然生产成本较高,但总能量效率较高,而且使用可再生能源作为电力来源更加环保。甲酸制氢相对便宜,但能效比较低,且存在一定的环境问题。选择哪种制氢方式需要综合考虑其能源效率、成本、环保性等因素。

  • 索引序列
  • 甲酸甲酯回收毕业论文
  • 丙烯酸甲酯毕业论文目录
  • 丙烯酸甲酯毕业论文计算
  • 二甲基苯甲酸的研究论文下载
  • 甲酸制氢的催化剂毕业论文
  • 返回顶部