随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。
《 化学工程中计算流体力学应用分析 》
摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。
关键词:计算流体力学;求解;基本原理;化学工程;应用
化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。
1计算流体力学在化学工程中的基本原理
计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。
针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。
2计算流体力学砸你化学工程中的实际应用
在搅拌中的应用分析
在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。
通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。
在化学工程换热器中的应用分析
换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。
在精馏塔中的应用
CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。
Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。
Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。
在化学反应工程中的应用研究
在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。
3结束语
计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。
参考文献
[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).
[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).
《 能源化学工程专业化工热力学教学思考 》
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。
武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。
目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。
由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。
首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
有关化学工程应用毕业论文推荐:
1. 化学工程毕业论文
2. 化学毕业论文精选范文
3. 化工毕业论文范文大全
4. 化学毕业论文范例
5. 化学毕业论文范文
6. 化工毕业设计论文范文
本人已上岸,初试分数396,英语64,政治69,专业课263。个人经验,实际情况每个人都不一样,需具体问题具体分析,按需确定复习方案。
我的本科是山东省内一所二本,本科专业为新能源材料与器件,选择的事情总是令人感到纠结,到了大三下学期,就到了一个要对自己未来做出选择的时候。我当时认为我比较擅长物理,而且物理的考研竞争压力不大,所以选择跨考物理。
在择校方面,大体分为两类一类是选择好的专业水平,另一种选择比较高的学校水平,我选择中国海洋大学是看中它是所985、211,以后如果个人专业水平不行,还可以走定向选调生。中国海洋大学的物理学一共有四个方向,凝聚态物理、光学、无线电物理和声学,声学跟其他三个专业初试科目不同,其他三个专业初试考的内容一样,以下经验主要针对这三个专业,其中凝聚态和光学报的人挺多,无线电这几年基本上一比一复试,所以大家可以考虑无线电专业。近几年看物理学的分数线在290左右,录取人数在二十多人,每年扩招一两个人,属于比较好考的985了。
我的考研心得方法主要按照时间线进行划分,适合考数学一和一门本科已学专业课的考研同学进行参考,尤其是报考中国海洋大学物理海洋学专业的学弟学妹们。重点是围绕数学和专业课300分的核心学科进行方法指导,以及英语、政治一些学习习惯和避免的雷区。具体还应根据个人在四门学科上的能力进行调整。
参考书目:
638 量子力学
《量子力学教程》格里菲斯中文版(前)、周世勋(中)、曾谨言(后)+配套课后题辅导书
806 普通物理
《物理学》程守洙
《物理学》马文蔚
最开始复习就是按照学校的考试大纲,对马文蔚老师的《物理学》(直接用程守珠的书也可以)进行学习。然后根据大纲的重点,熟悉内容。然后去做程守珠《普通物理学》的课后习题。做完课后题以后进行总结分析,把课后题对应的知识点在课本中画出来,然后重点标划做错的题目。第一遍做错的题目和比较重要的知识点可以落实在笔记本上,记录的时候一定要自己写下来,这样在写的同时还可以再复习一遍,加深印象,同时为第二遍的复习打好基础,提高效率。
习题书:看完课本可以直接刷程的马的课后题就行,往年会从程的书上出原题或者改编题,要是觉得程的书马的书太简单了,可以刷赵凯华的《力学》《光学》《电磁学》《热学》。
9月之前,首先是对着考纲在目录上划出要考的章节,看上下册的课本,划出重要内容,理解公式各个量的物理意义以及公式的适用条件。其次认真做课本上的例题和课后题,不会的题就认真分析答案。第一遍很多题不会做是正常现象,究其原因是未掌握解题思路且未完全理解公式和定律,这些到后期都会得到提升。二刷程守洙课后习题,根据历年真题情况,排除不会考的题,圈出不会做的题。9月开始二刷真题,圈出不会的题,掐时间做。继续做一些难题提升自己。这个过程要提高自己对公式、物理定律的理解和记忆。11月三刷课后习题和真题,这一遍主要做第二遍圈出来的错题。复习自己做过的难题,做完剩下几套真题,这几套也要多做几遍,一定要做会所有历年真题,课后习题排除不考的题,要会做至少90%。当然,会做题的核心是理解物理定律、公式,这样才能以不变应万变。从教材可以看出来,海大普通物理要求不高,题比较简单,好拿分。
资料推荐
本系列书分为638量子力学题目、806普通物理学复习笔记、历年真题及答案等三部分;主要以课本和历年真题为主,结合历年真题重要考点,涵盖了海大信息学部考研初试重点考试内容。本书内容讲解详细,且条理清晰重点突出,既适合基础较薄弱的同学进行系统学习,也可以帮助有一定能力的同学进行总结和拔高。
第一部分:638量子力学题目
第二部分:806普通物理复习笔记
第三部分:历年真题及答案
试卷结构分析
638 量子力学
简答题比例为40%,分值为60分;解答题比例为60%,分值为90分。
806 普通物理
计算题(100%)(8-10题)
下面我跟大家简要的讲一下知识点的复习侧重点,大家在复习过程中可以参考一下。
力学的原理和公式比较多,例如:动量定理、动量守恒定律、动能定理、势能、功能原理、能量守恒定律等。这些概念都属于题目的基础知识,有时会联合起来出大题。课后习题的类型和考试题目差不多,所以,课本例题和课后习题要认真做完。电磁学重点掌握电场、电势和磁感应强度的计算,课本例题上有一些典型的例题,要认真做完,答案也要背过,都是题目中常用的例子课后的经典习题也十分重要,甚至出过原题!电磁感应重点较为集中,但是也要认真掌握。光学必考计算大题,所以一定要认真对待。例如明纹、暗纹、光栅方程都要记住。光栅连着考好几年,所以一定要引起重视。后面的量子物理部分主要是一些概念和简答的复习。例如经典理论的困难、爱因斯坦光电效应方程、康普顿效应、波尔的氢原子理论,德布罗意公式。也都要掌握,最后一题会考到。
政治:
所用资料:徐涛的强化班及核心考案;
肖秀荣 1000 题;
腿姐冲刺背诵笔记;肖四肖八;徐涛腿姐的押题卷。
具体:暑假开始看徐涛强化班,学英语和专业课累的时候,看会徐涛的课,不要希望能记住知识点,看课是为了理解知识点,有个印象,徐涛的课配套肖老 1000 题,看完一节课,刷相应的题。腿姐的冲刺背诵笔记出来后,每天都要看上几张,不要求背过,做到见到选择题的时候能够记起来就行,主要针对选择题,很有用。最后的模拟卷很重要,主要是肖四肖八腿四,把这些模拟卷的选择题掌握住,大题的话看肖四就够了,当时只背了肖四,没有精力背别的模拟卷了。
英语:
我的英语基础很差,高考英语70左右,本科期间六级没过,很幸运考研英语过线。我是个很好的例子,证明了只要努力,英语一拿到 60+是没问题的。
单词
我是从三月份背扇贝单词app,每天三百个单词,主要是练认,不是练拼写,其中新词150旧词150,前期背单词很难熬,一天用上三四个小时,后期二十分钟背完三百词,我没有选择背单词书的原因是单词书上英文跟汉语挨着,很容易看到汉语意思,影响背诵效果。一直背,单词一天不背,水平就下降。
阅读
暑假开始做真题,每天两道阅读,九月开始,每天两道阅读一道完型或者两道阅读一道新题型或者两道阅读一道翻译一直循环下去。其中新题型一定要先看课,因为新题型题比较少,不要上来就浪费掉,翻译的话看唐静,课是真的多,没看完,完型的话没看网课,因为没时间了。做阅读时候要把握一下时间,一篇阅读14分钟左右。
作文
11月开始准备作文,买了潘赟的作文书,潘赟的九宫格法写大作文非常适合我这种基础很差的人。小作文是按照建议信,感谢信,求职信等种类整理开头和结尾,中间部分主要是靠自由发挥了。作文一定要动手写,12月每天一篇大作文一篇小作文,写完可以用有道词典,上面有一个批改功能,可以检查出一些基本的语法、单词错误。
模拟
12 月初到 12 月中旬,留着三套真题模拟一下,主要是把握一下时间。
时间安排
3-4月
我的考研学习基本是从3-4月份开始的,这个时候应该首先明白自己大致想考的专业及方向,尤其根据自己的英语能力以及数学能力制定好自己具体要考哪个方向,在五月之前该工作应该落实。
中国海洋大学物理海洋学专业考试科目为数学一和英语一,所以英语和数学比较差的学弟学妹应该慎重考虑。在这段时间,除了搜索报考专业的科目要求,还应开始准备英语和数学的基础学习。
英语方面保证每日一组单词背诵,纸质版和电子版单词均可,只要保证能够不断复习生疏词汇无论什么方法都可以采用。
英语比较差的同学这时候可以进行每天一篇的阅读训练,可以先做模拟题(「推荐张剑的模拟题」)
,将真题阅读最好保留在后面做,或者听一些阅读课程,但切记不要花太多时间在英语课程上。数学上应该在五月中旬前完成对高数部分和线代部分课程一轮概念学习,并将讲义过一遍(主要是学习概念和做完例题),没确定好数学的学弟学妹这时候可以只学习数学二的高数和线代。数学部分课程一定要多听,因为数学部分占分和数学本身学科特性我就不用赘述了,这里我就不去推荐数学课程了,建议大家对市面上的名师数学课程前期可以广泛听一下。可以说,数学上名师对考研数学的理解都是有绝对保证的,至于效果如何取决于个人能力以及性格,所以建议大家这里自己选择,然后不要有抵触心理,跟好一类课程学习即可,不存在什么押题和漏掉重点,一定要静心沉气。
5-6月
到了五月中旬之后,我们基本确定了自己报考的方向,便可以开始下一步规划了。这里我主要介绍考物理海洋学专业学弟学妹的学习计划。
这时候没有流体力学基础的学弟学妹可以开始学习流体力学本科课程了(我们专业内容基本与中国海洋大学本科流体力学学习内容基本一致)。如果对自己专业课有一定信心的同学大可不用着急进行专业课的学习,应在数学基础打牢情况下开始学习最佳,这时候开始的工作应该是继续进行数学一部分课程的学习,也就是高数剩余部分和概率论。在七月前应将所学讲义全部完成,并扫清数学一所有概念部分。在此期间英语上保持单词的复习和每日的阅读即可,语法不行的同学可在这时候系统学一下。
7-8月
七到八月开始启动考研总学习阶段,这时候把住两个重点,开始系统每个单元进行数学上的刷题和专业课的学习。数学上刷题选择市面上一套练习册进行系统训练,一定保证刷完一套练习册,不留死角,这里不太推荐刷很多练习册,可以反复练习,一本就够,在九月中旬前不用去刷真题或模拟卷。专业课在七八月听完流体力学课程(在九月底之前听完也无妨,不要因为进度慢而急躁),八月初还要开展的就是政治课的学习,这时以听视频课为主,也是考研名师都可以,当然政治老师无非是那几位,大家可自由选择。
9月
在九月,进度慢的学弟学妹继续扫尾,进度比较快的同学在九月中旬后可以开始练习近15-20年的数学真题了。专业课做一些书上的例题,不要着急做专业课真题!政治在十一前完成听课,英语在九月开始就要保证真题练习了(事实上我在七月已经开始刷真题了,原因是我没有模拟题,大家也可以先做真题将模拟题放在后面,但是一定要在考前留两套真题找感觉)。
10-11月
十月开始冲刺阶段,这时候要尽可能刷完市面上所有数学模拟卷,模拟卷一定要高强度,高广度的刷,可以将工作时间分为三天,两天刷卷子,一天进行回顾和相关知识复习。专业课开始流体力学20年真题练习,该真题至关重要,务必认真对待,每一道题都要弄懂为止。政治上进行1000题或者其他练习册扫尾。学长模拟卷一共大概做了40-50套,同学可进行酌情删增。
接下来时间就是漫长枯燥的刷题时间,在流体力学真题至少两遍以上训练后,可以过一遍流体力学练习册这个习题册。该习题册也有部分题目被专业课考研进行借鉴,重点练习里面的计算题,该习题册对于想考高分的同学还是值得认真做一遍的。英语应已完成真题,可以进行二刷或者做一些模拟卷。政治开始做模拟卷,等待肖八肖四(或者其他背诵书)以及考研政治冲刺班的公布,并及时进行学习,在十一月底和十二月应该进行政治背诵,不要太早或者太晚(可以看周围同学随大流)。英语这时候开始每周两次到三次写作,买一个写作书籍或者课程,总结一个属于自己的写作套路。
12月
十二月将复习做过的数学错题,把没做的模拟卷做完,英语开始刷之前留下的真题(这时候要加上写作所有部分)。流体力学开始看之前的真题,还有学长提供的笔记(自己的笔记也行),政治开始背诵背诵再背诵,在此期间注意身体还有考研报考事项,不要因为报考不当造成麻烦。
复试
面试流程为:英语自我介绍->英语问答题->专业课抽题->PPT汇报->自由问答
英文自我介绍:3分钟左右,先对着网上的模板,结合自己的情况写一篇,根据时长适当删减或修改。要背的滚瓜烂熟,再紧张也能不过脑子说出来的那种程度。
专业课问题:抽题问答,凝聚态抽固体物理,无线电抽电动力学,光学专业抽光学。专业课偏简单,如果问到的题是没准备到的,可以先道歉。再向老师请求思考时间,说出自己的猜测和思考。
自由问答:喜欢根据PPT问本科学过的课程,科研经历,毕业论文等。需要提前根据PPT准备,保证自己有话说,不能一问三不知。
总之,对于物理海洋学考生,后期最重要的就是数学各路模拟卷,政治背诵,专业课及英语真题。「把这四个工作做好是成功的一半,请同学要高度重视!!!」
以上就是我的一些个人心得,主要针对海气学院物理海洋学专业的学弟学妹,总体没有太多废话,也尽量不做什么主观推荐,真心祝各同学一战成硕!!!!!
撰文 | 邢志忠(中国科学院高能物理研究所研究员)
130年前的1891年10月20日,英国物理学家詹姆士·查德威克 (James Chadwick) 降生在英格兰西北部小城博灵顿的一个普通人家。他的童年主要是在祖父母身边度过的,这一点与科学巨匠艾萨克·牛顿 (Isaac Newton) 的童年有些类似。大约在11岁那一年,查德威克来到曼彻斯特与父母团聚,并开始接受中学教育。1907年,中学毕业的查德威克获得了曼彻斯特大学的奖学金,顺利升入大学。就在这一年的5月份,36岁的新西兰裔英国物理学家欧内斯特·卢瑟福 (Ernest Rutherford) 加盟曼彻斯特大学,冥冥之中为查德威克带来了福音。
其实查德威克最初想要在大学攻读的是数学而不是物理学。阴差阳错,他在1908年秋季参加了一场由物理系教师主持的面试。将错就错,生性腼腆的查德威克成为一名物理系的本科生。他在第二学年选修了卢瑟福的电磁学课程,立刻就被这位科学大师的魅力打动了,随后决定跟随卢瑟福做一个具体的科研项目,即研究镭元素的放射性。1911年夏天,他完成了自己的本科学业后,成为卢瑟福的研究生。1912年,查德威克与导师合作发表了他的第一篇学术论文。
卢瑟福的杰出科学才能和影响力使得曼彻斯特大学成为核物理学的研究中心,吸引了世界各地的年轻学者前来 “曼彻斯特学派” 朝拜。1912年3月,27岁的丹麦物理学家尼尔斯·玻尔 (Niels Bohr) 来到曼彻斯特大学从事博士后研究,他和查德威克很快成为好朋友。一年之后,即1913年7月,玻尔在久负盛名的英国《哲学与科学杂志》 ( Philosophical Magazine and Journal of Science ) 上发表了一篇重要论文,首次提出了量子化的氢原子模型。这一工作成为量子理论发展史的里程碑之一,也使得玻尔本人荣获了1922年的诺贝尔物理学奖。
身处在曼彻斯特大学如此卓越的学术氛围中,年轻的查德威克想要不成功都难。
1912年夏天,查德威克以优异的科研纪录获得了硕士学位。尽管卢瑟福希望查德威克继续留在自己身边做研究,但由于其他原因,查德威克还是于1913年秋季来到德国柏林,加入到盖革计数器的发明者汉斯·盖格的实验室。
盖革也曾在曼彻斯特工作,是卢瑟福的重要合作者之一,因此爱屋及乌,对查德威克照顾有加。当时柏林是世界核物理学与放射化学的研究中心之一,后来因发现核裂变而名留青史的奥托·哈恩 (Otto Hahn) 和莉泽·迈特纳 (Lise Meitner) 等大科学家都在那里工作,这促使查德威克选择原子核的贝塔衰变作为自己的新研究课题。
一直以来,学术界以为原子核的贝塔衰变是两体过程:母核裂变成子核,并放射出一个电子,因此后者具有确定的能量,即其能谱应该呈现出的是单能分立谱。但到了1913年,曼彻斯特学派与哈恩实验室给出的初步观测结果却与此预期相矛盾。利用比先前的感光胶片探测技术更先进的盖革计数器,查德威克重新测量了贝塔衰变的电子能量,发现其呈现的是连续变化的谱型。他以单一作者的身份在1914年发表了这一测量结果,立即得到了卢瑟福和哈恩等人的认可,却受到了迈特纳的质疑。1927年,曼彻斯特实验室的查尔斯·埃利斯 (Charles Ellis) 和威廉·伍斯特 (William Wooster) 完成了关于贝塔衰变能谱的更可靠测量,确认了电子的能谱为连续谱。他们的实验结果随后也被迈特纳的课题组证实。于是能量在贝塔衰变的过程中是否严格守恒的问题,即所谓的 “能量危机” (energy crisis) ,成为20世纪20到30年代漂浮在核物理学天空的一朵乌云。
为了解释贝塔衰变的连续能谱问题,玻尔提出了在微观世界能量守恒可能只是一个统计平均规律的观点,即对于单个微观反应过程可能存在能量不严格守恒的情况。这一观点无疑与美国物理学家亚瑟·康普顿 (Arthur Compton) 在1923年发表的光子与电子散射的实验结果相矛盾,后者清楚地表明诸如此类的微观散射过程是严格遵守能量和动量守恒定律的。事实上,要想解释当年的贝塔衰变实验结果,理论家们还面临着另一个挑战:怎样保证初态和末态粒子的总角动量守恒?
这时候最有资格说话的人当数1925年1月提出 “不相容原理” (exclusion principle) 的奥地利物理学家沃夫冈·泡利 (Wolfgang Pauli) ,因为他对原子核和基本粒子的自旋角动量太敏感了。1930年12月,泡利在一封写给研究原子核放射性的同行们的公开信中,提出了他解决贝塔衰变“能量危机”问题的方案。他假设在原子核的贝塔衰变过程中,除了产生子核和电子,还会释放出一个质量很小、电中性的新粒子,其自旋量子数等于1/2。泡利将这种看不见、摸不着的假想粒子称作“中子” (neutron) ,显然他还不知道“中子”的概念早在1920年就被卢瑟福发明和占用了——用以描述另一种电中性、质量与质子相当且可以作为原子核基本组分的的假想粒子。后来意大利物理学家恩里科·费米 (Enrico Fermi) 把泡利设想的 “中子” 改称为 “中微子” (neutrino) ,意即微小的 “中子”。
有了中微子的存在,贝塔衰变反应的能量守恒、动量守恒和角动量守恒都不再是问题;而电子的能谱之所以呈现为连续谱,则是由于电子不得不与中微子分享母核与子核的质量差所对应的反应能量。在这样的三体衰变过程中,中微子携带一部分能量和动量逃之夭夭。但当年的实验技术根本无法证实泡利的假说。直到1956年,作为假想粒子的中微子才首次在反应堆实验中被验明正身。
回到1914年8月,查德威克的科研工作由于第一次世界大战的爆发而被迫中断。尽管得到德国同事的保护,作为战争敌对国公民的查德威克还是在当年的11月份遭到当局的逮捕,被关进了柏林西部的一所集中营。不过他在狱中过得并不寂寞,甚至有机会定期给狱友们讲授电磁学和放射性的知识。巧的是,卢瑟福的另一个学生埃利斯也被囚禁在这所集中营,他也因此成了查德威克的好朋友。由于战争所导致的食物短缺,查德威克在狱中因严重的营养不良而患上了消化道疾病。1918年11月,战争终于结束了。查德威克和埃利斯辗转回到自己的祖国英格兰,他们二人后来成为剑桥大学的同事。
1930年,剑桥大学出版社出版了卢瑟福、查德威克和埃利斯三人合作撰写的《放射性物质的辐射》一书,系统地总结了氦核 (即阿尔法粒子) 与氦核、质子以及重原子核的散射实验结果,为强相互作用理论的建立奠定了初步的实验基础。1935年,日本物理学家汤川秀树(Hideki Yukawa)提出原子核之间通过交换轻介子实现相互作用的理论图像,这一工作是他的科研处女作,他一炮而红,并因此于1949年获得了诺贝尔物理学奖。
就在1930年,德国科学家沃尔特·博特 (Walter Bothe) 和赫伯特·贝克 (Herbert Becker) 在氦核与铍原子核的散射实验中观测到一种穿透力很强、不会在电场中偏转的射线,他们将其理所当然地解释为伽玛射线。两年之后的1932年,居里夫人的长女伊雷娜·约里奥·居里 (Irene Joliot-Curie) 与丈夫弗雷德里克·约里奥·居里 (Frederic Joliot-Curie) 重复了这一实验。他们发现用博特和贝克所观测到的射线轰击含有氢原子的物质时,会产生高能质子。那么,这种新型的射线究竟是不是伽马射线呢?
当然不是!查德威克和他的导师卢瑟福都不相信约里奥-居里夫妇的实验结果可以解释为质子与光子的康普顿散射。查德威克马上着手设计了一个实验,并在三周之内就得到了自己的测量结果。他发现新型的射线并非伽马射线,而是一种由电中性、质量与质子相当的新粒子构成的束流。1932年2月27日,英国《自然》期刊发表了查德威克的实验结果。他的这篇题为 “可能存在中子” (Possible existence of a neutron) 的论文长度不足一页纸,不含有任何公式和图表,仅包含大约700个单词。查德威克在论文的结尾处明确指出,“迄今为止,所有的证据都倾向于中子,而量子假设(即伽马射线假设)不成立,除非在某种程度上放弃能量和动量守恒”。于是中子作为原子核的另外一种基本组分被发现了!1935年,44岁的查德威克因发现中子而荣获了诺贝尔物理学奖。
为什么是查德威克而不是约里奥·居里夫妇率先发现了中子?答案很简单: 因为查德威克是卢瑟福的学生,早就知道自然界有可能存在一种与质子的强相互作用属性很相似的粒子,它的名字叫做中子。 这就是在大师身边工作更容易成为大师的绝佳例子。相比之下,约里奥·居里夫妇不得不承认,尽管他们二人也处在大师 (居里夫妇等) 云集的科研环境中,却对中子的概念一无所知,因此未能在第一时间对自己的实验结果做出正确的解释,从而错失了发现中子的良机。
不过令人欣慰的是,两年后的1934年2月10日,《自然》杂志发表了约里奥·居里夫妇合作完成的一篇题为 “一种新型放射性元素的人工产生” ( Artificial production of a new kind of radio-element ) 的论文。这篇论文也不足一页纸,仅含有大约620个单词和1个化学反应方程式,但它却是人工放射性的开山问鼎之作。凭借这一发现,约里奥-居里夫妇以超乎寻常的速度拿下1935年的诺贝尔化学奖!人们不禁要问一个有趣的问题:假如约里奥·居里夫妇在1932年正确地理解了自己的实验结果,并宣布发现了中子,那么他们有可能一举包揽1935年诺贝尔物理学和化学两项大奖吗?
1935年秋天,在获得诺贝尔奖之前,查德威克被聘为利物浦大学教授。他在那里推动建造了一台回旋加速器,使得利物浦成为欧洲核物理学的研究中心之一。查德威克也是英美两国在曼哈顿计划中开展合作的关键人物,因为中子的发现是制造原子弹的重要前提之一。1948年,查德威克重返剑桥大学,成为科维尔与凯乌斯学院的院长。他于1958年底退休,与妻子搬到北威尔士居住;十年后他们又搬回剑桥,住在离女儿们不远的地方。
主要参考文献:
1) A. Brown, The neutron and the bomb: a biography of Sir James Chadwick, Oxford University Press, New York, 1997.
2) G. Ecker, James Chadwick: a head of his time, arXiv:, 2020.
3) J. Chadwick, Possible existence of a neutron, Nature 129 (1932) 312.
4) F. Joliot and I. Curie, Artificial production of a new kind of radio-element, Nature 133 (1934) 201.
可以的,因为动量守恒本身就比牛顿定律范围更广,不过证明难度大大超过了高中知识,必须要用到现代物理群论理论中的对称性原理。
动量守恒有空间平移不变性推出
能量守恒由时间反演不变性推出。
我上面说的是现代物理最原始的证明方法,它探索到了守恒律的本质——对称性。
不过也有不太严格的方法——用实验加定义法。这个我发在附件里。
对于现代方法如果你想深入了解,留个邮箱我发资料给你!
动量定理可以直接证出动量守恒定律假设两物体相撞两物体受冲量I第一个物体是mv1-mv0=I第二个物体是mv1-mv0=-I联立即可推出动量守恒定律
可以直接用对称原理证明。万物同权,在不受到其他物体的影响的情况下,遵守一个原则就是对外不表现出变化;所以把需要使用动量守恒的部分都看做整体,他们对外的表现就是动量,不会变。其实牛顿的三个定律可以通过对称原理进行哲学推导出来的。
物理学是研究物质运动最一般规律和物质基本结构的学科,下面就是高中物理论文范文,欢迎大家阅读!
摘要 :物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学的核心之一。
本文结合笔者自身多年的物理教学经验,浅谈在物理教学中,如何搞好中学物理规律的教学。
关键词: 物理规律教学
物理规律反映了各物理概念之间的相互制约关系,反映在一定条件下一定物理过程的必然性。
它是中学物理基础知识最重要的内容,是物理知识结构体系的枢纽.所以,物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学的核心之一。
怎样才能搞好规律教学呢?现结合本人多年的物理教学经历,浅谈以下几点看法:
一、创设发现问题、探索规律的物理环境
教师带领学生学习物理规律,首先需要引导学生在物理世界中发现问题。
因此,在教学的开始阶段,要应给学生创设一个便于发现问题的物理环境。
在中学阶段,主要是通过观察、实验发现问题,也可以从分析学生生活中熟知的典型事例中发现问题,有时也可以从对学生已有知识的分析展开中发现问题。
另一方面,创设的物理环境要有利于引导学生探索规律。
例如使学生获得探索物理规律必要的感性知识和数据;提供进一步思考问题的线索和依据;为研究问题提供必要的知识准备等等。
创设的物理环境还应有助于激发学生的学习兴趣和求知欲望.
二、带领学生探索物理规律
在学生有一定的需要和积极的准备状态下,教师要利用各种适宜的方法,如实验探索、理论推导等,向学生阐明概念和规律的形成过程,建立新旧知识的链接。
如在牛顿第二定律的教学中,让学生通过实验探索加速度与力的关系以及加速度与质量的关系,得出在质量一定的条件下加速度与外力成正比、在外力一定的条件下加速度与质量成反比的结论。
在此基础上,教师指导学生总结加速度、外力和质量的关系,归纳出牛顿第二定律。
这样学生对该规律的建立就有了一个清晰的过程,才能较深刻地理解物理规律、领悟其物理含义。
另一方面,向学生呈现物理规律内容时不但要准确,而且对一些关键字词应加以突出,给予适当的说明,以引导学生足够的注意和正确理解,并与其他类似的或易混淆的概念和规律进行比较,建立类比联系,加深对物理规律的理解。
三、要使学生深刻理解规律的物理意义
在规律的教学中,要引导学生深刻理解其物理意义,防止死记硬背。
物理规律的表达形式主要有两种:一种是文字语言,另一种是数学语言,即公式。
对物理规律的文字表述,必须在学生对有关问题进行分析、研究、并对它的本质有相当认识的基础上进行,切不可在学生毫无认识或认识不足的情况下“搬出来”,“灌”给学生,然后再逐字逐句解释和说明。
只有这样,学生才能真正理解它的含义。
例如,牛顿第一定律“一切物体在没有受到外力作用的时候,总保持匀速直线运动状态或静止状态。”在理解时,要注意弄清定律的条件是“物体没有受到外力作用”,还要理解“或”这个字的含义。
“或”不是指物体有时保持匀速直线运动状态,有时保持静止状态,而是指如果物体原来是运动的,它就保持匀速直线运动状态;如果原来是静止的,它就保持静止状态。
对于用数学语言即公式表达的物理规律,应使学生从物理意义上去理解公式中所表示的物理量之间的数量关系,而不能从纯数学的角度加以理解。
如,对电场中同一点而言,不能说场强E与电场力F成正比,与电量q成反比,因为场强E由电场和电场中该点的位置决定。
四、要使学生明确物理规律的适用条件和范围
物理规律往往都是在一定的条件下建立或推导出来的,只能在一定的范围内使用.超越这个范围,物理规律则不成立,有时甚至会得出错误结论.这一点往往易被学生忽视,他们一遇到具体问题,就乱套乱用物理规律,得出错误结论.因此,在物理规律教学中,要使学生明确物理规律的适用条件和范围,正确地运用规律来研究和解决问题。
例如动量守恒定律,它的成立条件是,所研究的系统不受外力或者所受外力的合力为零,这属基准条件。
如果系统受到外力F外或合力F合不为零,其动量是不守恒的,但可能有两种情形:其一,系统中物体相互作用的内力F内远大于F外(或F合),该系统的动量可看作是守恒的,其条件属近似条件;其二,选定直角坐标系后,将不在坐标轴上的外力各自沿x轴和y轴进行正交分解,若沿某一坐标轴(如x轴)的各个外力(含分力)的合力为零,则系统在该轴方向上的动量守恒,其条件属分动量守恒条件。
动量守恒定律是自然界普遍适用的基本定律之一,它适用于两个物体或多个物体组成的系统;它不但能解决低速运动问题,而且能解决高速运动问题;不但适用于宏观物体,而且适用于电子、质子、中子等微观粒子。
此外,无论是什么性质的相互作用,动量守恒定律都是适用的。
五、加强应用物理规律解决实际问题的训练和指导
物理规律来源于物理现象,反过来应用于实际问题,学习物理规律的目的就在于能够运用物理规律解决实际问题,同时,通过运用,还能检验学生对物理规律的掌握情况,加深对物理规律的理解。
在规律教学中,一方面要选择恰当的物理问题,有计划、有目标、由简到繁、循序渐进、反复多次地进行训练,使学生结合对实际问题的讨论,深化、活化对物理规律的理解,逐渐领会分析、处理和解决问题的思路和方法;另一方面,要引导和训练学生善于联系日常生活中的实际问题学习物理规律,经常用学过的规律科学地说明和解释有关的现象,通过训练,使学生逐步学会逻辑地说理和表达.对于运用物理规律分析和解决实际问题,要逐步训练学生运用分析、解决问题的思路和方法,使学生学会正确地运用数学解决物理问题。最后指出,由于物理规律的复杂性,必须注意规律教学的阶段性,使学生对规律的认识要有一个由浅入深,逐步深化、提高的过程。
只有这样,才能有效地指导学生掌握物理规律,培养学生的思维能力。
参考文献
1.人民教育出版社物理室。
全日制普通高级中学《物理教学大纲》2003
2.田世昆,胡卫平.物理思维论[M].南宁:广西教育出版社,.
3.南冲.中学物理教学研究[M].北京:海潮出版社,.
【摘要】 高考是关系到千家万户的大事,也是国家目前选拔人才的途径。认真学习和研究《教学大纲》和《考试说明》,按照教学规律科学的进行复习,及时的收集和处理信息,充分的调动学生的学习积极性,一定会取得好的成绩。
【关键词】 高考组织复习能力
为使高考复习能落到实处,使复习的过程更科学、复习的效率更高、有利于最大限度的提高学生的成绩,特提出以下几点建议:
1.强化基础知识的复习,加强学生对概念和规律的深入理解
在高中,对基本概念、基本规律的要求一贯是高考物理考查的主要内容和重点内容,主要考查考生在理解的基础上掌握基本概念、基本规律和基本方法,并要求深入理解概念和规律之间的内在联系。不少学生存在着这样的表现:概念,定义都知道,但一用就错,试卷上表现主要是选择题得分率低。这些都是基础较差,对物理概念和规律的理解不够有密切的关系。而近几年的各地高考试卷中的物理试题也都明确反映出重视基本概念、规律考查的特点。
对此,在复习中应该按照物理《教学大纲》和《考试说明》对学生五个方面的能力的加以严格要求,同时要让学生明白:理解能力是基础。只有理解能力提高了,其他能力才能较好的发展,而理解能力的前提是牢固的基础知识、扎实的基本技能和规范的基本方法,只有抓好基本知识、基本技能和基本方法的复习,对概念和规律的理解才能正确、深入、透彻。
2.加强学生的计算推理能力、论证表述能力、分析综合能力
高考物理试题度于推理能力的考查贯穿于各种题型中,从不同的角度、不同的层次,通过不同的题型、不同的情景设置来考查考生推理的逻辑性、严密性;对论证表述则重在考查能否准确地、简明地把推理过程表达出来,以此鉴别考生表述能力的高低。要克服学生思维推理过程不能严格合乎逻辑,对受力分析、运动过程分析不予重视,给解题带来盲目性;不会用物理语言表述物理过程或物理规律,使解题过程残缺不全;牛顿运动定律、动量、功能关系三条常用解题线索相互脱节,不能有机整合,使解题思路僵化、方法呆板、正确率低。
3.提高学生应用数学知识解决物理问题的能力
物理和数学是紧密联系的,数学为物理学的发展提供了强有力的工具,几乎所有的物理概念和物理规律,都是通过量化的方法用数学公式进行描述,应用数学处理物理问题的能力也是进入高校深造的考生应具有的能力,因此高考物理试题一直注重考查考生的应用数学处理物理问题的能力。
近年来,高考物理中的数学能力要求有明显的调整,主要表现在尽量回避繁杂的机械运算,而在考察方面,为此,我们一方面要求学生在平时学习中,能过一定数目的练习,掌握解决物理问题常用的数学规律及方法,在此基础上,引导学生逐步形成运用数学工具处理物理问题的基本思路,重点在于通过精讲精练使学生能熟练地将物理问题转化为数学问题。另外,要重视估算题的训练,复习时应注意引导学生逐渐掌握近似估算法,快速求出物理量的数量级。同时,提倡学生平时不用或少用计算器进行计算,因为在平时练习中,很多同学习惯于使用计算器,连非常简单的加减法都非用计算器不可,这样使得他们数学运算能力很差。
4.加强实验复习
实验是物理学的基础,实验能力在物理高考中一直占有相当重要的地位。物理高考力图通过在笔试的形式下考查学生的实验能力。
在教学中,一是要正确对待实验教材,实验复习时不应该机械地记忆教材中各个实验的目的、原理、器材、步骤、记录、结果等等,而应引导学生领悟教材中物理实验的设计思想、所运用的科学方法、规范的操作程序和合理的实验步骤。二是要引起学生对实验的有意注意,提供更多的动手动脑的机会,让他们主动地发现问题,解决问题。老师有意地改变实验条件、设置问题,激励学生努力寻找方法,解决问题。三是从培养学生的实验能力出发,让他们学会通过实验测量和有计划的实践活动去认识自然、发现自然规律、验证假想和猜测的方法,培养他们科学的思维方式、科学方法、实际操作技能和解决实际问题的能力。四是鼓励学生大胆创新,认识到实验教材提供的做法并不是一成不变,拘泥成规的,可以对课本中的实验做一些合理的变通,或补充一些模仿性实验,增加一些设计性实验,培养学生运用所学的知识、方法解决新问题的能力。
为使复习备考工作顺利进行,努力完成学校的工作任务,特提出以下几点措施:
1.认真钻研《高考大纲》、《教学大纲》及《课本》,充分提高“二纲一本”在高考中的作用,研究“二纲”,特别是去分析每年高考大纲之间的.细微的不同的地方,显得更加的重要,同时,也要建议学生常去翻物理课本,不可只顾按资料进行复习,却脱离了高考大纲的现象的发生。
2.高三教学应以人为本因为我们的授课对象是学生,是活生生的人,不是听课的机器,这就要求我们在教学中多点人性化,与学生之间多点交流,加强与学生的沟通,树立服务意识,不可高高之上,使教与学发生脱节。
3.要让学生明明白白的学习,让学生明白:“糊里糊涂作10道题,不如清清楚楚作1道题”。也就是说,在上课时要让学生明白,为什么要这么去作而不那样去作,为什么这样作是对的而那样作是错的,也就是时时要让学生明白一个“理”字,处处要讲“理”,在这一方面我的体会是我自己讲“理”的时候多,而让学生去讲“理”的时候少,以后在可能的情况下要让学生来讲讲“理”。
4.要让学生不可走入题海中,必要的题目是要做的,但一定要精选题目,讲前一定要求学生先做,作后再讲,讲后再留时间让学生消化吸收。
5.克服以教代学的现象,教得再好,没有学生的学(理解、消化、吸收),也是徒劳的,我们在高三复习中应该定位为一是指导学生进行知识的归纳和总结,补漏,建立知识网络,二是应有服务意识――帮助学生克服学习中遇到的困难和障碍。
6.要努力提高教学效率,效率的高低不是以你今天讲了多少个知识点,讲了多少道题为标准的,面是以你上课前定下的教学目标是不是在计划的时间内完成为标准的,说通俗一点,就是以这节课学生能过教师指导,真正学到的知识是多少为标准的。
7.狠抓基础内容及重点内容,高考的追求就是区分度,一套成功的试题是通过区分度来实现的,并不是由难度来实现的,而中等题目才是真正实现区分度的手段,因为易题都会,分不出好差,过难的题几乎没有几个人会,基本上也不会区分出好差,这一点一定要让学生知道,只有重视了基础,才能有效地完成中档难度的题,要防止学生钻牛角,老师要及时加以引导。
8.抓中等生要想在明年的高考中有突破,眼睛不能只盯着为数不多的几个好学生身上,要在尖子生吃饱吃好的情况下,重点兼顾中等生或有弱门课的学生,要想法提高他们的物理成绩,而提高他们成绩的方法中最好的方法就是要设法提高他们的学习物理的兴趣,让他们动起来,这样才是最为有效的,另外要多关心他们,多提问他们,在教学中采用灵活的方法,如分层布置作业,根据各班的实际灵活的采用不同的教学方法等,以提高他们的学习的积极性。
我们坚信,只要我们努力,按照教学规律科学的进行复习,及时的收集和处理信息,充分的调动学生的学习积极性,一定会取得好的成绩。
很基础的方案.物理的最后一章讲了一点儿狭义相对论的原理及一些常用公式.如果你们高数或者微积分已经学完了,可以试从从麦克斯韦方程组开始试着解释论动体的电动力学论文中提到的1个至2个公式.这个题目要想做好的话,可以用心去做.要想忽悠的话,就算推导时出了点儿错,估计都不会被老师发现,因为没几个人愿意去看那些偏微分方程组.
问题不太清楚
可以的,因为动量守恒本身就比牛顿定律范围更广,不过证明难度大大超过了高中知识,必须要用到现代物理群论理论中的对称性原理。
动量守恒有空间平移不变性推出
能量守恒由时间反演不变性推出。
我上面说的是现代物理最原始的证明方法,它探索到了守恒律的本质——对称性。
不过也有不太严格的方法——用实验加定义法。这个我发在附件里。
对于现代方法如果你想深入了解,留个邮箱我发资料给你!
建议你先去问下你的导师以及你的学长学姐,其次就是看下文献,物理类的话你可以去参考下现代物理、应用物理、物理化学进展
一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=。注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。2)自由落体运动1.初速度Vo=0 2.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。(3)竖直上抛运动1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=≈10m/s2)3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。二、质点的运动(2)----曲线运动、万有引力1)平抛运动1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。2)匀速圆周运动1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。3)万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=;V2=;V3=.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为。三、力(常见的力、力的合成与分解)1)常见的力1.重力G=mg (方向竖直向下,g=≈10m/s2,作用点在重心,适用于地球表面附近)2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)5.万有引力F=Gm1m2/r2 (G=×10-11N?m2/kg2,方向在它们的连线上)6.静电力F=kQ1Q2/r2 (k=×109N?m2/C2,方向在它们的连线上)7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)注:(1)劲度系数k由弹簧自身决定;(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;(3)fm略大于μFN,一般视为fm≈μFN;(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);(6)安培力与洛仑兹力方向均用左手定则判定。2)力的合成与分解1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}5.超重:FN>G,失重:FN
物理学是研究物质运动最一般规律和物质基本结构的学科,下面就是高中物理论文范文,欢迎大家阅读!
摘要 :物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学的核心之一。
本文结合笔者自身多年的物理教学经验,浅谈在物理教学中,如何搞好中学物理规律的教学。
关键词: 物理规律教学
物理规律反映了各物理概念之间的相互制约关系,反映在一定条件下一定物理过程的必然性。
它是中学物理基础知识最重要的内容,是物理知识结构体系的枢纽.所以,物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学的核心之一。
怎样才能搞好规律教学呢?现结合本人多年的物理教学经历,浅谈以下几点看法:
一、创设发现问题、探索规律的物理环境
教师带领学生学习物理规律,首先需要引导学生在物理世界中发现问题。
因此,在教学的开始阶段,要应给学生创设一个便于发现问题的物理环境。
在中学阶段,主要是通过观察、实验发现问题,也可以从分析学生生活中熟知的典型事例中发现问题,有时也可以从对学生已有知识的分析展开中发现问题。
另一方面,创设的物理环境要有利于引导学生探索规律。
例如使学生获得探索物理规律必要的感性知识和数据;提供进一步思考问题的线索和依据;为研究问题提供必要的知识准备等等。
创设的物理环境还应有助于激发学生的学习兴趣和求知欲望.
二、带领学生探索物理规律
在学生有一定的需要和积极的准备状态下,教师要利用各种适宜的方法,如实验探索、理论推导等,向学生阐明概念和规律的形成过程,建立新旧知识的链接。
如在牛顿第二定律的教学中,让学生通过实验探索加速度与力的关系以及加速度与质量的关系,得出在质量一定的条件下加速度与外力成正比、在外力一定的条件下加速度与质量成反比的结论。
在此基础上,教师指导学生总结加速度、外力和质量的关系,归纳出牛顿第二定律。
这样学生对该规律的建立就有了一个清晰的过程,才能较深刻地理解物理规律、领悟其物理含义。
另一方面,向学生呈现物理规律内容时不但要准确,而且对一些关键字词应加以突出,给予适当的说明,以引导学生足够的注意和正确理解,并与其他类似的或易混淆的概念和规律进行比较,建立类比联系,加深对物理规律的理解。
三、要使学生深刻理解规律的物理意义
在规律的教学中,要引导学生深刻理解其物理意义,防止死记硬背。
物理规律的表达形式主要有两种:一种是文字语言,另一种是数学语言,即公式。
对物理规律的文字表述,必须在学生对有关问题进行分析、研究、并对它的本质有相当认识的基础上进行,切不可在学生毫无认识或认识不足的情况下“搬出来”,“灌”给学生,然后再逐字逐句解释和说明。
只有这样,学生才能真正理解它的含义。
例如,牛顿第一定律“一切物体在没有受到外力作用的时候,总保持匀速直线运动状态或静止状态。”在理解时,要注意弄清定律的条件是“物体没有受到外力作用”,还要理解“或”这个字的含义。
“或”不是指物体有时保持匀速直线运动状态,有时保持静止状态,而是指如果物体原来是运动的,它就保持匀速直线运动状态;如果原来是静止的,它就保持静止状态。
对于用数学语言即公式表达的物理规律,应使学生从物理意义上去理解公式中所表示的物理量之间的数量关系,而不能从纯数学的角度加以理解。
如,对电场中同一点而言,不能说场强E与电场力F成正比,与电量q成反比,因为场强E由电场和电场中该点的位置决定。
四、要使学生明确物理规律的适用条件和范围
物理规律往往都是在一定的条件下建立或推导出来的,只能在一定的范围内使用.超越这个范围,物理规律则不成立,有时甚至会得出错误结论.这一点往往易被学生忽视,他们一遇到具体问题,就乱套乱用物理规律,得出错误结论.因此,在物理规律教学中,要使学生明确物理规律的适用条件和范围,正确地运用规律来研究和解决问题。
例如动量守恒定律,它的成立条件是,所研究的系统不受外力或者所受外力的合力为零,这属基准条件。
如果系统受到外力F外或合力F合不为零,其动量是不守恒的,但可能有两种情形:其一,系统中物体相互作用的内力F内远大于F外(或F合),该系统的动量可看作是守恒的,其条件属近似条件;其二,选定直角坐标系后,将不在坐标轴上的外力各自沿x轴和y轴进行正交分解,若沿某一坐标轴(如x轴)的各个外力(含分力)的合力为零,则系统在该轴方向上的动量守恒,其条件属分动量守恒条件。
动量守恒定律是自然界普遍适用的基本定律之一,它适用于两个物体或多个物体组成的系统;它不但能解决低速运动问题,而且能解决高速运动问题;不但适用于宏观物体,而且适用于电子、质子、中子等微观粒子。
此外,无论是什么性质的相互作用,动量守恒定律都是适用的。
五、加强应用物理规律解决实际问题的训练和指导
物理规律来源于物理现象,反过来应用于实际问题,学习物理规律的目的就在于能够运用物理规律解决实际问题,同时,通过运用,还能检验学生对物理规律的掌握情况,加深对物理规律的理解。
在规律教学中,一方面要选择恰当的物理问题,有计划、有目标、由简到繁、循序渐进、反复多次地进行训练,使学生结合对实际问题的讨论,深化、活化对物理规律的理解,逐渐领会分析、处理和解决问题的思路和方法;另一方面,要引导和训练学生善于联系日常生活中的实际问题学习物理规律,经常用学过的规律科学地说明和解释有关的现象,通过训练,使学生逐步学会逻辑地说理和表达.对于运用物理规律分析和解决实际问题,要逐步训练学生运用分析、解决问题的思路和方法,使学生学会正确地运用数学解决物理问题。最后指出,由于物理规律的复杂性,必须注意规律教学的阶段性,使学生对规律的认识要有一个由浅入深,逐步深化、提高的过程。
只有这样,才能有效地指导学生掌握物理规律,培养学生的思维能力。
参考文献
1.人民教育出版社物理室。
全日制普通高级中学《物理教学大纲》2003
2.田世昆,胡卫平.物理思维论[M].南宁:广西教育出版社,.
3.南冲.中学物理教学研究[M].北京:海潮出版社,.
【摘要】 高考是关系到千家万户的大事,也是国家目前选拔人才的途径。认真学习和研究《教学大纲》和《考试说明》,按照教学规律科学的进行复习,及时的收集和处理信息,充分的调动学生的学习积极性,一定会取得好的成绩。
【关键词】 高考组织复习能力
为使高考复习能落到实处,使复习的过程更科学、复习的效率更高、有利于最大限度的提高学生的成绩,特提出以下几点建议:
1.强化基础知识的复习,加强学生对概念和规律的深入理解
在高中,对基本概念、基本规律的要求一贯是高考物理考查的主要内容和重点内容,主要考查考生在理解的基础上掌握基本概念、基本规律和基本方法,并要求深入理解概念和规律之间的内在联系。不少学生存在着这样的表现:概念,定义都知道,但一用就错,试卷上表现主要是选择题得分率低。这些都是基础较差,对物理概念和规律的理解不够有密切的关系。而近几年的各地高考试卷中的物理试题也都明确反映出重视基本概念、规律考查的特点。
对此,在复习中应该按照物理《教学大纲》和《考试说明》对学生五个方面的能力的加以严格要求,同时要让学生明白:理解能力是基础。只有理解能力提高了,其他能力才能较好的发展,而理解能力的前提是牢固的基础知识、扎实的基本技能和规范的基本方法,只有抓好基本知识、基本技能和基本方法的复习,对概念和规律的理解才能正确、深入、透彻。
2.加强学生的计算推理能力、论证表述能力、分析综合能力
高考物理试题度于推理能力的考查贯穿于各种题型中,从不同的角度、不同的层次,通过不同的题型、不同的情景设置来考查考生推理的逻辑性、严密性;对论证表述则重在考查能否准确地、简明地把推理过程表达出来,以此鉴别考生表述能力的高低。要克服学生思维推理过程不能严格合乎逻辑,对受力分析、运动过程分析不予重视,给解题带来盲目性;不会用物理语言表述物理过程或物理规律,使解题过程残缺不全;牛顿运动定律、动量、功能关系三条常用解题线索相互脱节,不能有机整合,使解题思路僵化、方法呆板、正确率低。
3.提高学生应用数学知识解决物理问题的能力
物理和数学是紧密联系的,数学为物理学的发展提供了强有力的工具,几乎所有的物理概念和物理规律,都是通过量化的方法用数学公式进行描述,应用数学处理物理问题的能力也是进入高校深造的考生应具有的能力,因此高考物理试题一直注重考查考生的应用数学处理物理问题的能力。
近年来,高考物理中的数学能力要求有明显的调整,主要表现在尽量回避繁杂的机械运算,而在考察方面,为此,我们一方面要求学生在平时学习中,能过一定数目的练习,掌握解决物理问题常用的数学规律及方法,在此基础上,引导学生逐步形成运用数学工具处理物理问题的基本思路,重点在于通过精讲精练使学生能熟练地将物理问题转化为数学问题。另外,要重视估算题的训练,复习时应注意引导学生逐渐掌握近似估算法,快速求出物理量的数量级。同时,提倡学生平时不用或少用计算器进行计算,因为在平时练习中,很多同学习惯于使用计算器,连非常简单的加减法都非用计算器不可,这样使得他们数学运算能力很差。
4.加强实验复习
实验是物理学的基础,实验能力在物理高考中一直占有相当重要的地位。物理高考力图通过在笔试的形式下考查学生的实验能力。
在教学中,一是要正确对待实验教材,实验复习时不应该机械地记忆教材中各个实验的目的、原理、器材、步骤、记录、结果等等,而应引导学生领悟教材中物理实验的设计思想、所运用的科学方法、规范的操作程序和合理的实验步骤。二是要引起学生对实验的有意注意,提供更多的动手动脑的机会,让他们主动地发现问题,解决问题。老师有意地改变实验条件、设置问题,激励学生努力寻找方法,解决问题。三是从培养学生的实验能力出发,让他们学会通过实验测量和有计划的实践活动去认识自然、发现自然规律、验证假想和猜测的方法,培养他们科学的思维方式、科学方法、实际操作技能和解决实际问题的能力。四是鼓励学生大胆创新,认识到实验教材提供的做法并不是一成不变,拘泥成规的,可以对课本中的实验做一些合理的变通,或补充一些模仿性实验,增加一些设计性实验,培养学生运用所学的知识、方法解决新问题的能力。
为使复习备考工作顺利进行,努力完成学校的工作任务,特提出以下几点措施:
1.认真钻研《高考大纲》、《教学大纲》及《课本》,充分提高“二纲一本”在高考中的作用,研究“二纲”,特别是去分析每年高考大纲之间的.细微的不同的地方,显得更加的重要,同时,也要建议学生常去翻物理课本,不可只顾按资料进行复习,却脱离了高考大纲的现象的发生。
2.高三教学应以人为本因为我们的授课对象是学生,是活生生的人,不是听课的机器,这就要求我们在教学中多点人性化,与学生之间多点交流,加强与学生的沟通,树立服务意识,不可高高之上,使教与学发生脱节。
3.要让学生明明白白的学习,让学生明白:“糊里糊涂作10道题,不如清清楚楚作1道题”。也就是说,在上课时要让学生明白,为什么要这么去作而不那样去作,为什么这样作是对的而那样作是错的,也就是时时要让学生明白一个“理”字,处处要讲“理”,在这一方面我的体会是我自己讲“理”的时候多,而让学生去讲“理”的时候少,以后在可能的情况下要让学生来讲讲“理”。
4.要让学生不可走入题海中,必要的题目是要做的,但一定要精选题目,讲前一定要求学生先做,作后再讲,讲后再留时间让学生消化吸收。
5.克服以教代学的现象,教得再好,没有学生的学(理解、消化、吸收),也是徒劳的,我们在高三复习中应该定位为一是指导学生进行知识的归纳和总结,补漏,建立知识网络,二是应有服务意识――帮助学生克服学习中遇到的困难和障碍。
6.要努力提高教学效率,效率的高低不是以你今天讲了多少个知识点,讲了多少道题为标准的,面是以你上课前定下的教学目标是不是在计划的时间内完成为标准的,说通俗一点,就是以这节课学生能过教师指导,真正学到的知识是多少为标准的。
7.狠抓基础内容及重点内容,高考的追求就是区分度,一套成功的试题是通过区分度来实现的,并不是由难度来实现的,而中等题目才是真正实现区分度的手段,因为易题都会,分不出好差,过难的题几乎没有几个人会,基本上也不会区分出好差,这一点一定要让学生知道,只有重视了基础,才能有效地完成中档难度的题,要防止学生钻牛角,老师要及时加以引导。
8.抓中等生要想在明年的高考中有突破,眼睛不能只盯着为数不多的几个好学生身上,要在尖子生吃饱吃好的情况下,重点兼顾中等生或有弱门课的学生,要想法提高他们的物理成绩,而提高他们成绩的方法中最好的方法就是要设法提高他们的学习物理的兴趣,让他们动起来,这样才是最为有效的,另外要多关心他们,多提问他们,在教学中采用灵活的方法,如分层布置作业,根据各班的实际灵活的采用不同的教学方法等,以提高他们的学习的积极性。
我们坚信,只要我们努力,按照教学规律科学的进行复习,及时的收集和处理信息,充分的调动学生的学习积极性,一定会取得好的成绩。
(1)同学您好:当您看到这篇文章的时候,您可能是高一的新同学,也可能是正在积极备考的高三同学或知识青年,身份不同,情况不同,但愿望是相同的,那就是学好高中物理。怎样学好物理知识,高中课本的绪论中有一段精彩的话,值得一读。课本的编者提出三点:(1)做好物理实验。(2)学好物理概念和规律。(3)做好练习。这是非常正确的。物理学一词源自希腊文physis,意即自然所以在欧洲古物理学一词是自然科学之总称。物理学是一门研究物质的基本结构和物质最普遍的运动形式和规律的科学,是以实验为基础的科学。整个物理学发展史告诉我们,人类的物理知识来源于实践。通过课堂上老师做的演示实验,同学们在实验室里做的分组实验,都能使我们获得感性知识,从而准确地建立物理概念,验证物理规律和加深对物理规律的理解,增强观察物理现象和分析问题的能力,了解科学实验的方法。学好物理概念和规律学好物理概念,就要深刻理解这些物理量所揭示的物理本质。这里深刻理解是指对每一个物理量应该说得出下述几点:它的物理意义是什么?所谓物理意义是指引入这个物理概念是拿来描述物质的什么性质的。例如电场强度是描述电场这种物质的力的性质的;动量是描述物体运动状态的。(2)它是怎么定义的,定义式和决定式的数学表达式是怎样的。(3)它是矢量还是标量。因为矢量和标量的运算不同,弄清物理量是矢量还是标量不单单是一个有无方向的问题。(4)它的单位是什么。(5)它与定义式和决定式中的其他物理量的关系如何。例如电场强度E与定义式中的电场力F,检验电荷的电量q无关;密度ρ与质量m,体积ν无关;导体的电阻R与导体的长度l成正比,与横截面积成反比,比例常数就是电阻率ρ等等。(6)它与相似相近的其他物理量的区别.例如温度、热量、比热、热能、内能的区别;电势、电动势、电势差、电压、电压降的异同等等。学好物理概念还包括正确理解物理关系。例如,静止、物体的平衡、力的平衡一样吗?以对平衡力与一对作用力反作用力都是等值反向的,但其不同点有哪些?(至少说出三点)。等等.物理规律除用文字表述外,常用代数式表达。学好物理规律就应了解这个规律是如何通过实验总结出来的,表达式中每一项的物理意义是什么,其中的正负号表示什么,等式的左部和右部各表示什么意思,这条规律的适用范围、适用条件又是什么。中学生中乱套公式的现象是常见的,只有了解了公式的适用条件才能正确选用公式,克服乱套公式的毛病。例如,υt=υ0+at 在中学阶段只适用于匀变速直线运动,平抛运动是匀变曲线运动不能用。再例如选用动量守恒定律时,首先要看研究系统所受的外力的合力是否等于零,这样才能决定能不能用动量守恒定律建立方程。物理概念和规律的表述有三种,一是语言文字,二是公式符号,三是图象。图象表述在物理学中占有重要地位,应克服那种只重视公式表述,轻视语言描述,忽视图象表述的倾向,在学习物理时,应当注意同时进行着三方面的学习和训练。万丈高楼平地起,打好基础是关键。只有深刻理解、掌握基本概念、基本规律后,才谈得上解决问题的能力。听课、读书、观摩例题是围绕一个“懂”字,只有自己练才能解决一个“会”字。那么,怎样做物理习题就有助于我们学好知识、增长才干呢?做物理习题的正确思维是什么呢?笔者认为可归纳为八个字:现象、概念、规律、方法。具体来说是面对一个物理习题,首先要认真审题,审题是成功之本,弄清楚这个题目描绘的是一个什么样的物理现象,并弄清所述现象的变化过程(即物理过程),用示意图表达出来。中学生不爱用图表表述问题,这是应该自觉纠正的。力学问题有受力图、光学问题有光路图、电学问题有电路图、热学问题有过程图。能正确画出物理习题的示意图,问题就解决了三分之一。第二,思考这种物理物理现象应该用什么物理概念去描述,这些概念哪些已知,哪些未知,哪个是待求的答案。第三,思考这些概念之间的有机联系是什么,这就是正确选择物理规律了,此时应再考虑所选规律的适用范围和适用条件,这样就可以确认有几个规律]可用了。第四,由于解一个物理题往往有好几条规律可用,所以要进一步考虑用哪一条规律最简单,并考虑用什么数学方法最简捷。解物理题采用数学工具是“不择手段”的,哪个简捷用哪个,往往几何法比代数法简便。但应明确哪种方法也不是万能的,综合应用才是捷径。经验告诉我们,正确选用了物理规律上不能解决问题,困难往往是出在数学上。通过现象、概念、规律、方法这种思路解出题目的所求答案后,还应估计一下答案的合理性。综上所述要学好物理知识,离不开重视和做好实验、学好概念和规律,做好习题这三条。世界上没有天上掉馅饼的地方,也没有报治百病的药。学习是一种艰苦诚实的劳动,一分耕耘,一分收获。(2)在我们这个充满着绚丽色彩的世界中,声音起到着重要的作用。没有声音的世界将会怎样。让我们来幻想一下那将会是一个怎样的世界呢?是有趣的?阴冷的?安静的?还是……人类是世界的主宰者,首先声音会对人类怎样呢?那就让我们先来谈谈声音对人类的影响吧!如果没有声音,人类会怎样呢?如果没有声音人们说话发不出声音,就像是那些失声的人打着哑语来交谈。人又为什么要耳朵呢?又没有声音能听,难道是用来装饰的吗?现在的那些优美的音乐又怎么会有呢?如果没有声音整个世界都死寂在死一般宁静的宇宙中有何意义呢?如果没有声音,学生们上学如何读书、识字呢?又怎么会有音乐、英语、信息……课程呢?又将如何表达想要表达的意思,难道靠手语吗?我实在无法想象那时的教学会是怎样的。中国的祖先盘古制造出人类就是他觉得世界太安静了,太缺少生气了,但现在如果没有声音,没有那欢声笑语。那为什么又要有人类呢,有了人类又有何意义呢。我们不是贝多芬,也没有贝多芬的本领,即使听不见,也能够用牙咬住木棍,根据振动颅骨感到声音,但如果没有声音,连声波也没有,即使是贝多芬也不能感受到声音,更别说弹钢琴了。假如没有声音又怎么会有现在的电话呢,如果亲人在远方,他们又将如何交谈呢?难道相隔那么远也能够打手语吗?如果……如果……太多的如果了,我认为这些如果是不可以的,总而言之人类需要声音。很难想象如果没有声音,人类将怎样生存呢!当然这不只有人类;动物也同样需要声音,如果没有声音连动物也无法生存;举个例子来说吧!蝙蝠可以说是特殊的动物了,它虽然长有一双眼睛,按说听不见总可以看见吧,但是你们可知道被喻为动物界中的“盲人”。它的眼睛是名不副实的,因为它靠得是耳朵。用耳朵听超声波来辨别位置和躲避障碍物的。如果没有声音,蝙蝠听不见声音,捕不到食物,也不能够飞翔,那它还有生存的机会吗,当然不止蝙蝠一种动物,其他动物同样离不开声音。这里举出这个例子强调“地球离不开声音”。没有声音,人们仿佛生活在真空中,安安静静的,一丝声也没有。没有风声雨声读书声,更加鸟声歌声欢笑声。所以现在有人类生存的这个宇宙中不能没有色彩更加不能没有声音。对不起,2个可以吗?不知道我写的对不对啊!同学
旋转之后,炮弹前端和空气之间像螺丝一样的斜面。减少正面阻力增加侧面压力,正面阻力小射程远,侧面压力大方向就不易改变所以可以增加准确度。
有关角动量守恒的实际现象:
1、人走路现象
选取过人的质心与地面垂直的直线作为参考轴。右脚踩在地上而左脚往前迈时,左脚一个相对于轴向前的速度,而右脚有一个相对轴向后的速度。假设我们的手不甩的话,他们对身体总角动量就没有贡献,于是身体有了一个绕参考轴顺时针旋转的角动量。
而当左脚踩在地上而右脚向前迈进时,相应的,人的身体具有逆时针旋转地角动量。注意,身体的角动量刚才还是顺时针,现在就变成了逆时针。根据角动量定理,角动量只要发生改变,就必须有力矩作用在系统上。因此,脚底必须给身体一个让其逆时针旋转的力矩,这是走路时身体受到外力矩的唯一方式。
2、飞机尾翼
把整个直升飞机视为一个整体,并从整体对转动轴角动量守恒来解释。在飞机发动机未发动之前,直升飞机静止在地面上,整个物体系对转轴的角动量为零。当发动机发动,角动量增加,这时外力距由直升飞机的轮子与地面的摩擦力提供,满足角动量守恒定律。
3、陀螺仪
外环可绕垂直轴自由转动,内环可绕水平轴自由转动,回转仪安装在内环中,其转轴与内环转轴相垂直,三轴交于一点,并与陀螺仪的质心重合。
它可使回转仪的转轴在空间取任意方向,由于三转轴都通过质心,所以回转仪不受重力矩作用,因此回转仪高速旋转时,角动量保持不变,不论支架转到什么方位,回转仪的转轴始终保持不变。常平架陀螺仪具有转轴方向不变的特点,称为指示型陀螺,可以作为指示器。
扩展资料:
角动量守恒对人类有非常重要的意义,从日常生活到科技应用,角动量对人类文明做出了不可磨灭的贡献。在走路这样对我们来说再熟悉不过的举动中,竟然暗含着如此神奇的物理规律。
角动量守恒定律是指系统所受合外力矩为零时系统角动量保持不变;它描述的主要对象是物体的旋转运动,因此,它实质上对应着空间旋转的不变性。
例如,在开普勒运动中,当考虑到太阳系中行星受到太阳万有引力时,由于万有引力对太阳这个参考点力矩为零,所以它们以太阳为参考点的角动量守恒,这也说明了行星绕太阳公转单位时间内与太阳连线扫过的面积大小总是恒定值的原因。另外,角动量守恒也是陀螺效应产生的原因。
是指在物理学中,物体到原点的位移和动量的一种物理量。之所以角动量守恒是因为质量守恒的原因,所以才会导致出现维持恒定的情况。角动量守恒的意思就是质点对固定点的角动量。
这和空气阻力有关.增加准确度.但未必对射程有好处,滑膛炮也很有用的.