碎碎瓶安
在经济学的论文中引用参考文献,具有重要的标志功能、评价功能、保护功能和链接功能,可以反映经济学论文的研究基础和科学依据,可供进一步检索有关资料,共享资源。下面我将为你推荐经济学论文参考文献的内容,希望能够帮到你!
[1]刘思华.生态马克思主义经济学原理[M].北京:人民出版社.2006
[2]叶耀丹.马克思主义生态自然观对中国生态文明建设的启示[D].成都:成都理工大学.2012
[3]陆畅.我国生态文明建设中的政府职能与责任研究[D].长春:东北师范大学.2012
[4]俞可平.科学发展观与生态文明[M].上海:华东师范大学出版社.2007:18
[5]朴光诛等.环境法与环境执法[M].北京:中国环境科学出版社.2004:23
[6]罗能生.非正式制度与中国经济改革和发展[M].北京:中国财政经济出版社.2002: 19
[7]党国英.制度、环境与人类文明一关于环境文明的观察与思考[N].新京报.2005-2-13
[8]张婷婷.生态文明建设的科技需求及政策研究[D].锦州:渤海大学.2012
[9]秦书生.生态文明视野中的绿色技术[J].科技与经济.2010(3): 82-85
[10]陈池波.论生态经济的持续协调发展[J].长江大学学报(社会科学版)2004(1):97-102
[11]张首先.社会主义与生态文明[J].理论与现代化.2010(1): 23-26
[12]黄光宇.陈勇.生态城市理论与规划设计 方法 [M].北京:科学出版社.2002
[13]张首先.生态文明研究[D].成都:西南交通大学.2010
[14]马仁忠.地理环境对种族、民族特征的影响[J].宿州 教育 学院学报.2002(4):
[15]冒佩华.王宝珠.市场制度与生态逻辑[J].教学与研究.2014(8):37-43.
[1]陈凌.应丽芬.代际传承:家族企业继任管理和创新〔J〕.管理世界.2003 ( 6): 89-9
[2]伯纳德‘萨拉尼着.陈新平、王瑞泽、陈宝明、周宗华译.税收经济学〔M〕.北京:中国人民大学出版社.2009:143-144.
[3]彼德·德鲁克.大变革时代的管理〔M〕.上海:上海译文出版社.1999版.
[4]陈凌.信息特征、交易成本和家族式组织〔J〕.经济研究.1998(7):27-33.
[5]. Toward an Economic Theory of Income Distribution〔 C〕.Cambridge, MA: MITPress, 1974,123:137-139.
[6]. The Wealth of Nations ( 1776 )〔M〕.Chicago: University of Chicago Press,1976(reprint): 391.
[7]沈建法.城市化与人口管理[M].北京:科学出版社.1999
[8]张志强.徐中民.程国栋.生态足迹的概念及计算模型[J].生态经济.2000(10) : 8-10
[9]张恒义.刘卫东.林育欣.等.基于改进生态足迹模型的浙江省域生态足迹分析[J].生态学报.2009(5):2738-2748
[10]贺成龙.吴建华.刘文莉.改进投入产出法在生态足迹中的应用[J].资源科学.2008 (12) : 1933-1939,2008 (2) : 261-266
[11]郭军华.幸学俊.中国城市化与生态足迹的动态计量分析[J].华东交通大学学报.2009 (5) : 131-134.
[1] 刘毅. 现代性语境下的正当性与合法性:一个思想史的考察[D]. 中国政法大学 2007
[2] 刘毅. 树突状细胞在兔动脉粥样硬化模型中作用的研究[D]. 南方医科大学 2009
[3] 刘毅. 硅基微环谐振腔光信号处理与布里渊光纤激光器的理论和实验研究[D]. 天津大学 2014
[4] 刘毅. 未来移动通信系统中的协作传输技术研究[D]. 北京邮电大学 2010
[5] 刘毅. 基于图割的交互式图像分割算法研究[D]. 南京理工大学 2013
[6] 刘毅. 基于iTRAQ技术对HBV相关性肝癌血浆差异蛋白的鉴定及功能学研究[D]. 重庆医科大学 2014
[7] 刘毅. 整体性治理视角下的县级政府社会管理体制创新研究[D]. 华中师范大学 2014
[8] 刘毅. 几类切换模糊系统的镇定控制设计[D]. 东北大学 2009
[9] 刘毅. 区域循环经济发展模式评价及其路径演进研究[D]. 天津大学 2012
[10] 刘毅. β-抑制蛋白2对哮喘小鼠CD4~+T细胞表达和产生IL-17的影响及其机制研究[D]. 中南大学 2011
[11] 刘毅. SIRT3在原发性肝癌中的表达及其抑瘤作用的研究[D]. 中南大学 2012
[12] 刘毅. 南中国海与东南极中晚全新世气候环境变化记录与研究方法探索[D]. 中国科学技术大学 2012
[13] 刘毅. 晚期糖基化终产物对心肌微血管内皮细胞及糖尿病心肌缺血再灌注损伤的影响及机制[D]. 第四军医大学 2012
[14] 刘毅. 华喦花鸟画研究[D]. 南京艺术学院 2012
[15] 刘毅. 三甲基芹菜素阻断多种心脏钾通道与增加迟钠电流的作用研究[D]. 华中科技大学 2012
[16] 刘毅. 面向人群的并行多目标疏散模型研究[D]. 武汉理工大学 2012
[17] 刘毅. 采用外周血进行肿瘤分子诊断的转化医学研究[D]. 中国人民解放军军事医学科学院 2012
猜你喜欢:
1. 会计毕业论文参考文献
2. 人力资源会计论文参考文献
3. 国际贸易论文
4. 经济学论文参考文献
5. 有关经济学论文参考文献
妖精1208
原文链接: 一、写在前面: 网络架构的设计主要是基于 CNN 结构延伸出来的。主要的改进方式有两点:新神经架构的设计(不同深度,宽度,连接性或者拓扑结构)或设计新的组件(或者层)。下面我们逐个去分析了解。 本文涉及到的论文范围如下图: 二、网络架构的改进 FCN 传统的 CNN 分割,为了对一个像素分类,使用该像素周围的一个图像块作为 CNN 的输入用于训练和预测。缺点很多:比如存储开销大,计算效率低,像素块大小也限制了感知域的大小。基于存在的这些问题,由 Long 等人在 2015 年提出的 FCN 结构,第一个全卷积神经网络的语义分割模型。我们要了解到的是,FCN 是基于 VGG 和 AlexNet 网络上进行预训练,然后将最后两层全连接层改为的卷积层。 FCN 具体处理过程是怎么样的?从 pool1 开始,每个 pool 后图像都会变为上个池化后图像的 1/2。Pool1 为原图的 1/2,以此类推,pool5 后为原图的 1/2^5,conv6,和 conv7 之后的图像保持不变,进行 stride=32 的反卷积,得到 FCN-32s。也就是直接对 pool5 进行 32 倍上采样获得 32 upsampled feature,再对 32 upsampled feature 每个点做 softmax prediction,就可以获得 32*upsampled prediction(分割图)。 FCN 这三个创新点有哪些? 全卷积 :用于解决逐像素的预测问题。通过将基础网络最后面几个全连接层换成卷积层,可实现任意大小的图像输入,并且输入图像大小与输入相对应。 反卷积 :端到端的像素级语义分割需要输出大小和输入图像大小一致。但是传统的 conv+pooling 结构会缩小图片尺寸。基于此作者引入反卷积(deconvolution)操作,对缩小后的特征进行上采样,恢复原始图像大小。 跳跃结构 :语义分割包括语义识别和目标定位。卷积网络的高层特征图可以有效的反应语义信息,而低层特征图可以有效反应目标的位置信息。语义分割任务同时进行语义识别和目标定位。作者提出的跨层连接结构(skip architecture),将低层的目标位置信息和高层语义信息进行融合,以此来提升语义分割性能。在此基础上进行 2 倍采样,2 倍 upsample 之后与 pool4 的像素点相加,进行 stride=16 的 upsample,为此 FCN-16s,重复上面类似的步骤,得到 FCN-8s。 了解到以上信息,应该对 FCN 有个整体的认识了。还有一些细节部分,比如 FCN 采用的简单的 softmax 分类损失函数,采用双线性差值 + 反卷积进行上采样,在微调的时候没有采用类别平衡策略。分割结果来看,FCN-8s>FCN-16s>FCN-32s。也就是说使用多层特征融合有利于提高分割准确性。 SegNet SegNet 主要动机是在场景理解 。它在设计的时候考虑的是预测期间保证内存和计算时间上的效率。其中,SegNet 和 FCN 有很多相似之处,编码网络使用 VGG16 的前 13 层卷积;移除全连接;解码器使用从相应的编码器的 max-pooling indices 进行 upsampling。 对比 SegNet 和 FCN 实现 Decoder 的过程。FCN 是利用双线性插值初始化的反卷积进行上采样。而 SegNet 则是在每次 pooling 时,都存下最大值的位置,在 upsample 时将 input 值直接赋给相应的位置,其他位置的值置零。 U-Net 接下来,我们需要了解的是 U-Net。U-net 网络架构,由收缩路径(contracting path)和扩展路径(expanding path)组成。每一层使用两个 3 乘 3 的 conv kernel,每次卷积都进行 Relu 和 stride=2 的 maxpooling 进行下采样。四次操作后输出结果称之为 feature map。 2 乘 2 的反卷积,上采样,通道数减半,并将左边对称位置的 feature map copy 到右边进行 concate 操作,来融合下采样的浅层位置信息和高层语义信息。合并后在进行 3*3 的卷积操作。最后 output 之前,通道数表示分类的类别产生 N 类分割结果,最后选择出概率值最大的分割结果,作为最后的分割图。 U-Net 中常常会问为什么适用于医学图像这个问题.。首先分析医学影像数据特点:图像语义较为简单,结构较为固定:都是一个固定的器官的成像。而且器官本身结构固定,语义信息没有特别丰富,所以高级语义信息和低级特征都非常重要。(U-net 的 skip connection 可以解决这个问题);数据量少:医学影像的数据较难获取,为了防止过拟合,设计的模型不宜过大;多模态:医学影像是具有多种模态的;可解释性:医生需要进一步指导病灶在哪一层,哪一层的哪个位置,分割结果能求体积么?而且 U-Net 在自然图像分割也取得了不错的效果。 需要注意的一点:Unet 融合浅层信息是 maxpooling 之前还是之后的结果?是 maxpooling 之前的结果。因为 Maxpooling 之后会丢失准确的位置信息。 V-Net V-Net 也就是 3D 的 U-net 的一种版本,3D 卷积,引入残差模块和 U-Net 的框架。整个网络分为压缩路径和非压缩路径,也就是缩小和扩大 feature maps,每个 stage 将特征缩小一半,也就是 128-128-64-32-16-8,通道上为 1-16-32-64-128-256。每个 stage 加入残差学习以加速收敛。 图中的圆圈加交叉代表卷积核为 5 乘 5 乘 5,stride 为 1 的卷积,可知 padding 为 2 乘 2 乘 2 就可以保持特征大小不变。每个 stage 的末尾使用卷积核为 2 乘 2 乘 2,stride 为 2 的卷积,特征大小减小一半(把 2x2 max-pooling 替换成了 2x2 conv.)。整个网络都是使用 keiming 等人提出的 PReLU 非线性单元。网络末尾加一个 1 乘 1 乘 1 的卷积,处理成与输入一样大小的数据,然后接一个 softmax。 而且 V-Net 采用 Dice coefficient 损失函数,如下: Pi 为预测的前景,Gi 为标记的前景,使用这个函数能有效避免类别不平衡的问题。 Dense-UNet Dense U-net(原名:one-hundred layers Tiramisu Network)该架构是由密集连接块(dense block)构建的。该架构由向下过度的两个下采样路径和向上过度的两个上采样路径组成。且同样包含两个水平跳跃连接,下采样 Dense 模块的输出与同水平的上采样 Dense 模块输入的相应特征图拼接在一起。上采样路径和下采样路径的连接模式并不完全相同:下采样路径中,每个密集块外有一条跳跃性连接,从而导致 feature map 数量线性增长,上采样中没有此操作。 主要创新点是融合了 Dense-Net 和 U-Net 网络。 DeepLab 系列网络 DeepLabV1:首次把空洞卷积(dilated convolution) 引入图形分割领域, 融合卷积神经网络和概率图模型:CNN + CRF,提高了分割定位精度。 DeepLabV2:ASPP (扩张空间金字塔池化):CNN+CRF。 DeepLabV3:改进 ASPP,多了 1 乘 1 卷积和全局平均池化(global avg pool);对比了级联和并联空洞卷积的效果。 DeepLabV3+:加入编解码架构思想,添加一个解码器模块来扩展 DeepLabv3;将深度可分离卷积应用于 ASPP 和解码器模块;将改进的 Xception 作为 Backbone。 PSPNet PSPNet 全名是 Pyramid Scene Parsing Network(金字塔场景解析网络)。提出了金字塔池化模块(pyramid pooling module)能够聚合不同区域的上下文信息,从而提高获取全局信息的能力。 输入图像后,使用预训练的带空洞卷积 ResNet 提取特征图。最终的特征映射大小是输入图像的 1/8;在特征图上,我们使用 C 中的金字塔池化模块收集上下文信息。使用 4 层金字塔结构,池化内核覆盖了图像的全部、一半和小部分。他们被融合为全局先验信息;在 c 的最后部分将之前的金字塔特征映射与原始特征映射 concate 起来;在进行卷积,生成 d 中的最终预测图。 总结 基于深度学习的图像语义分割模型大多遵循编码器-解码器体系结构,如 U-Net。近几年的研究成果表明,膨胀卷积和特征金字塔池可以改善 U-Net 风格的网络性能。 参考文献: Deep Semantic Segmentation of Natural and Medical Images: A Review
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读! 图像分割技术研究 摘要:图像分割是图像处理与计
论文题目:(下附署名)要求准确,简练,醒目,新颖.2,目录目录是论文中主要段落的简表.(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整.字数
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读! 图像识别技术研究综述 摘要:随着图像处理技术的迅速发展,图像
我的也是这个题目 还没开始做呢 主要是对算法的介绍与比较,然后用其中某两种算法进行编程用软件处理出结果 在对结果进行分析 大概流程就是这样
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读! 图像分割技术研究 摘要:图像分割是图像处理与计