爱宇冰冰
通过遥感变化信息检测方法对两时相遥感影像进行处理分析后,得到 “变化信息”影像,同时为了便于后续震害信息的识别,需要把这些变化信息从复杂的环境背景中提取出来,得到一个仅包含变化信息的二值影像,这里就需要用到图像分割 ( ImageSegmentation ) 技术。图 像 分 割 包括 手 动分 割 和 自动分割两种,手动分割是指操作者利用相关的经验进行小图斑的合并、提取和取舍,但是对于大区域遥感影像来说,手工操作工作量大、效率低、速度慢、周期长、容易漏掉小图斑,并且分割图斑的边界容易受到操作者的主观控制,对精度的影响也较大,所以本研究中的图像分割一般指的是自动分割。
退化废弃地遥感信息提取研究
从 20 世纪 70 年代起,图像分割方法一直受到各国学者的关注,至今已经提出了很多种分割方法,FuK. S. ( 1981) 将分割方法分成阈值分割、边缘分割和区域分割,实际上区域分割包含了阈值分割。蔡殉、朱波 ( 2002) 则将图像分割方法分成更多的类别,包括阈值分割、彩色分割、基于模糊集法、深度分割、像素分割、区域增长法,其中彩色分割、深度分割和像素分割都属于阈值分割。
由于现今遥感变化信息检测还处于像元级别 ( 钟家强,2005) ,通过不同检测方法,对灰度、彩色影像进行处理变换,使得变化信息的灰度 ( 像素值) 和色彩信息得到加强,通常表现出灰白色 ( 图 4 - 8、图 4 - 9) 和亮绿色 ( 图 4 - 11) ,与周围地物的色标不协调,可以通过确定相关的变化阈值把变化区域分割出来。但是由于变化信息受到太阳辐射、大气干扰、传感器参数、空间分辨率、光谱分辨率以及季节差异等因素影响,变化图斑的灰度有时在一定的范围内波动,增加了变化信息精确分割的难度,这使得变化阈值的确定显得尤为重要。
( 一) 变化影像特征分析
通过多时相遥感变化信息检测方法得到的灰度或彩色影像通常具有以下特征: ① 影像中光谱特征复杂,包含的地物类型众多,但是变化信息和背景环境的光谱性质不一致。② 灰度影像的变换信息图斑一般分布在灰度轴的两端 ( 就是较亮的区域) ,不过有时也可能位于暗端,极少数情况下也可能位于两者之间,这要根据具体的遥感数据和采用何种检测方法来定; 彩色影像变化信息图斑一般为亮绿色,是否能够和周围地物类型明显区分要根据实际情况而定。③ 变化信息图斑内部的灰度值比较均匀,但是会在一定范围内波动,所以图像分割时很容易丢失细小的图斑。④ 变化信息图斑之间灰度特征比较相似 ( 一致) ,但是纹理特征的差别通常较明显,因为变化信息的图斑可能属于不同的地物类型,所以通常不能用纹理信息来分割变化信息图斑。⑤ 由于非人为控制的因素,影像中不可避免地存在一些噪声信息,这些噪声信息一般表现在与变化信息图斑接近的小图斑( 图 4 - 9 表现得特别明显) ,所以分割的时候要区分哪些是变化信息图斑,哪些是噪声图斑。⑥ 对于不同的环境和区域,变化信息图斑是服从随机分布的,有的地方稀疏,有的地方密集。
( 二) 单阈值区域分割法
单阈值区域分割是一种简单有效的图像分割方法,其用一个阈值将变化图像的灰度级分为两个部分: 变化与未变化。其最大特点是计算简单,在重视运算效率的应用场合 ( 例如用于硬件实现) 得到了广泛应用 ( 冯德俊,2004) 。一般是利用图像的灰度直方图来确定分割阈值。在计算分割阈值时,常在去除噪声的基础上将灰度直方图包络成一条曲线,如果图像上有多个特征区域,其直方图就会出现多个峰值,每个峰值对应一个特征区域,而谷底值点就为分割阈值,用以划分不同的特征区域。
复杂图像的目标和背景的灰度值时常有部分交错,为了在分割时使这种错误分割的概率最小,需要寻找出最优的分割阈值,所以单阈值区域分割法也叫最优阈值法,意指能够使分割误差最小。图像的灰度直方图可以看成是像元灰度值的概率分布密度函数,假设一幅图像仅含有目标和背景两个主要的灰度值区域,那么其直方图就表示对应目标和背景两个单峰值的概率分布密度函数之和,如果已知密度函数的形式,就可以计算出使误差最小的最优阈值。其计算原理如下:
假设一幅含有高斯噪声的图像,其背景和目标的直方图(概率密度函数)分别为pb(z)和po(z),那么整个图像的混合概率密度p(z)为(章毓晋,2001):
退化废弃地遥感信息提取研究
式中:σb和σo分别为背景和目标均值的均方差;μb和μo分别为背景和目标的平均灰度值;pb和po分别为背景和目标区域灰度的先验概率,二者之和为1。如果μb<μo,需要确定阈值T,将小于阈值的分割作为背景,大于阈值的分割作为目标,假设将目标像元错误地划分为背景以及把背景错误地划分为目标的概率分别为Eb(T)和Eo(T),则总的误差为两者之和E(T)。为了使该误差最小,将总误差对T求导数,并令导数为零,得到
退化废弃地遥感信息提取研究
将该式代入式(4-3),可得二项式
退化废弃地遥感信息提取研究
求解该二项式得到最优阈值
退化废弃地遥感信息提取研究
最优阈值T的选取原理如图4-12所示,其原理可以概括为:将经过平滑去噪后的直方图看成一条曲线h(x),最优阈值T必须满足以下两个条件:
退化废弃地遥感信息提取研究
图4-12 最优阈值选取原理
设原始图像 f( x,y) 的灰度值范围为 G =[0,L -1],用最优单阈值法把图像分成两类,最优分割阈值为 T ( 0 < T < L -1) ,分割后生成的二值影像为 g( x,y) :
退化废弃地遥感信息提取研究
本研究在 ERDAS 软件下利用空间建模语言 ( SML) 实现了单阈值 ( 最优阈值) 法,分别分析了图 4 -8、图 4 -9 和图 4 -11 变化影像的直方图分布情况 ( 图 4 -13) ,并进行了最优阈值区域分割,把得到的三幅二值变化信息影像取合集,即把三幅影像相加,保留所有大于 1 的像素点,最后得到变化区域二值影像,如图 4 -14 所示。
图 4 -13 三幅变化影像的直方图曲线
图 4 -14 单阈值法提取的变化信息二值影像( 白色区域为发生变化的区域)
图 4 -15 双阈值模糊识别法计算流程
(三)双阈值模糊识别分割法
由于单阈值区域分割法只有一个全局阈值参与影像分割,然而影像受到大气、噪声、光照以及背景灰度变化的共同影响,导致了变化信息的灰度值总是在一定范围内波动,常常出现变化信息和噪声以及其他地物类别交错的现象。在这种情况下,单阈值区域分割难以满足精度的要求,如何区分出其中的变化信息?本研究提出了双阈值模糊识别分割法,其流程如图4-15所示。
利用变化图像的灰度直方图计算得到两个阈值T1和T2,并且T1<T2,然后利用双阈值法对变化图像进行分割(DaneKottkeetal.,1989、1998),将图像f(x,y)分割为三个类别:背景、不确定类、变化信息:
退化废弃地遥感信息提取研究
对其中不确定的像元保留其灰度值不变,利用模糊识别算子构建目标函数,分别计算出该像元属于两种不同类别(背景和变化信息)的模糊隶属度,通过比较两种隶属度的大小判断其归属(把它归类到隶属度大的那一类当中),划分到背景与变化信息当中,直到完成所有不确定像元的划分,即完成了整个分割过程。
1.双阈值T1和T2的计算
核心阈值T1的计算按照公式4-5的单阈值(最优阈值法)区域分割法得到。核心阈值T2则是利用灰度直方图中大于T1阈值的像元灰度求平均值得到。
设影像的灰度值在0到255之间(8维图像),利用离散积分的原理来计算灰度的均值。如果利用单阈值法计算出来的最优阈值为T1,那么核心阈值T2的计算公式如下:
退化废弃地遥感信息提取研究
式中:ni表示变化图像中灰度为i的像元出现的个数。
2.模糊识别算法
模糊识别算法的基本思想如下(李希灿等,2003、2008):
首先将样本集规格化,就是把样本集的特征值规格化到0到1之间,设样本特征值y规格化为x,样本集n个样本划分为C个类别,则模糊识别矩阵为
退化废弃地遥感信息提取研究
式中:Uhj为样本j归属于第h类的相对隶属度,h=1,2,…,C,且应当满足以下条件:
退化废弃地遥感信息提取研究
设C个类别的特征值为标准指数或模糊聚类中心指标,则C个类别的中心指标向量为:
退化废弃地遥感信息提取研究
式中:Sh为第h类的中心指标,0≤Sh≤1且h=1,2,…,c,为了求解最优模糊识别矩阵U和模糊最优中心指标S,建立目标函数(李希灿,1998):
退化废弃地遥感信息提取研究
式4-14的意义是:样本集对于全体类别的加权广义海明距离平方和为最小。显然,在不分类别(h=1,Uhj=1)的情况下,该公式变为通常的最小二乘最优准则。在式4-14的目标函数下,计算出最优模糊划分的隶属度和中心指标向量:
退化废弃地遥感信息提取研究
式中:u*hj为样本j隶属于h类的隶属度。
3.分割归类
通过构造的目标函数(隶属度函数),分别计算出每个像素点属于“目标”(变化信息)和“背景”(非变化信息)的隶属度,并把它分入到隶属度大的那一类当中,从而完成图像分割的过程。
图4-16 双阈值模糊识别分割法二值影像
(白色区域为变化信息)
通过在ERDAS下利用空间建模语言(SML)实现该分割算法,分别将图4-8、图4-9和图4-11变化图像作为输入对象,进行双阈值模糊识别分割,得到的二值变化图像取合集最终结果如图4-16所示。从图4-16中可以看出,双阈值模糊识别分割法能够在一定程度上消除单阈值区域分割法中混杂在变化信息中的离散噪声和个别地物类型,使变化信息更加准确、集中,从而提高了分割的精度。实践证明,双阈值模糊识别分割法有着坚实的理论基础,并且在实际变化信息的分割中能够取得很好的效果,是一种可行、可靠的图像分割自动算法。
cocoabread
我能帮你写的。要有全局观念,从整体出发去检查每一部分在论文中所占的地位和作用。看看各部分的比例分配是否恰当,篇幅的长短是否合适,每一部分能否为中心论点服务。比如有一篇论文论述企业深化改革与稳定是辩证统一的,作者以浙江××市某企业为例,说只要干部在改革中以身作则,与职工同甘共苦,可以取得多数职工的理解。从全局观念分折,我们就可以发现这里只讲了企业如何改革才能稳定,没有论述通过深化改革,转换企业经营机制,提高了企业经济效益,职工收入增加,最终达到社会稳定。(二)从中心论点出发,决定材料的取舍,把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的。有所失,才能有所得。一块毛料寸寸宝贵,舍不得剪裁去,也就缝制不成合身的衣服。为了成衣,必须剪裁去不需要的部分。所以,我们必须时刻牢记材料只是为形成自己论文的论点服务的,离开了这一点,无论是多少好的材料都必须舍得抛弃。
浩予妈妈
图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读! 图像分割技术研究 摘要:图像分割是图像处理与计
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读! 图像识别技术研究综述 摘要:随着图像处理技术的迅速发展,图像
我的也是这个题目 还没开始做呢 主要是对算法的介绍与比较,然后用其中某两种算法进行编程用软件处理出结果 在对结果进行分析 大概流程就是这样
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读! 图像分割技术研究 摘要:图像分割是图像处理与计
(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专