• 回答数

    2

  • 浏览数

    240

yuqian1004
首页 > 学术期刊 > 柯西余项及其应用毕业论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

guodong930

已采纳

柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)∵a、b、c均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。函数的定义域为[5,9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{[√(x-5)]^2+[√(9-x)]^2}=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=6.44时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。

201 评论

夏侯将军YY

1、佩亚诺(Peano)余项:

这里只需要n阶导数存在。

2、施勒米尔希-罗什(Schlomilch-Roche)余项:

其中θ∈(0,1),p为任意正整数。(注意到p=n+1与p=1分别对应拉格朗日余项与柯西余项)。

3、拉格朗日(Lagrange)余项:

其中θ∈(0,1)。

4、柯西(Cauchy)余项:

其中θ∈(0,1)。

5、积分余项:

其中以上诸多余项事实上很多是等价的。

扩展资料:

常用的公式:

函数的麦克劳林展开指上面泰勒公式中x0取0的情况,即是泰勒公式的特殊形式,若f(x)在x=0处n阶连续可导,则下式成立:

其中表示f(x)的n阶导数。

其中δ在0与x之间时,公式称为拉格朗日型余项的n阶麦克劳林公式。

且n阶导数存在时,公式称为带佩亚诺型的n阶麦克劳林公式。

198 评论

相关问答

  • 矩阵的秩及其应用毕业论文

    还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!

    倩倩19860816 3人参与回答 2023-12-11
  • 线性规划及其应用毕业论文

    新时期信息集成的企业信息管理[摘要] 企业决策所面临的信息孤岛问题已成为现代信息管理的瓶颈,从而引出信息集成技术理念。但单从技术角度来进行信息集成,并不能解决问

    吃货如影随形 3人参与回答 2023-12-07
  • 矩阵的迹及其应用毕业论文

    我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

    木木小YY 5人参与回答 2023-12-06
  • 矩阵的分解及其应用毕业论文

    --------------------------------------------------------------------------------

    MIssinGLess 3人参与回答 2023-12-06
  • 抽屉原理及其应用数学毕业论文

    数学源于生活,又广泛用于生活。在实际生活中运用所学数学知识,处理实际问题是中学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获

    喵咪天才 5人参与回答 2023-12-08