高兴儿88
要看出与内积的联系,考虑在n维实数内积空间中的关于正交基写出的向量v。v的长度的平方是vv。如果矩阵形式为Qv的线性变换保持了向量长度,则所以有限维线性等距同构,比如旋转、反射和它们的组合,都产生正交矩阵。反过来也成立: 正交矩阵蕴涵了正交变换。但是,线性代数包括了在既不是有限维的也不是同样维度的空间之间的正交变换,它们没有等价的正交矩阵。有多种原由使正交矩阵对理论和实践是重要的。n×n正交矩阵形成了一个群,即指示为O(n) 的正交群,它和它的子群广泛的用在数学和物理科学中。例如,分子的点群是O(3) 的子群。因为浮点版本的正交矩阵有有利的性质,它们是字数值线性代数中很多算法比如QR分解的关键,通过适当的规范化,离散余弦变换(用于MP3压缩)可用正交矩阵表示。
在线性代数中,正交变换是线性变换的一种,它从实内积空间V映射到V自身,且保证变换前后内积不变。 原因: 因为向量的模长与夹角都是用内积定义的,所以正交变换前后一
不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了
分块矩阵,求解!授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵分块法吧!如果您对——矩阵分块法
这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。
逆矩阵的三种方法及例题如下: 一、逆矩阵的三种方法如下: 1、待定系数法。 2、伴随矩阵求逆矩阵。 伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得