• 回答数

    3

  • 浏览数

    263

终极尐壊疍
首页 > 学术期刊 > 数形结合思想论文常用的参考文献

3个回答 默认排序
  • 默认排序
  • 按时间排序

玛雅家具

已采纳

结合教学实际 撰写教学论文 提高自身素质撰写中学数学教育教学论文是教师探讨中学数学教学问题,总结教学教研实践经验、获得理论支撑的有效途径,是教师提高自身素质、促进专业发展的必由之路.在平时的教育教学研究活动中,如果你对某一类或某一个问题所采用的教育教学方法比原有的教育教学方法有新的改进,甚至是对某一段教材、内容提出新的处理意见,这种意见有改革创新之意,把这些“突破”、“创新”写出来,这就是教育教学论文.数学教育教学论文的格式1.标题:用词要确切、恰当、鲜明、简洁,便于读记、摘录.2.作者姓名和单位:署名一般置于标题下方,同时附有作者工作单位名称和邮政编码.3.摘要:是对论文内容准确概括而不加注释和评论的简短陈述.它一般包括课题研究的意义、目的、方法、成果和结论等.摘要应具有独立性,简明扼要、引人入胜,一般不超过300字.4.关键词:指论文中的关键词语,通常是从论文的标题、摘要和正文中抽取出来的,是对表述论文主题内容具有实际意义的词汇,一般以3—8个为宜.5.前言:一般包括研究课题的背景和起点、研究方法、过程及成果的价值.6.正文:这是论文的主体和核心,论文的论点、论据和论证都在这里阐述,它体现论文的质量和学术水平的高低.正文应做到概念清晰、论点明确、论证严密、论据充分、数据准确、层次分明.应具备科学性和严谨性,同时要条理清楚,文字通俗、简明、流畅.7.结束语:它是在理论分析和实验论证的基础上,概述课题的研究成果和价值,对成果的局限性和尚未解决的问题也应交待.8.参考文献:一般指已发表在正式出版物上的文献或公开出版的书籍,是为撰写和编辑论著而引用的有关图书资料.9.作者介绍:作者简历和主要学术著作.教育教学论文写作的基本要求1.科学性:所讲知识、方法、道理要正确 ;2.真实性:自己亲身经历和思考过的;3.针对性:切中当前主要问题和迫切问题 ;4.严谨性:有条理,思维缜密,前后呼应;5.创新性:有创新意义,不落俗套.一、立足学生,研究学法,逐步提高写作水平在论文写作的初级阶段,应学会从学生的角度出发,开展解题教学的研究工作,重视对一题多解、一题多变、一题多用的研究,注意对学生中典型错误的分析、归纳、提炼,研究对学生学习方法的指导,突出对解题规律的总结,再从这些方面寻找、积累素材,进行论文写作,这样起点低,难度小,有利于写作水平的提高.1.从解题研究中寻找题材如何对题目进行多解多变,发挥每一道题目的最大功能,通过一道题去解决一类问题,得到一种方法,提升多种能力,通过这样的研究,自己的教学能力就会很快得到提高,将这些研究的内容整理出来,就是很好题材.2.从错解归纳中寻找题材在学生的解题中,发生错误是常见的,也是正常的,造成错误的原因很多,既有知识方面的错误,更有非知识性的错误,所以,我们在教学中不仅要注意知识方面的查漏补缺,正本清源,而且要注意对非知识方面出现的问题进行反思,找出产生问题的根源,杜绝这类问题的再次发生,从而有效地提高学生的解题能力和思维水平.对考生解题(特别是中考题)中的常见错误进行罗列、分析、归纳,剖析产生的根源,指出相应的对策,就可以写出许多论文来.3.从学法指导中寻找题材许多学生对数学学习感到困难,在解决有关问题时难以找到切入点,只有经过别人点破才能使问题迎刃而解.为此,我们要通过对典型问题的评析,结合问题的引申,帮助学生总结学习数学的方法,寓学习方法的传授于问题的研究之中,有效地体现数学教学的育人功能.4.从总结规律中寻找题材在平时的教学过程中,我们要注意帮助学生积累解题经验,总结解题规律,这样学生在遇到新的问题时就会由已知条件联想到已有的解题经验以及常用的规律,解题能力就会大大提高,同时也为我们撰写文章提供了很多的素材.二、立足教法,强化学习,不断增强研写内功数学教育教学论文的撰写过程,是数学教育教学研究的继续,通常要求上升到理论的高度进行分析和研究.因此,我们必须强化学习,关注热点,重视反思,增强内功.1.从教改热点中寻找题材2.从教材研读中选择题材课标是新教材编写、课堂教学和中考命题的依据,是教师进行教学设计和论文写作的指导性文件.因此,我们一定要加强与新课标之间进行高质量的对话.教材是对话的文本,是学生学习活动所凭借的话题与依据,是教师进行教研和论文写作的主要依据.——吃透教材,只有吃透教材,才有能力驾驭教材(1)要从宏观上理清教材的编写思路:教材是如何根据不同学生的认知能力和心理发展规律,按照“螺旋上升”方式来编写的,做到高瞻远瞩、放眼全局,不在细枝末节上做文章,真正从整体上把握教材;(2)要从微观上推敲教材的细节:思考教材中编写了什么?知识点有哪些?是在怎样的基础上发展起来的?又怎样为后面的知识学习作准备的?这节课的教学重点是什么?哪里是学生难以理解的?教学的难点是什么?等等.准确地把握教材的知识点、生长点、重难点,教学才能对症下药、有的放矢.——利用教材教材虽然规定了要教什么,但至于怎样教,运用哪些素材、事例、例题去教,则是教师自己的事情.对于同一内容,不同版本的教材都有其不同的呈现方式,究竟哪种呈现方式好,哪种呈现方式与学生接受知识的动态过程更吻合,需要教师再选择、再加工、再创造.——超越教材教材是教学线索,是教学话题,是教学案例,教师可根据教学实际对其进行加工组合:教材创设的情境对帮助学生学习有什么好处?视角是否独特?可不可以用更好地情境替代?教材提供的学习线索是什么?知识的形成过程为什么要这样设计?是否合理?有没有更合理的方案?每道例题、练习题的功能是什么?是否符合本班学生的实际?是不是有更合适的例习题来更换?等等.3.从教学实践中选择题材以教育教学实践中的问题作为论文的选题,对我们这些处于一线的教师来说,不但可行,而且非常有必要.因为对教育教学工作中碰到的各种问题,我们教师必须进行思考并作出自己的回答.一个教师要教好书,就必须善于总结教育教学实践中的经验,把教育教学实践中体会到的、发现的、领悟到的点点滴滴,及时记录并加以研究和总结,这样才能不断提高自己,才能进一步地教好书,而研究和总结的东西如果形成了文字材料那就可能是一篇好的教研论文.例如,如何搞好初中数学总复习工作是每个人都要考虑的问题,而且随着中考命题的改革,总复习也必须与时俱进,针对这个问题,不断进行教学研究,及时总结研究的体会,撰写教学论文.再如对数学思想方法的渗透,数学思想方法是数学基础知识的重要组成部分,教材中没有专门的章节介绍它,而是伴随着基础知识的学习而展开的.因此,我们在教学中一定要重视对常用数学思想方法的总结与提炼,它们是数学的精髓,是解题的指导思想,更能使人受益终身.初中阶段常用的数学思想方法可分两类:一类是某些重要的数学思想方法,如方程思想、数形结合思想、分类思想、整体思想、函数思想、转化思想、样本估计总体思想、归纳思想、类比思想、换元法、配方法、待定系数法、图象法、面积法、添辅助线、估算法等;另一类是某些重要知识的运用,如非负数、奇偶数、比例性质、根的判别式、根与系数的关系、勾股定理等.它们贯穿在整个初中数学之中,可用专题的形式加以总结归纳,让学生弄清其来龙去脉,了解它的发展变化,掌握它们的适用范围和解题步骤.要通过典型问题的分析、思考、总结,帮助学生弄清什么样的问题用什么样的方法来解决,并内化为经验,能自觉地应用,从而强化思想方法指导思维活动.学生掌握了这些思想方法,解题能力就能提高.又如,如何将竞赛辅导与常规教学相结合,可进行认真研究,在实践的基础上,撰写论文.4.从教学反思中选择题材加强教学反思是任何学科都在强调的,是促进自身专业发展、提高自身素质的重要途径.作为教师,我们只有通过对教育教学实践的反思,才能不断地调整前进的方向、不断地扫除成长中的障碍,从而不断地实现自我超越.当然,教学反思可以是对自己亲身实践的反思,也可以是对他人教学实践的剖析.可以说每一次对自己或他人的教育教学实践得失的反思、利弊的剖析,都可以寻找到我们要撰写教研文章的题目.教学反思的一种常见而有效的形式是听课、评课,我们可以从这种交流中寻找题材.教研论文往往是始于问题,也是自己对某个问题长时间思考的结果.因此,我们在进行听课和评课时,要注意从交流中收集自己平常关注较多、有所思考的素材,从中获得能写的题目和内容.一旦选定了某个问题后,就要对这一问题进行持续性的关注,不断加以思考,直到对这个问题有了比较完整的看法,并形成论文为止.三、立足课题,形成体系,全面提升自身素质中小学教育科研以课题为核心而展开研究,具有理性化、系统化等特点,这决定了教育科研活动比一般的教研活动更有利于教师的教育教学能力的迅速提高.理性化上,教育科研活动要求我们老师边实践,边反思,边总结,因此,教育科研可以使我们的老师在“实践—反思—实践—总结”的良性循环中,迅速提升教育教学能力;系统化上,课题研究是一项系统工程,而且周期相对比较长,从计划、实施到总结,需要我们作出通盘的考虑,而正是这种通盘的考虑,才使得我们的研究涉及到教育教学的方方面面,也使得教育科研能够成为提高我们教师教育教学能力的最有效载体.中学数学教师如果能将自己的教育科研的成果通过数学教育学术论文的形式总结出来,则自身的综合素质将得到迅速的提高.1.从公布课题中寻找题材即从各级教育学会、教科所公布的教育科研课题中去找题材.每一阶段,各级教育学会、教科所都会公布一下教育科研课题,我们可以结合各校、各学段、各人的具体情况进行选择、细化.一般的,这类课题内容丰富,题材广泛,口子较大,我们要进行具体的细化.2.从科研动向中寻找题材即从当前教育科研新动向结合自己工作的实际情况来寻找题材. 以《学科教学中学生综合素质的培养研究》为例,2002年秋季,新课程改革实验在全国铺开,素质教育于二十世纪九十年代正式提出,并在全国进行了至上而下的深入研究. 世纪需要的是高素质的综合性人才,如何在学校的各个学科教学中培养学生的综合素质,是一个值得认真研究的课题. 然而在现实生活中,传统的教育观念仍然阻碍着素质教育的实施,应试教育在某些地区、某些时候还存在着很大的市场,“满堂灌”的课堂教学模式并不鲜见,尤其值得一提的是过重的学业负担束缚着学生创造力的发展,陈旧的千篇一律的课时、课程设计难以让学生展开自主发展的翅膀. 如何将学生从重复的机械的学习中解放出来,如何更有效的开展素质教育,提高学生的素质,体现以人为本的思想,是值得我们认真思考的问题.学校中课堂教学是教师向学生传授知识的主阵地,因此探讨课堂教学中学科教学与素质教育的关系,实施学科教学中学生综合素质的培养,对于实施新的课程方案,对于新的一轮课堂教学的改革,让学生得到自主发展,让每个学生学有所得,学有所长,是有一定意义的.教而不研则浅,研而不教则虚. 只要我们有一双善于发现的慧眼,从平时所做、所看和所思去寻找自己想写而又能写问题,开展教育教学研究,撰写教育教学论文,把教学和教研有机结合起来,实现教研相长,就一定能不断促进自身的专业成长.

125 评论

尹才宝贝

初中数学合集百度网盘下载

链接:

简介:初中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

256 评论

薰妍maggiel

【初中】数形结合思想的初探 数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以“数”化“形”、以“形”变“数”和“数”“形”结合。下面我们就一些数学中的问题谈一下数形结合思想应用。 1、以“数”化“形” 由于“数”和“形”是一种对应,有些数量比较抽象,我们难以把握,而“形”具有形象,直观的优点,能表达较多具体的思维,起着解决问题的定性作用,因此我们可以把“数”的对应——“形”找出来,利用图形来解决问题。我们能够从所给问题的情境中辨认出符合问题目标的某个熟悉的“模式”,这种模式是指数与形的一种特定关系或结构。这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。数量问题图形化是数量问题转化为图形问题的条件,将数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为图形问题。解一个数学问题,一般来讲都是首先对问题的结构进行分析,分解成已知是什么(条件),要求得到的是什么(目标),然后再把条件与目标相互比较,找出它们之间的内在联系。因此,对于“数”转化为“形”这类问题,解决问题的基本思路: 明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,最后利用已经作出或构造出的图形的性质、几何意义等,联系所要求解(求证)的目标去解决问题。 例1:已知:三角形的三边长分别为5、12、13,求此三角形的面积。分析:该题是仅给出了三角形三边长5、12、13,而没有给出其中一边的高,似乎无法求其面积,虽然已知三边求三角形的面积也有一个海伦公式,但太麻烦了。这里如果我们能够分析这组数据,找出5、12、13它们之间的关系,很容易联想起来勾股定理的逆定理---若以a、b、c为三边的三角形满足a2+b2=c2;则此三角形为直角三角形。因为52+122=132,那么我们就能够判断出以5、12、13为三边所构成的三角形是以5、12为直角边、13为斜边的一个直角三角形。这样我们就把这组数据5、12、13通过勾股定理的逆定理变成了以5、12为直角边、13为斜边的一个直角三角形。实现了以“数”变“形”,把以5、12、13为三边所构成的三角形变成了直角三角形。那么这个三角形的面积就很容易求得了。这是一道典型的运用勾股定理的逆定理的数形结合题。2、以“形”变“数” 虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算。解题的基本思路: 明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式表达出来,再根据条件和结论的联系,利用相应的公式或定理等,例3:用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域时面积最大,而小亮认为不一定。你认为如何?(选自华东师大版数学八年级上册P30练习第3题)分析:此题的关键是“周长一定,如何比较正方形面积和矩形面积的大小”即周长相等,怎样用数来表示正方形面积和矩形面积并能比较正方形面积和矩形面积的大小。我们设篱笆长为L=4a,则正方形的边长为a,根据矩形的对边相等则一组对边为a-x,另一组对边为a+x。(x>0)如下图。 a a+xa a-x正方形 矩形由题意得S正方形=a2,S矩形=(a+x)(a-x)=a2-x2。因为x>0,所以x2>0。故a2>a2-x2即S正方形>S矩形。这是一个典型的由形构造数的实际应用题。3、“形”“数”互变“形”“数”互变是指在有些数学问题中不仅仅是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”互相变换,不但要想到由“形”的直观变为“数”的严密还要由“数”的严密联系到“形”的直观。解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的“形”“数”互变。一般方法是看“形”思“数”、见“数”想“形”。实质就是以“数”化“形”、以“形”变“数”的结合。 例5:有一四边形地ABCD(如图),∠ABC=90,AB=4m,BC=3m,CD=12m,DA=13m,求该四边形地ABCD的面积。(选自华东师大版数学八年级上册P63B组第7题) 分析:此题结果是求四边形地ABCD的面积,若该四边 C B形ABCD是特殊四边形――直角梯形,那么我们可以用公式S=(上底+下底)/2.若∠BAD=90°则可用此公式,根据勾股定理的逆定理需BD2=DA2+AB2 A但BD的长度我们求不出来,所以无法求出∠BAD的度数。从已知出发∠ABC=90°, DAB=4m,BC=3m,根据勾股定理可得AC=√AB2+BC2=√42+32=5m.在三角形ACD中,由AC=5m、CD=12m、DA=13m,得52+122=132即AC2+CD2=DA2根据勾股定理的逆定理可得∠∫ACD=90°。这样,我们就可以把求四边形ABCD的面积问题转化为求两个直角三角形ABC和直角三角形ACD的面积的和的问题。由题意我们很容易就解决了。本题经过对结果和已知的分析得出,我们先通过直角三角形ABC运用勾股定理求得斜边AC的长度,这是看“形”思“数”;然后,根据AC=5m,结合已知CD=12m、DA=13m,想到52+122=132即AC2+CD2=DA2由勾股定理的逆定理可得三角形ACD为直角三角形,这属于见“数”想“形”。最终,把四边形ABCD的面积转化为求两个直角三角形ABC和直角三角形ACD的面积的和使问题得以解决。数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。要想提高学生运用数形结合思想的能力,需要教师耐心细致的引导学生学会联系数形结合思想、理解数形结合思想、运用数形结合思想、掌握数形结合思想。

92 评论

相关问答

  • 数形结合思想论文研究现状

    初中数学教学中渗透数形结合思想的意义及途径论文 在个人成长的多个环节中,大家都跟论文打过交道吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么

    monica的私人花园 3人参与回答 2023-12-12
  • 马克思论文常用的参考文献

    参考文献是文章或著作等写作过程中参考过的文献。 因参考文献的著录格式各刊不尽相同,投稿前作者应注意杂志稿约的有关规定,至少得先看看有关期刊发表的论文的参考文献是

    紫衣Helen 4人参与回答 2023-12-11
  • 数形结合思想论文研究主要方法

    一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现.华罗庚先生指出,数缺形时少直观,形少数时难入微.数形结合既是一个

    上海阿稀 3人参与回答 2023-12-09
  • 变形记主题思想论文参考文献

    《变形记》主题思想:人的“非人的”思想变形。当人的“个体性”与自我心灵被忽视时,就不可避免与人产生”公共性“矛盾而导致命运毁灭。当格里高尔从不安的梦中醒来,发现

    viki000000 5人参与回答 2023-12-08
  • 数形结合的论文参考文献

    我好些 可以的.

    海上的海 2人参与回答 2023-12-06