不忘初心258
数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!
中职数学教学论文题目
1、线性方程的叠加原理及其应用
2、作为函数的含参积分的分析性质研究
3、周期函数初等复合的周期性研究
4、“高等代数”知识在几何中的应用
5、矩阵初等变换的应用
6、“高等代数”中的思想 方法
7、中职数学教学中的数学思想和方法
8、任N个自然数的N级排列的逆序数
9、“高等代数”中多项式的值,根概念及性质的推广
10、线性变换“可对角化”的条件及“对角化”方法
11、数域概念的等价说法及其应用
12、中职数学教学与能力培养
13、数学能力培养的重要性及途径
14、论数学中的基本定理与基本方法
15、论电脑、人脑与数学
16、论数学中的收敛与发散
17、论小概率事件的发生
18、论高等数学与初等数学教学的关系
19、论数学教学中公式的教学
20、数学教学中学生应用能力的培养
21、数学教与学的心理探究
22、论数学思想方法的教与学
23、论数学家与数学
24、对称思想在解题中的应用
25、复数在中学数学中应用
26、复变函数论思想方法在中学数学教学中的应用
27、复变函数论思想方法在中学数学竞赛中的应用
28、代数学基本定理的几种证明
29、复变函数的洛必达法则
30、复函数与实函数的级数理论综述
31、微积分学与哲学
32、实数完备性理论综述
33、微积分学中辅助函数的构造
34、闭区间上连续函数性质的推广
35、培养学生的数学创新能力
36、教师对学生互动性学习的影响
37、学生数学应用意识的培养
38、数学解题中的 逆向思维 的应用
39、数学直觉思维的培养
40、数学教学中对学生心理素质的培养
41、用心理学理论指导数学教学
42、开展数学活动课的理论和实践探索
43、《数学课程标准》解读
44、数学思想在数学教学中的应用,学生思维品质的培养
45、数形结合思想在中学数学中的应用
46、运用化归思想,探索解题途径
47、谈谈构造法解题
48、高等数学在中学数学中的应用
49、解决问题的策略思想--等价与非等价转化
50、挖掘题中的隐含条件解题
51、向量在几何证题中的运用
52、数学概念教学初探
53、数学 教育 中的问题解决及其教学途径
54、分类思想在数学教学中的作用
55、“联想”在数学中的作用研究
56、利用习题变换,培养学生的思维能力
57、中学数学学习中“学习困难生”研究
58、数学概念教学研究
59、反例在数学教学中的作用研究
60、中学生数学问题解决能力培养研究
61、数学教育评价研究
62、传统中学数学教学模式革新研究
63、数学研究性学习设计
64、数学开放题拟以及教学
65、数学课堂 文化 建设研究
66、中职数学教学设计及典型课例分析
67、数学课程标准的新增内容的尝试教学研究
68、数学课堂教学安全采集与研究
69、中职数学选修课教学的实话及效果分析
70、常微分方程与初等数学
71、由递推式求数列的通项及和向量代数在中学中的应用
72、浅谈划归思想在数学中的应用
73、初等函数的极值
74、行列式的计算方法
75、数学竟赛中的不等式问题
76、直觉思维在中学数学中的应用
77、常微分方程各种解的定义,关系及判定方法
78、高等数学在中学数学中的应用
79、常微分方程的发展及应用
80、充分挖掘例题的数学价值和 智力开发 功能
小学数学教学论文题目参考
1、小学数学教师几何知识掌握状况的调查研究
2、小学数学教师教材知识发展情况研究
3、中日小学数学“数与代数”领域比较研究
4、浙江省Y县县域内小学数学教学质量差异研究
5、小学数学教师教科书解读的影响因素及调控策略研究
6、中国、新加坡小学数学新课程的比较研究
7、小学数学探究式教学的实践研究
8、基于教育游戏的小学数学教学设计研究
9、小学数学教学中创设有效问题情境的策略研究
10、小学数学生活化教学的研究
11、数字 故事 在小学数学课堂教学中的应用研究
12、小学数学教师专业发展研究
13、中美小学数学“统计与概率”内容比较研究
14、数学文化在小学数学教学中的价值及其课程论分析
15、小学数学教师培训内容有效性的研究
16、小学数学课堂师生对话的特征分析
17、小学数学优质课堂的特征分析
18、小学数学解决问题方法多样化的研究
19、我国小学数学新教材中例题编写特点研究
20、小学数学问题解决能力培养的研究
21、渗透数学思想方法 提高学生思维素质
22、引导学生参与教学过程 发挥学生的主体作用
23、优化数学课堂练习设计的探索与实践
24、实施“开放性”教学促进学生主体参与
25、数学练习要有趣味性和开放性
26、开发生活资源,体现数学价值
27、对构建简洁数学课堂的几点认识和做法
28、刍议“怎样简便就怎样算”中的“二指技能”现象
29、立足现实起点,提高课堂效率
30、宁缺毋滥--也谈课堂教学中有效情境的创设
31、如何让“生活味”的数学课堂多一点“数学味”
32、有效教学,让数学课堂更精彩
33、提高数学课堂教学效率之我见
34、为学生营造一片探究学习的天地
35、和谐课堂,让预设与生成共精彩
36、走近学生,恰当提问--谈数学课堂提问语的优化策略
37、谈小学数学课堂教学中教师对学生的评价
38、课堂有效提问的初步探究
39、浅谈小学数学研究性学习的途径
40、能说会道,为严谨课堂添彩
41、小学数学教学中的情感教育
42、小学数学学困生的转化策略
43、新课标下提高日常数学课堂效率的探索
44、让学生参与课堂教学
45、浅谈新课程理念下如何优化数学课堂教学
46、数学与生活的和谐之美
47、运用结构观点分析教学小学应用题
48、构建自主探究课堂,促进学生有效发展
49、精心设计课堂结尾巩固提高教学效果
50、浅谈数学课堂提问艺术
51、浅谈发式教学在小学数学教学中的运用
52、浅谈数学课堂中学生问题意识的培养
53、巧用信息技术,优化数学课堂教学
54、新课改下小学复式教学有感
55、让“对话”在数学课堂中焕发生命的精彩
56、小学几何教学的几点做法
初中数学教学论文题目
1、翻转课堂教学模式在初中数学教学中的应用研究
2、数形结合思想在初中数学教学中的实践研究
3、基于翻转课堂教学模式的初中数学教学设计研究
4、初中数学新教材知识结构研究
5、初中数学中的研究性学习案例开发实施研究
6、学案导学教学模式在初中数学教学中的实践与研究
7、从两种初中数学教材的比较看初中数学课程改革
8、信息技术与初中数学教学整合问题研究
9、初中数学学习困难学生学业情绪及其影响因素研究
10、初中数学习题教学研究
11、初中数学教材分析方法的研究
12、初中数学教师课堂教学目标设计的调查研究
13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究
14、初中数学教师数学教学知识的发展研究
15、数学史融入初中数学教科书的现状研究
16、初中数学教师课堂有效教学行为研究
17、数学史与初中数学教学整合的现状研究
18、数学史融入初中数学教育的研究
19、初中数学教材中数学文化内容编排比较研究
20、渗透数学基本思想的初中数学课堂教学实践研究
21、初中数学教师错误分析能力研究
22、初中数学优秀课教学设计研究
23、初中数学课堂教学有效性的研究
24、初中数学数形结合思想教学研究与案例分析
25、新课程下初中数学教科书的习题比较研究
26、中美初中数学教材难度的比较研究
27、数学史融入初中数学教育的实践探索
28、初中数学课堂教学小组合作学习存在的问题及对策研究
29、初中数学教师数学观现状的调查研究
30、初中数学学困生的成因及对策研究
31、“几何画板”在初中数学教学中的应用研究
32、数学素养视角下的初中数学教科书评价
33、北师大版初中数学教材中数形结合思想研究
34、初中数学微课程的设计与应用研究
35、初中数学教学生成性资源利用研究
36、基于问题学习的初中数学情境教学模式探究
37、学案式教学在初中数学教学中的实验研究
38、数学文化视野下的初中数学问题情境研究
39、中美初中数学教材中习题的对比研究
40、基于人教版初中数学教材中数学史专题的教学探索
41、初中数学教学应重视学生直觉思维能力的培养
42、七年级学生学习情况的调研
43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考
44、新课程背景下学生数学学习发展性评价的构建
45、初中数学学生学法辅导之探究
46、合理运用数学情境教学
47、让学生在自信、兴趣和成功的体验中学习数学
48、创设有效问题情景,培养探究合作能力
49、重视数学教学中的生成展示过程,培养学生 创新思维 能力
50、从一道中考题的剖析谈梯形中面积的求解方法
51、浅谈课堂教学中的教学机智
52、从《确定位置》的教学谈体验教学
53、谈主体性数学课堂交流活动实施策略
54、对数学例题教学的一些看法
55、新课程标准下数学教学新方式
56、举反例的两点技巧
57、数学课堂教学中分层教学的实践与探索
58、新课程中数学情境创设的思考
59、数学新课程教学中学生思维的激发与引导
60、新课程初中数学直觉思维培养的研究与实践
2021各阶段数学教学论文题目相关 文章 :
★ 优秀论文题目大全2021
★ 大学生论文题目大全2021
★ 大学生论文题目参考2021
★ 优秀论文题目2021
★ 2021毕业论文题目怎么定
★ 2021教育学专业毕业论文题目
★ 2021优秀数学教研组工作总结5篇
★ 2021数学教学反思案例
★ 2021交通运输方向的论文题目及选题
★ 小学数学教学论文参考(2)
reviveanna
浅谈新课改理念下的数学教学方法教学是课程实施的主要途径。因此,教学改革是课程改革系统工程中必不可少的一环。教学改革必然涉及两个方面:教学理念的改变与教学策略的革新。本文结合自己教学实际谈谈对教学改革的理解。下面我粗浅地谈谈在数学教学方法上的一点认识。一、明确数学教学目的,不断改进教学方法数学教学目的,就是规定了数学教学应当完成的知识传授、能力培养、思想、个性品质等方面的教育任务,是根据我国教育的性质、任务和课程目标,并结合数学科学的特点和中学生的年龄特征而制定的。特别是现行初中数学的教学目的,就明确提出了要“运用所学知识解决题”,“在解决实际问题过程中要让学生受到把实际问题抽象成数学问题的训练”,“形成用数学的意识”。作为数学教师,必须对教学目的有明确的认识,并紧紧围绕教学目的展开教学。因为它是考核学生成绩和检查、评估教师教育教学质量的重要标准。因此,我们必须全面、深刻地掌握数学教学目的,并在教学过程中,经常以此来检查和评价自己的教学水平和教学效果,从而不断改进数学教学方法。二、切实抓好课堂教学,进一步提高教学效果课堂教学过程是师生相互交流的互动过程。师生均以一种积极的心态进入教学过程,是学生主动参与学习并取得教学效果的前提。(一)、改进师生关系,使学生真正成为教学中的主体。 在传统教学中教学沟通的形式是制度化了的形式:以教师为中心、以讲台为中心。教与学的关系不是教师与学生的平等关系,而是指导与被指导、命令与服从的关系,这种关系渗透着教师的权威,即在教学形态里教师是权威的代言人,学生是被动的接受者。新《数学课程标准》提出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。新标准揭示出教学活动的本质是一种沟通,一种合作。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。教学活动的教与学不仅形成了教师与学生之间一对一的关系,也形成了学生与学生之间的关系、教师与学生群体之间的关系、学生与学生群体之间的关系等多重的网状关系,而教学就是在这种网状关系中进行的。现实的教学分析表明,教育者与受教育者的关系是交互主体性的伙伴关系,教学过程既不是单纯的学生,也不是单纯的教师。教师和学生是教或学的中心人物。怎样改进师生之间的关系以培养学生学习的积极性呢?
依锦风韵
说起数学思想,其实就是,就某一道题来说,有两种或以上的方法去解,也就是说,从两种或以上的角度去看问题,分析问题。现在就数学中四大思想作一篇论文。(数学四大思想:函数与方程思想、转化与化归思想、分类讨论思想与数形结合思想;)(一)函数与方程函数思想,是指用函数的概念和性质去分析问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化等式或是不等式,然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。“宇宙世界,充斥着等式和不等式。”换句话说,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;不等式问题也与方程是近亲,密切相关。应用方程思想时特别需要重点考虑的大体就是列方程、解方程和研究方程的特性。函数描述了自然界中数量之间的关系,函数思想通过题目中数量的关系,解决问题。一般地,函数思想是构造函数从而利用函数的性质解题,在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。要对所给的问题观察、分析、判断比较深入、充分、全面时,才能发现由此及彼的联系。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。(二)等量代换等量代换是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。我们要不断培养和训练自觉的转化意识,这有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。等量代换要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。它能给人带来思维的闪光点,找到解决问题的突破口。“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。”等量代换思想方法的特点是具有灵活性和多样性。它可以在数与数、形与形、数与形之间进行转换;它可以在分析和解决实际问题的过程中进行,在普通语言向数学语言的翻译中进行;消元法、换元法、数形结合法、求值求范围问题等等,都体现了等量代换思想,但是由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。在数学操作中实施等量代换时,我们要尽量熟悉、简单、直观、标准,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,顺水推舟,经常渗透等量代换思想,可以提高解题的水平和能力。(三)分类讨论在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。引起分类讨论的原因主要是以下几个方面:① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其全面性,更使之具有确定性。进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复。解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。(四)数形结合中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
漂萍过客123
数学是研究现实世界数量关系与空间形式的一门科学, 数与形的统一结合贯穿于数学学科研究与发展的始终。数和形 是数学研究的两大对象,数形结合法是一种重要的数学思想方法。数 是指数据与式子,主要表现在以下几方面:函数、方程、不等式、数列、复数、排列组合等。形 可以理解为几何图形。采用数形结合法去解数学题,就是对题目中的条件与结论,既分析其代数含义又分析其几何含义。力图将代数和几何统一起来去找出解题思路。 数形结合是数学中的一种重要思想与解题策略, 利用数形结合这一思想, 可以较直观地对问题进行分析, 解决许多比较抽象的数学问题。因此, 通过数形结合能很好地解决一些问题, 对培养学生的解题能力非常重要。 一、渗透数形结合思想,提高学生的数学素养 素质教育是通过科学有效的途径,开发受教育者的潜能,以完善和全面的提高学生素质为根本目的教育。数学素质在人的素质养成上具有不可替代的作用。这是因为数学的直观思维、逻辑推理、精确计算以及结论明确无误等特征是每个学生应该具备的科学文化素质。由此可见,对数学教师来说,要突出素质教育的数学教学关键是加强数学思想方法的教学,因为数学思想方法作为数学知识的精髓,它既是数学中的深层次的基础知识,又是解决问题和思维策略。数学思想方法掌握的深、浅度,直接关系到能否顺利或比较简捷地解决问题;关系到是否深刻地对数学知识本质认识,数学规律的理性认识;关系到是否能把某些数学内容和对数学的认识过程中提炼上升的数学观点加以应用。而这些数学知识的掌握是以解题思维能力作为起点的。因此,在中学数学教学中,如何引导学生选择恰当的方法来提高解题速度和效率,应注重培养学生解题能力,掌握多种方法。尤其数形结合法的教学更是学生应该熟练掌握的重要思维方法。 数形结合是解决数学问题的重要思想,其实质是把抽象的数学语言与直观的图形结合起来,以直观辅助抽象的思考,以抽象的思考研究直观的细节。著名数学家华罗庚先生说过:数无形,少直观;形无数,难入微。发掘数与形互相依存的关系,把数式运算的周密性和图形的直观性巧妙结合起来,对解决数学问题非常有益,它常能有效突破解题障碍,顺利沟通已知和未知,使问题由繁化简,由难化易。数形结合思想方法是中学数学基础知识的精髓之一,是把许多知识转化为能力的桥。在中学数学教学中,许多抽象问题学生往往觉得难以理解,如果教师能灵活地引导学生进行数形结合,转化为直观、易感知的问题,学生就易理解,就能把问题解决,从而获得成功的体验,增强学生学习数学的信心。尤其是对于较难问题,学生若能独立解决或在老师的启发和引导下把问题解决,心情更是愉悦,这样,就容易激发学生学习数学的热情、兴趣和积极性。同时,学生一旦掌握了数形结合法,并不断进行尝试、运用,许多问题就能迎刃而解。 二、在数学教学中渗透数形结合思想 本文特从以下几个方面,对数形结合’解题进行例析研究。1几何图形与数量关系相结合几何中的计算与证明问题,常常根据几何图形的特点挖掘蕴涵的数量关系;一些数量关系的比较问题,常常构造出由数量关系反映出的几何图形,根据图形的直观性寻求解决。2函数图象与数量关系相结合数轴使实数与数轴上的点建立起一一对应的关系,平面直角坐标系使有序实数对与平面上的点建立起一一对应的关系,为数形结合创造了充分的条件函数图象在直角坐标系的位置及变化趋势,为研究函数的性质提供了直观、形象的依据,反过来,依据函数的性质又能推断函数图象在直角坐标系屮的位置及变化情况,数形结合成为研究解决函数问题的重要思想方法。3图形的运动变化与函数问题的结合函数建立起两个变量之间的关系,运动变化便进入了数学,运动改变了图形的位置、形状,其中蕴涵的 数量关系也会发生变化,研究图形运动变化体现出来的函数关系,使数形结合更具活力,更丰富多彩。 4 注重数学思想方法的教学 加深认识,让学生亲自参与知识发现的过程。恩格斯说:世界不是一成不变的事物的集合体,而是过程的集合体。对于数学而言,知的发生过程就是思维方法的产生过程,因此教师在平时的教学过程中,应切实加深学生对知识的认识,让学生亲自去参与知识发现的过程,揭示事物的本质特征。 数学学习贯穿着两条主线,即数学知识和数学思想方法,通性通法蕴涵着丰富的数学思想和方法,更贴近学生的认知水平,符合常人的思维习惯,同样也有利于培养学生的数学能力。在初中数学中,常用的数学思想有函数和方程思想、数形结合思想分类讨论论思想、化归转化思想、整体处理思想等,上面教学片断的探究题,教者通过引导学生从数和形的角度来解决问题,很好地发展了学生的方程思想和数形结合思想,同时也渗透了数学分类的思想方法。在平时的教学中,我们应在解决问题的过程中,对这些数学思想加以揭示、运用和提炼,以提高学生的思维水平和解题能力。 人常说,数学是锻炼思维的体操,恐怕就是因为
初中数学教学中渗透数形结合思想的意义及途径论文 在个人成长的多个环节中,大家都跟论文打过交道吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么
小学数学活动课的开设原则与形式把活动课提高到课程设置的高度来认识与安排,这是国家教委颁发的义务教育阶段的《课程方案》中关于 课程设置的重要改革内容之一,《课程方
数 形 结 合江苏省阜宁中学 黄爱华 224400数形结合是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的一种数学思想
一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现.华罗庚先生指出,数缺形时少直观,形少数时难入微.数形结合既是一个
这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的