zhaoyaxiao12
质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片图为基础,确定药物和代谢产物的存在;也可用于定量分析,用被检化合物的稳定性同位素异构物作为内标,以取得更准确的结果。在无机化学和核化学方面,许多挥发性低的物质可采用高频火花源由质谱法测定。该电离方式需要一根纯样品电极。如果待测样品呈粉末状,可和镍粉混合压成电极。此法对合金、矿物、原子能和半导体等工艺中高纯物质的分析尤其有价值,有可能检测出含量为亿分之一的杂质。利用存在寿命较长的放射性同位素的衰变来确定物体存在的时间,在考古学和地理学上极有意义。例如,某种放射性矿物中有放射性铀及其衰变产物铅的存在,铀238和铀235的衰变速率是已知的,则由质谱测出铀和由于衰变产生的铅的同位素相对丰度,就可估计该轴矿物生成的年代。质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检索。毛细管柱的分离效果也好。如果在300C左右不能汽化,则需要用LC-MS分析,此时主要得分子量信息,如果是串联质谱,还可以得一些结构信息。如果是生物大分子,主要利用LC-MS和MALDI-TOF分析,主要得分子量信息。对于蛋白质样品,还可以测定氨基酸序列。质谱仪的分辨率是一项重要技术指标,高分辨质谱仪可以提供化合物组成式,这对于结构测定是非常重要的。双聚焦质谱仪,傅立叶变换质谱仪,带反射器的飞行时间质谱仪等都具有高分辨功能。质谱分析法对样品有一定的要求。进行GC-MS分析的样品应是有机溶液,水溶液中的有机物一般不能测定,须进行萃取分离变为有机溶液,或采用顶空进样技术。有些化合物极性太强,在加热过程中易分解,例如有机酸类化合物,此时可以进行酯化处理,将酸变为酯再进行GC-MS分析,由分析结果可以推测酸的结构。如果样品不能汽化也不能酯化,那就只能进行LC-MS分析了。进行LC-MS分析的样品最好是水溶液或甲醇溶液,LC流动相中不应含不挥发盐。对于极性样品,一般采用ESI源,对于非极性样品,采用APCI源。
miss.w\^O^/
目前,国内外的实验测试手段,从分析原理划分,大致可分为两大类:即化学分析法和物理分析法(或物理化学分析法,也可叫仪器分析法)。这两类分析方法之间并不是相互孤立和对立的,例如在运用仪器分析时,在进行分析测量之前,试样往往必须经过一系列预处理工作,这就必须采用化学方法,同时仪器的校准也常常必须借助化学分析来核对。在实际分析工作中,应根据具体情况和要求,综合考虑仪器分析和化学分析的特点,扬长避短,选用适当的分析方法。这就要求分析化学工作者必须同时掌握好这两类分析方法。
从水和污水的检测项目来看,主要包括:感官指标,一般性质,常量组份,微量元素,有毒元素,污染组份,微生物,放射性,气体成份,同位素等,共约90~100项指标,近200个检验方法。除经典的化学分析方法外,还包括了许多近年来发展的新技术,如原子吸收光谱法、极谱法、原子荧光法、离子色谱法、感耦等离子体光谱法、质谱法、能谱法以及痕量元素的多种分离富集技术等。
从掌握的分析测试技术方法来看,国内外基本大同小异,国内测试质量和某些先进国家相比,测试数据有较好的可比性,但国内目前存在的主要问题是受经济条件的制约,仪器普遍陈旧,设备简陋;人员的技术素质、知识更新得不到较好的提高,这样就使得国内的测试技术能力仍然保持在70~80年代的水平。当然由于部门和经济条件的差异,有些单位的仪器设备条件也有比较先进的,但人员技术素质也存在不相适当的状况。现就各项分析技术的现状介绍如下:
一、化学分析法
化学分析是最早使用的和长期以来广泛应用的分析方法,故又有“经典分析法”之称。化学分析是以化学原理和化学反应为基础建立起来的分析方法,此方法以化学反应如酸碱反应、络合反应、沉淀反应和氧化还原反应等为基础建立起来的,用于成份的定性和定量分析,它是分析化学的基础,目前仍是国内外分析工作者通用的分析手段。
在现今水质分析中应用最广的是比色法和容量法。这些方法能够普及和采用的主要优势是,只要有化学试剂和玻璃器皿即可进行,不需要太多昂贵的仪器,因此,往往是许多中、小型实验室采用的主要手段。
比色法对微量物质的测量有很大的优越性,此法的操作步骤一般比较简单、快速、灵敏度也较高。比色方法有三种:一种是目视比色法,这种方法所要求的设备和技术条件简单,对低色度溶液的辨认比仪器测定更加灵敏,可以分辨测定液中混浊物的干扰。第二种为分光光度法,第三种为光电比色法。这两种均需仪器,在正常情况下,用仪器比色比目视法准确,重复性好,但在溶液混浊时,仪器无法辨认容易出现假象,这种方法还容易受仪器性能的影响,由于需要仪器设备和电源供应,所以不宜在野外使用。
分光光度计能将光线分为较狭窄的波段,所以测定效果比光电比色计的好。但前者价格比较贵,在一般测定中,光电比色计也能得到满意的结果。
所以三种比色法各有优缺点,可以根据具体条件加以选用。
容量法操作起来也比较简单,对某些项目也能得到较准确的结果,但是也容易受指示剂,操作的熟练程度和标准溶液浓度等条件变化的制约,使准确度和灵敏度受到影响。
二、物理分析法(仪器分析法)
物理分析法,也可叫物理化学分析法或叫仪器分析法。这种分析方法是以物质的物理、物理化学性质(光谱及电化学性质)为基础并使用特殊仪器进行分析的测试方法。
仪器分析是20世纪初发展起来的一类分析方法,又有近代分析法之称,它具有灵敏、准确、快速、易于实现自动化和连续测定等优点。
目前在水、工、环测试中主要应用以下各类方法:
1.原子吸收光谱分析法
原子吸收光谱分析法又称原子吸收分光光度分析法,简称原子吸收法。原子吸收法是一种很好的定量分析方法。目前在国内各大、中实验室应用比较普遍。它具有灵敏度高、准确度高、选择性好等优点,方法简便,分析速度快,如果采用自动化的仪器,每小时可分析100个以上的试样。
另外,用途广泛,在测定含量范围方面,既能用于微量(mg/l)和超微量(μg/l)的分析,又能用于基体组分含量的测定;在测定元素种类方面,约能直接测定70种元素,采用间接方法还可测定卤素、硫、氮等非金属元素,测试的种类几乎可以复盖元素周期表中70%的元素。
原子吸收法也存在一些缺点和不足:
(1)各元素的分析条件不相同,特别是使用的光源灯不同,不利于同时进行多种元素的测定。
(2)对于成分复杂的样品,干扰仍然比较严重。
(3)对某些高温元素如稀土元素钍、锆、铪、铌、钽、钨、铀、硼等的测定灵敏度较低。
(4)仪器比较复杂和价格较贵,不利于普及,目前国产仪器性能还不太过关。但价格比较便宜,一般比较容易普及。好的原子吸收仪是美国PE公司产品和日立Z-5000型,但是价格较贵,在现有条件下使许多实验室望尘莫及。
2.发射光谱分析法
发射光谱分析法,它包括三个最基本的过程:首先对被测物质提供发射光谱的条件,既依靠外加能源使之原子化和被激发;然后将激发态原子所发出的复合光分解为单色光形成光谱;最后对光谱进行检测。发射光谱分析的方法有五种,即①看谱分析法;②摄谱分析法;③光电直读光谱法;④火焰光度法;⑤感耦等离子体原子发射光谱法。
在上述五种发射光谱分析方法中,前三种方法本部门采用较少,这里不再赘述。在水、工、环系统主要应用的是火焰光度法和感耦等离子体原子发射光谱法。
火焰光度法的主要特点是以火焰为光源,将试样在火焰中原子化并激发后,再对发射光进行分光和检测,其测量方法是用光电转换元件将光信号转变为电信号而测量。这种方法由于仅使用火焰光源,提供的能量较低,故能分析的元素比较少,通常测定的对象是碱金属和部分碱土金属。一般测定水中K、Na、Ca、Sr等元素时,应用比较方便。
感耦等离子体原子发射光谱法是基于原子发射光谱原理的基础上,改进了光源条件,即在光源上引入了电感耦合等离子炬。电感耦合等离子体自60年代中期研制成功以来,与原子发射光谱相结合,以它优越的激发性能,良好的精密度,极低的检出限以及多元素同时快速测定等优点,已逢勃发展为无机成分分析的主要手段,已广泛应用于多种行业的科技领域。90年代初北京地质仪器厂在我国首次开发研制成功了WL-100系列单道扫描等离子体光亮计,它的主要技术指标基本达到了国内外同类仪器水平,第一台样机就在国土资源部矿泉水检测中心,已在日常使用中。
当然,国产仪器也有它一定的不足之处,就是电学部分还不太过关,耗气量大,少量样品测定时成本较高,适于批量生产。
3.原子荧光光谱法
能够产生荧光的物质可以是分子,也可以是原子。一般所说的荧光分析是指基于分子吸收的荧光现象,基于原子吸收而产生荧光的现象为原子荧光。原子荧光光谱法是60年代建立起来的,是近年来发展很快的一种微量分析方法。它是由基态原子吸收辐射被激发,然后去活化而发射出的荧光。其特点是灵敏度高(一般情况比原子吸收光谱法高),选择性好和用途广泛,特别是对环保监测尤为有用,我们这里主要用来测定汞、砷、硒等成分,使用起来也很方便。
4.电化学分析法
电化学分析是利用物质的电化学性质来测定物质组成的分析方法。电化学分析的主要内容包括:电导分析、电位法、电解法、库仑法、极谱法五种方法。在这些方法中我们目前通常采用以下几种方法:
(1)电导分析。本方法是应用两个相同的惰性电极,插入被分析溶液,在此电极上施加交流电压,测定其间的电导(电阻的倒数)。电导分析法最先应用于测定电解质溶液的溶度积,解离度和其它一些特性。由于溶液的导电性质取决于溶液中所有共存离子的导电性质的总和,所以这种分析方法不具专属性。对于复杂物质中各组份的分别测定受到限制。但电导法确属一种简便而且十分灵敏的分析方法,至今仍保留着在某些方面的应用,例如对水质纯度的检验和用做气相色谱的鉴定器等方面。
容量分析中,使用电导指示滴定终点的方法叫做“电导滴定法”。电导滴定法的准确度较高,并且能用于较简单混合物中各分量的测定,这种分析方法在实现容量分析的自动控制方面,有较好的用途。
(2)电位法。电极电位与溶液中电活性物质的活度有关,测量电极电位,并应用奈恩斯特方程计算被测物质的含量(如各种离子选择性电极的直接测定),或以电位作为容量分析的终点指示(称为电位滴定)。
电位分析所用到的各种电极,从用途上可以分为指示电极和参比电极。如氢电极、甘汞电极、银-氧化银电极常用做参比电极,还有些离子选择电极,如K+、Na+、Ag+、Ca2+、Pb2+、F2-、Cd2+、Br-、I-、Cn-、S2-、SCN-等离子都有选择电极出售,这些电极使用起来比较方便,特别是在野外或条件较差的小型实验室,用这些电极也可以解决许多离子成分的测定问题,还有PH值和EH值的测定更是所有检测水的方法中所普遍采用。
以指示剂变色判定容量分析的滴定终点,虽然方法简便易行,但也有一定的限制,对于不同化学反应采用不同指示剂,有时没有适合的指示剂可供应用;对于有色,混浊或具有荧光的溶液无法进行分析。电位滴定法可以弥补上述缺限,而且还可用于混合溶液中,进行连续滴鉴。使用电位突跃检测滴鉴终点,易于实现自动滴定。
(3)极谱分析法。极谱法是一种特殊的电解分析法,它的操作过程是在特定条件下进行电解的过程。这种方法发展很快,仪器设备便宜,容易推广,因此应用普遍,其主要特点如下:
第一,灵敏度高。经典极谱法一般可测量10-5mol/L的溶液,近代极谱法甚至可测量低至10-11mol/L的溶液。这对于痕量或超痕量元素测定有很重要的意义。
第二,准确度高。极谱的相对误差一般为1%~5%,这对于痕量分析方法来说,准确度是相当高的。同时极谱法的重现性很好,用同一溶液可以反复进行多次测定,也有利于得到准确结果。
第三,应用范围广。极谱法的应用范围十分广泛,就测定的元素而言,原则上几乎所有的元素都能够用极谱法直接地或间接地进行测鉴,在水质分析中如Fe、Ae、Ca、Pb、En、Cd、Cr、Co、Ni、Mo、Se、V、W等元素都可以采用极谱法进行测鉴。
第四,分析速度快,容易实现自动化。极谱法的测定工作,一般可在数分钟内完成。目前已经有自动化和微机化的极谱仪了,从仪器的调整、分析、直到最后的结果计算和显示(或记录)全部由微机控制,这样不但加快了分析速度,提高了分析的准确度,而且使用十分方便。
第五,极谱法的主要缺点是需要使用具有挥发性的有毒物质汞,在使用汞时必须注意汞的回收和保存。
5.色谱法
色谱法实质上是一种物理化学分离方法:即利用不同物质在两相(固定相和流动相)中具有不同的分配系数,当两相作相对运动时,这些物质在二相中反复多次分配,从而使各物质得到完全的分离。当这种分离技术应用于分析化学领域就是色谱分析。
现代的色谱法,比之早期己向前大大地发展了,它已成为分支很多,性能优越,用途广泛的一类重要的仪器分析方法。我们通常应用的是气相色谱,液相色谱和离子色谱法。
目前,气相色谱法主要应用于石油、化工、医药等工业生产部门从事气体分析及有机化合物的分析;随着环保事业的发展,气相色谱法在大气污染分析和水质分析中也正在发挥重要的作用。在环境地质研究中,我们主要应用气相色谱法测试水中的污染和有毒有害成分如:三氯甲烷、四氯化碳、有机磷(敌敌畏、乐果、甲拌磷、甲基对硫磷、对硫磷等)、有机氯(如六六六、滴滴涕)。分析上述项目时常用的检测器是氢焰离子检测器和电子捕获检测器。
高压液相色谱分析是在液体流动相色谱分离技术基础上发展起来的。在气相色谱的基础上,色谱理论得到了发展,同时出现了新的高效填充剂,发展了适合于液相色谱用的检测器和高压泵,使液相色谱技术有了新的突破,分析速度和分离效率大大提高,为了与经典液相色谱区别,这种新型液相色谱称为高压液相色谱。
液相色谱可以分析的项目很多,大部分都是高分子有机化合物,我们这里只开发了水中致癌物质苯并[a]芘在高压液相色谱上的分析方法。
离子色谱主要用于分析在溶液中能离解成正负离子的试样。这种仪器从理论上讲能测的离子成分很多,检测时需要的试样量也很小,但由于色谱柱内的填料为离子交换树脂,而且受树脂再生条件的影响,操作起来稳定性不好,也带来许多麻烦,一般不太受操作者欢迎。
6.同位素的测试
同位素水文地质学作为水文地质的一个新的分支,它的主要任务是研究地下水中同位素的组成、分布规律以及在各种自然物理化学过程中的分馏作用,并应用这些基本理论解决各种水文地质课题,如测定地下水的年龄、研究地下水的运移和水文地质过程的机理、查明地下水化学组份的来源、探讨地下水的成因等。随着同位素水文地质发展的需要,同位素测试技术有了很大的改进,测定精度也大大提高,现在能测的同位素有氚(3H)、碳-14(14C)、氧-18(15O)、氘(D)、硫-34(34S)和碳-13(13C),都有较详细的样品制备办法,测试技术主要采用了质谱分析法和液体闪烁计数法。
质谱分析是利用电磁学原理使离子在磁场的作用下,按照质荷比(M/e)进行分离,从而测定物质质量与含量的方法。目前世界上有几十种质谱仪,有的用来分析固体和不容易挥发的液体样品,有的用来分析气体和容易挥发的液体。质谱分析法不仅具有较高的绝对灵敏度,而且具有较高的相对灵敏度和测量精度。改变质谱仪的电磁参数,可以在短时间内分析多种组份,并且可以连续进样、连续分析,实现生产流程自动监制。但是与一般分析仪器相比,质谱仪结构复杂,价格昂贵、操作维护麻烦,所以不易推广和应用。
液体闪烁计数法也是测量放射性的一种主要方法,在弱β射线测量方面,例如3H(氚)和14C的测量,因灵敏度高,测量迅速、操作方便等优点,目前这种方法也一直被应用着。
1、碱性过 硫酸钾紫外 分光光度法(GB 11894-89):如英国RAIKING,中国锐泉等品牌是主流的在这个标准基础上优化的产品。 2、气相分子吸收光谱法:
1池塘水产养殖常见水质问题1.1池塘水体中含氧量低池塘水在实际养殖生产中会受到各方面环境的污染,常见的生活垃圾、工业排放等过程中所产生的硫化物非常容易在水体中产
1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录) 3、论文格式的内容提要
某海域海水水质监测分析项目色、臭、味、水温、pH、悬浮物质二、设计要求:1. 依据监测与分析的结果能反映被测海域的海水水质现状和减轻污染的措施。(“监测与分析的
1.刘桂华,.姜杰,谢建滨,张红宇等. 同位素内标稀释高效液相色谱-质谱法测定鱼体中的孔雀石绿及其代谢物. 现代预防医学,2006,33⑴:124-1262.姜