白羽蓝翎
待证命题实际上是解析函数的平均值定理:如果函数f(z)在单连通域D上解析,z0是区域D内的一点,曲线C是区域D内以z0点为圆心的圆周,那么f(z0)等于函数f(z)在曲线C上的平均值,即 f(z0)=1/2π*∫f(z0+re^iΘ)dΘ,其中r是圆周C的半径,积分范围是0到2π 因此这道题的关键在于通过这个调和函数u(x,y)构造出解析函数f(z) 下面给出构造得到的解析函数f(z): 设f(z)=u(x,y)+iv(x,y),其中u,v都是实函数,并且v函数满足: 可以证明v是u的共轭调和函数,而且u、v满足柯西黎曼方程,因此函数f(z)是区域D上的解析函数 (详细过程这里没有给出,可以参考这篇论文:《由调和函数构造解析函数的一种方法》,可以在中国知网查找) 因此根据柯西积分公式 由于C圆周的特殊性,可以令 所以 由实部和虚部对应相等即得到待证命题
七彩娃娃豆
复变函数复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
畅吃无阻
解析函数是区域上处处可微分的复函数。17世纪,L.欧拉和J.leR.达朗贝尔在研究水力学时已发现平面不可压缩流体的无旋场的势函数Φ(x,y)与流函数Ψ(x,y)有连续的偏导数,且满足微分方程组,并指出f(z)=Φ(x,y)+iΨ(x,y)是可微函数,这一命题的逆命题也成立。
柯西把区域上处处可微的复函数称为单演函数,后人又把它们称为全纯函数、解析函数。B.黎曼从这一定义出发对复函数的微分作了深入的研究,后来,就把上述的偏微分方程组称为柯西-黎曼方程,或柯西-黎曼条件。
解析函数是一类比较特殊的复变函数。200多年来,其核心定理“柯西-黎曼”方程组一直被数学界公认是不能分开的。王见定发现,尽管解析函数已形成比较完善的理论并得到多方面的应用,但自然界能够满足“柯西-黎曼”方程组条件的现象很少,使解析函数的应用受到较大的限制。由此,寻找把“柯西-黎曼”方程组分开的途径,并在1981年以《半解析函数》为题撰写毕业论文。
先后得出了一系列描述半解析函数特性的重要定理。发表了《半解析函数》.《半解析函数开拓》、《与半解析函数定义等价的几个定理》、《复变函数分解定理》等多篇学术论文,终于初步形成了半解析函数理论。
在这个理论中,王见定大胆地将“柯西-黎曼”方程组的两个方程式分开,将满足其中任一个方程式的函数定义为半解析函数,从而实现了对解析函数的推广,为研究解析函数所不能解决的一般函数提供了一个通用的办法。
参考资料来源:百度百科-解析函数
我是你的大白
解:根据复数的对数计算规则,有Lnz=lnz+2kπi=ln丨z丨+iargz+i2kπ,其中,-π≤argz≤π,k=±1,±2,……。
∴Ln(2)=ln2+i2kπ。Ln(-1)=ln1+iπ+i2kπ=(2k+1)πi。
∵1+i=(√2)(1/√2+i/√2)=(√2)e^(πi/4)。
∴ln(1+i)=(1/2)ln2+πi/4。
以复数作为自变量和因变量的函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
扩展资料:
如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。
复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。
把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。
参考资料来源:百度百科——复变函数
论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你! 1. 圆锥曲线的性质及推广应用 2. 经济
复变函数---虽被纯数学所歧视,但现代数学人人都离不开它。复变函数的柱石---柯西积分公式,把可微复函数与复幂级数联系起来,现代数学一刻也离不开它。首先,黎曼利
实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函
对勾函数 的研究下载网址:
什么是复合函数呢