度兰度兰
奇异值分解定理:设A为m*n阶复矩阵,则存在m阶酉阵U和n阶酉阵V,使得:A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。推论:设A为m*n阶实矩阵,则存在m阶正交阵U和n阶正交阵V,使得A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。说明:1、 奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系。2、 奇异值分解提供了一些关于A的信息,例如非零奇异值的数目(S的阶数)和A的秩相同,一旦秩r确定,那么U的前r列构成了A的列向量空间的正交基。matlab奇异值分解函数 svd格式 s = svd (A) %返回矩阵A的奇异值向量[U,S,V] = svd(A) %返回一个与A同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列[U1,S1,V1]=svd(X,0) %产生A的“经济型”分解,只计算出矩阵U的前n列和n×n阶的S。说明:1.“经济型”分解节省存储空间。2. U*S*V'=U1*S1*V1'。2 矩阵近似值奇异值分解在统计中的主要应用为主成分分析(PCA),它是一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模式识别,数据压缩等方面。PCA算法的作用是把数据集映射到低维空间中去。数据集的特征值(在SVD中用奇异值表征)按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量张成空间为降维后的空间。3 应用在很长时间内,奇异值分解都无法并行处理。(虽然 Google 早就有了MapReduce 等并行计算的工具,但是由于奇异值分解很难拆成不相关子运算,即使在 Google 内部以前也无法利用并行计算的优势来分解矩阵。)最近,Google 中国的张智威博士和几个中国的工程师及实习生已经实现了奇异值分解的并行算法,这是 Google中国对世界的一个贡献。
王家姑娘0122
特殊矩阵太多了,凡是有专门名字的都是特殊矩阵。随便给你提一些,你自己去找书上没有写方法的。1.上三角矩阵/下三角矩阵,三对角矩阵,带状矩阵矩阵,Hankel矩阵,Vandermonde矩阵矩阵,M矩阵,H矩阵,对角占优阵,非负矩阵4.对称矩阵,反对称矩阵,Hermite矩阵,反Hermite矩阵,正交矩阵,酉矩阵,正规矩阵矩阵,反Hamilton矩阵,辛矩阵,反辛矩阵矩阵,Cauchy矩阵可以到3,5,6里面找。不过几乎可以肯定的是,书上没有给出求逆方法的,除非是太显然的(比如酉阵),否则你多半也不会想出好办法。
微凉菇凉
假设M是一个m×n阶矩阵,其中的元素全部属于域 K,也就是 实数域或复数域。如此则存在一个分解使得M = UΣV*,其中U是m×m阶酉矩阵;Σ是半正定m×n阶对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是为了奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定。) 奇异值分解在某些方面与对称矩阵或Hermite矩阵基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。
每天只睡4小时
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等套用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有套用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际套用上简化矩阵的运算。对一些套用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和套用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函式的泰勒级数的导数运算元的矩阵
LZ是文科生吧
求矩阵A的迹主要用两种方法:迹是所有对角元的和,就是矩阵A的对角线上所有元素的和。迹是所有特征值的和,通过求出矩阵A的所有特征值来求出它的迹。在线性代数中,一个
我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业
矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。 能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关) 矩阵的秩
关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的