• 回答数

    6

  • 浏览数

    169

Mr。。伍
首页 > 职称论文 > 曲线积分的应用论文参考文献

6个回答 默认排序
  • 默认排序
  • 按时间排序

廊坊电器城

已采纳

我也急。明天交,还没有逼出来。

163 评论

苏州小熊

简析高等数学中的数学结构与数学理解【摘要】文章从分析高等数学的内容结构出发,代写论文 对数学结构与数学理解所起的作用,作了简单的剖析。【关键词】高等数学;数学结构;数学理解对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。代写毕业论文 数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解。由于理解是学习数学的关键,学生可以通过对数学知识、技能、概念与原理的理解和掌握来发展他们的数学能力。从认知结构,特别是结构的建构观点来看,学习一个数学概念、原理、法则,如果在心理上能够组织起适当的、有效的认知结构,并使其成为个人内部知识网络的一部分,那么这才是理解。而其中所需要做的具体工作,就是需要寻找并建立恰当的新、旧知识之间的联系,使概念的心理表象建构得比较准确,与其它概念表象的联系比较合理,比较丰富和紧密。在学习一个新概念之前,头脑里一定要具备与之相关的储备知识,它们是支撑新概念形成的依托,并且这些有关概念的结构,是能够被调动起来的,使之与新概念建立联系,否则就不会产生理解。所以要使新旧知识能够互相发生作用,建立联系,有必要建立一个相应的数学结构,以加强对基础知识的理解。布鲁纳的认知结构学习论认为,知识结构的学习有助于对知识的理解和记忆,也有助于知识的迁移。在微积分的学习中,通过对其结构的剖析,使学习者头脑中的数学结构处于不断形成和发展之中,并将其发展的结构与已形成的结构统一起来,以达到对数学知识的真正理解。1高等数学内容的结构特点高等数学以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。连续性质是自变量增量趋于零时,函数对应增量的极限;导数是自变量增量趋于零时,函数的增量(偏增量)与自变量增量之比(差商)的极限;一元或多元积分都是和式的极限,而无穷级数则是密切联系序列极限的另一种极限。微分是从微观上揭示函数的有关局部性质,积分则从宏观上揭示函数的有关整体性质,它们之间通过微积分基本定理联系起来;广义积分把无穷级数与积分的内部沟通起来;而微分方程又从方程的角度把函数、微分、积分有机地联系起来,展示了它们之间的内在的依赖转化关系。2如何利用结构加强理解2.1注重整体结构理解当代著名的认知心理学家皮亚杰认为“知识是主体与环境或思维与客体相互交换而导致的知觉建构,代写硕士论文 知识不是客体的副本,也不是有主体决定的先验意识。”虽然现今的教材基本上按一定框架编写,但其中相关的知识点要在学生的头脑中形成一个网络,并达到真正理解,还需要一个很长的过程,在这个过程中需要师生的共同努力。在教学中教师应将数学逻辑结构与心理结构统一起来,把学生看成是学习活动的主体,引导学生根据自己头脑中已有的知识结构和经验主动建构新的知识结构。心理学家J.R安德森认为:通过多种方式应用我们从自己的经验中得到知识,认知才能进行。理解知识的前提是理解它如何在头脑中表征的,这个过程主要表现为学生对概念的理解和掌握,在此基础上再加以运用,达到更深意义上的掌握。由于高等数学具有清晰的数学结构,因而其相关知识学习中也充满了知识的同化过程。在高等数学知识结构中,微积分建立在极限的基础之上。因此在高等数学中,新知识获得要依赖于认知结构中原有的适当观念,同时新旧知识还必须要有相互作用,即新旧意义的同化,才能形成高度分化的认知结构。如微分是差商的极限,积分为微分的逆运算,而定积分则为和的极限,只有将这些新旧概念在头脑中不断同化作用,才能形成新的高级知识结构网络,才能加强对相应数学知识的真正理解。这个过程实际上是一个内部认知过程,它要求学习者要有积极主动的精神,即有意义学习倾向;同时还要在学习者的认知结构中找到适当的同化点。学生的认知结构是从所接受的知识结构转化而来的,因此教学是一个动态的过程。2.2注重结构中的概念理解数学结构是有许多个结构所组成的,而个别的概念一定要融人其它概念,合成的概念结构才有用。数学中的概念往往不是孤立的,它们之间存在着一定的联系,理清概念之间的联系,既有助于数学结构的建立,有助于新的概念地自然引入,从而有助于对数学知识的理解与掌握。在微积分这部分内容中,多元函数的极限、连续、偏导数、全微分、方向导数这组概念之间的联系,与一元函数中的极限、连续、偏导数、微分概念之间的联系,这两者之间既有相同之处,又有不同之处,而且每个相对的概念之间又存在一定的联系与区别,多元函数中许多微分概念是在一元函数基础上的推广与发展,它们是密不可分。积分学中的定积分、重积分、二类曲线积分、二类曲面积分之间也存在着类似的关系。通过联想,可以从二维空间进入到三维空间,直至到更多维的空间,从有形进入无形,从现实世界进入虚拟世界,这样步步渗入,步步构建,不断引入新概念,不断更新组建数学结构,使学生头脑中的数学结构不断更新,不断完善,从而达到对知识的真正理解与掌握。2.3在教学中利用数学结构加强学生的数学理解教师对数学结构的理解对学生建立起自身的数学结构起着不可缺少的作用,代写医学论文 只有理解数学结构,才能领会到数学逻辑结构所隐含的精神思想,才能建立自己的数学结构,才能理解数学。首先,在数学中利用高等数学结构的纵向与横向联系,有意识地帮助学生建立自己的知识结构,如在利用求曲边梯形的面积来引入定积分的概念时,其基本思维方法是:分割、近似代替,求和、取极限,最后得出定积分的概念。而这一方法同样可解决求曲顶柱体的体积、空间物体的质量、曲线段的质量等问题,区别仅在于取极限时趋向于零的元素不同而已。在具体每一章的讲解中,要着重介绍此章知识的数学结构中的内在联系及其本章的关键与核心的处理方法,使学生能够抓住本质,真正做到变被动学习为主动学习,主动建构自己本章的数学结构,并能用框图展现出知识间的内在联系,只有这样才能提高学生学习高等数学的兴趣和积极性,增加对高等数学知识的理解,提高高等数学学习的质量。帮助学生建立自己的数学结构,也有利于培养学生的思维能力、归纳能力、分析问题、解决问题的能力,还能促进其自学,调动和增强学生学习高等数学的信心和自觉程度。[参考文献][1]邵瑞珍,皮连生.教育心理学[M].上海:上海教育出版社,1988.[2]李士琦.PME:数学教育心理[M].北京:高等教育出版社.[3]毛京中,高等数学概念教学的一些思考[J].数学教育学报,2003,12(2).[4]陈琼,翁凯庆.试论数学学习中的理解学习[J].数学教育学报,2003,12(1)[5]张定强.剖析高等数学结构,提高学生数学素质[J].数学教育学报,1996,5(1)[6]刘继合.简析高等数学结构与化归[J].聊城师范学院学报(自然科学版),1999,12(3).

340 评论

安好即可

1. -两类曲线积分的探讨 学生姓名: 学号:数学与信息科学学院 数学与应用数学专业指导老师: 职称: 摘要:本文给出了第一型曲线积分和第二型曲线2. s of the first type and the second type, the nature of the two line integrals are discussed .It focus on the calculation3. als of the second type; property;calculation;connection.前言积分贯穿于整个大学数学的课程中,而这两类曲线积分是将以前定义在直线段上函数的积分延伸到了

105 评论

BuleS天之蓝

微积分的创立解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分的创立搭起了舞台。微积分的思想萌芽,特别是积分学,部分可以追溯到古代。我们已经知道,面积和体积的计算自古以来一直是数学家们感兴趣的课题,在古希腊、中国和印度数学家们的著述中,不乏用无限小过程计算特殊形状的面积、体积和曲线长的例子。在古代,刘徽撰写的《九章算术 商功》中提到: 斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣。 他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。祖冲之父子总结了魏晋时期著名数学家刘徽的有关工作,提出 幂势既同则积不容异 ,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理 或刘祖原理 。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。卡瓦列利运用祖暅原理求得了许多平面图形的面积和立体图形的体积,是现行中学立体几何教材求几何体积的基本雏形。在现代, 年伽利略《关于两门新科学的对话》中,他建立了自由落体定律、动量定律等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断言炮弹的最大射程应在发射角为 时达到,等待。伽利略本人竭力倡导自然科学的数学化,他的著作激起了人们对他所确立的动力学概念与定律作精确的数学表述的巨大热情。德国天文学家、数学家开普勒在 年发表《测量酒桶的新立体几何》论述了圆锥曲线围绕其所在平面上某直线旋转而成的立体体积的积分法。他的方法要旨是用无数个同维无限小元素之和来确定曲变形的面积及旋转体的体积。解析几何的创始人笛卡儿和费马,都是将坐标方法引进微分学问题研究的前锋。笛卡儿在《几何学》中提出了求切线的所谓 圆法 ,本质上是一种代数方法。就在同一年,费马在一份手稿中提出了求极大值与极小值的代数方法。 年 月,牛顿著作了《流数简论》是历史上第一篇系统的微积分文献。但是《流数简论》在许多方面是不成熟的,牛顿经过研究后加以改正,最后牛顿微积分学说最早的公开表述出现在 年出现的力学著作《自然哲学的数学原理》。@刘红平.

96 评论

jingeyijie

只考高等数学,不考线代和概率,网上可以下到考题

347 评论

!天道酬勤!

^面积=2*1/2∫r^2dθ 积分区间(0,π)

∫∫xdxdy

=∫r*cosθ*r^2dθ 积分区间(0,2π)

=∫[a(1+cosθ)]^3*cosθdθ

=a^3*∫(cosθ+3(cosθ)^2+3(cosθ)^3+(cosθ)^4dθ

=a^3*(sinθ+3/2(θ+1/2sinθ)+3sinθ-(sinθ)^3+∫(cosθ)^4dθ

∫(cosθ)^4dθ=3θ/8+sin4θ/32+sin2θ/4

代入区间(0,2π)

只有3/2θ,3θ/8 不为0

所以原式=15πa^3/4

相除=5/6*a

扩展资料:

先看一个例子:设有一曲线形构件占xOy面上的一段曲线 ,设构件的密度分布函数为ρ(x,y),设ρ(x,y)定义在L上且在L上连续,求构件的质量。

对于密度均匀的物件可以直接用ρV求得质量;对于密度不均匀的物件,就需要用到曲线积分,dm=ρ(x,y)ds;所以m=∫ρ(x,y)ds;L是积分路径,∫ρ(x,y)ds就叫做对弧长的曲线积分。

参考资料来源:百度百科-曲线积分

306 评论

相关问答

  • 微积分在经济中的应用毕业论文

    高等数学在我们生活中的具体应用论文 从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是

    精灵酱酱儿 3人参与回答 2023-12-10
  • 曲线积分论文答辩

    1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功

    年糕年糕熊 8人参与回答 2023-12-09
  • 微积分的发展史论文参考文献

    [1] 王小东.Riemann-Liouville分数阶微积分及其性质证明[D].太原理工大学硕士学位论文,2008.[2]邓伟华.分数阶微分方程的理论分析与数

    蝉翼之円 4人参与回答 2023-12-11
  • 定积分在物理中的应用毕业论文

    举例说明定积分在物理学中的应用如下: 在学习一元函数定积分的定义时,相信很多同学仍然记得定积分在几何上的意义是指图形面积的代数和,但当涉及到物理上的意义及其在物

    好运咪咪熊 3人参与回答 2023-12-09
  • 定积分的应用与研究论文

    微积分在现实生活中的应用: 1、排队等待中的极限夹逼定理 在数列极限的夹逼定理中,画出3条与轴线垂直的直线,分别代表3个垂直于平面的平面,从左到右将其标记为Yn

    ChenYeZhang 3人参与回答 2023-12-12