• 回答数

    4

  • 浏览数

    110

土豆咖喱咖啡
首页 > 职称论文 > 芯片封装检测设备研发现状论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

明天努力找吃喝

已采纳

主要企业:长电科技(600584)、通富微电(002156)、华天科技(002185)

本文核心数据:发展背景、行业地位、发展概况

行业发展背景

1、集成电路封测:芯片制造的最后一道工序

集成电路,简称IC就是把一定数量的常用电子元件,如电阻、电容、晶体管等,以及这些元件之间的连线,通过半导体工艺集成在一起的具有特定功能的电路,集成电路产业是现代信息技术的基石。

集成电路按照产业链可分为:设计、制造、封装、应用四个部分。其中芯片设计亦可称为超大规模集成电路(VLSI)设计,其流程涉及对电子器件(例如晶体管、电阻器、电容器等)、器件间互连线模型的建立;芯片制造工艺包括光刻、刻蚀、氧化沉积、注入、扩散和平坦化等过程。

从实际经营的角度分析,集成电路产业链是以电路设计为主导,由电路设计公司设计出集成电路,然后委托芯片制造厂生产晶圆,再委托封装厂进行集成电路封装及测试,然后销售给电子整机产品生产企业。

2、摩尔定律即将失效?堆叠式封测带来“一线生机”

——行业的周期性-摩尔定律

摩尔定律是由英特尔创始人之一戈登·摩尔(Gordon Moore)经过长期观察总结的经验。摩尔定律的内容为:集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍;或者说,当价格不变时,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上。这一定律揭示了信息技术进步的速度。

——摩尔定律面临失效

半导体行业最重要的定律就是摩尔定律,指集成电路上可容纳的晶体管数目,约每两年便会增加一倍,性能也将提升一倍。但一旦芯片上线条的宽度达到纳米数量级时,相当于只有几个分子的大小,这种情况下材料的物理、化学性能将发生质的变化,致使采用现行工艺的半导体器件不能正常工作,摩尔定律也就面临“失效”。

——堆叠式封装技术将超越摩尔定律

CES2019展会上,Intel正式公布了Foveros3D立体封装技术,其首款产品代号Lakefield。Lakefield使用10nm制程,同时也将是是英特尔首款使用3D封装技术的异质整合处理器。根据英特尔发布的资料,Lakefield处理器,不仅在单一芯片中使用了一个10nm FinFET制程的Sunny Cove架构主核心,另外还配置了4个也以10nm FinFET制程生产的Tremont架构的小核心。此外,还内建LP-DDR4内存控制器、L2/L3Cache,以及全新架构GPU。

而能够将这么多的处理核心和运算单元打包成一个单芯片,且整体体积仅有12 x 12mm,所仰赖的就是Foveros3D封装技术。

后摩尔时代集成电路若想继续满足电路的高性能和特殊功能需求,除了通过工艺缩小CMOS器件尺寸、探索新材料、电路新结构的方法外,最可能通过封装方式的改变来提高集成电路容纳性:以系统级封装(SiP)为代表的功能多样化道路列为半导体技术发展的新方向,着眼于增加系统集成的多种功能,而不是过去一直追求缩小特征尺寸和提高器件密度。

行业发展现状

1、集成电路封测工艺流程

封装是集成电路制造的后道工艺,集成电路封装是把通过测试的晶圆进一步加工得到独立芯片的过程,目的是为芯片的触点加上可与外界电路连接的功能,如加上引脚,使之可以与外部电路如PCB板连接。同时,封装能够为芯片加上一个“保护壳”,防止芯片受到物理或化学损坏。在封装环节结束后的测试环节会针对芯片进行电气功能的确认。在集成电路的生产过程中封装与测试多处在同一个环节,即封装测试过程。

典型的集成电路封测工艺流程为:来料检查-磨片减薄-划片-粘片-压焊-塑封-切筋成型-打印测试-包装-品质检验,具体如图所示。

2、上游:集成电路设计、制造规模增加,将推动封测产业发展

近些年来,在国家政策扶持以及市场应用带动下,中国集成电路产业保持快速增长,继续保持增速全球领先的势头。受此带动,在国内集成电路产业发展中,集成电路设计业始终是国内集成电路产业中最具发展活力的领域,增长也最为迅速。根据中国半导体行业协会统计,2015-2020年,我国集成电路设计市场销售收入呈逐年增长趋势。2020年我国集成电路设计市场销售规模为3778亿元,较2019年同比增长。

而在集成电路制造行业,由于产业逐渐走向成熟,需求趋于稳定,且我国集成电路行业正在朝着更核心的集成电路设计方向发展,集成电路制造行业增长率有所下降。2020年我国集成电路制造行业市场规模为2560亿元,较2019年同比增长。集成电路设计、制造规模的快速增长,必将推动封测产业发展。

3、下游:计算机与IT对芯片需求旺盛

——计算机产量增加拉动对封装产品的需求

近年来,随着计算机行业的逐渐成熟,我国电子计算机产业维持稳中有升的态势,电子计算机整机累计产量、微型电子计算机累计产量均同比出现不同程度增长。相对于2016年的低谷,当前计算机行业正处在上升阶段,预计与换新周期及经济缓慢复苏有关。据国家统计局统计,2020年我国电子计算机整机产量为亿,较2019年同比上升;2021年上半年,电子计算机整机产量为亿台,同比增长。

——IT产业支出增加拉动对封装产品的需求

根据Gartner公布的数据显示,2020年受新冠疫情影响,全球整体IT支出规模达36949亿美元,同比小幅下降;随2021年疫情好转以及疫情期间相关在线服务需求的发掘,全球整体IT支出规模将全面复苏,预计达到万亿美元,同比增长。

从细分领域来看,历年来全球IT支出最多的领域为通讯服务,其次为IT服务,设备和企业软件支出相对较少,数据中心系统的支出最少。2020年全球通讯服务支出为13499亿美元,同比下降,IT服务支出10118亿美元,同比下降,设备支出为6532亿美元,同比下降,企业软件支出为4650亿美元,同比增长,数据中心系统支出为2360亿美元,同比增长,增速最快。

4、竞争格局:主要集中在亚太地区,中国大陆市占率超20%

从目前全球封装测试产业的分布来看,主要集中在亚太地区,并且近年来Top3厂商市场占有率超过了50%,行业集中度很高。根据Chip Insight初步估算,2020年全球半导体封测市场规模为亿人民币,行业前十强占,达到亿人民币。中国IC封装市场起步晚,但增速快,行业规模近年来占全球比例也在不断上升。

根据Chip Insight统计,2020年全球前十大封测厂商排名和2019年基本一致,但是2019年产业集中度进一步加剧,前十大封测公司的收入占全球封测总营收的,相比2019年的增加了个百分点。据总部所在地划分,前十大封测公司中,中国台湾有五家(日月光ASE、力成科技PTI、京元电子KYEC、南茂ChipMOS、欣邦Chipbond),市占率为;中国大陆有三家(长电科技JCET、通富微电TF、华天科技HUATIAN),市占率为,较2019年增长个百分点;美国仅有一家(安靠Amkor),市占率为;新加坡一家(联合科技UTAC),市占率为。

行业发展前景:高端封装的发展,将带动产业正向循环

结合前文来看,随着半导体制程工艺瓶颈,以及芯片架构优化的限制,未来几年处理器性能的发展将逐步减慢,摩尔定律也将逐渐失效。因此,高端封装技术为行业发展提供一线生机,有利于提高芯片性能。而站在整个产业角度上,芯片性能的提升又会促进计算机、IT产业的发展,从而间接地为芯片设计、制造、封测技术突破带来更多可能。因此,封装行业发展将带动产业正向循环,意义重大,行业具有十分广阔的发展前景。

以上数据参考前瞻产业研究院《中国集成电路封装行业市场前瞻与投资战略规划分析报告》。

311 评论

一一欧巴桑

半导体封测设备:受益下游扩产、先进封装发展及芯片复杂性提升,景气向上

1) 半导体封测设备2017年全球销售额近60亿美元,增长。趋势来看,有望启动新一轮景气周期,未来2-3年进一步增长。

2) 除周期因素外,封装设备的增长驱动因素为:a。国内晶圆厂兴建引导封测企业增加产能,加大封测设备投资;b。先进封装发展促进新的封装设备购置;c。 芯片复杂性和下游应用多样性的增加促进测试设备的需求增长。

半导体封测行业:近10年销售额复合增长15%,先进技术+海外并购

1) 近10年全球封测销售额复合增长15%。封测在国内半导体产业链中占比最大(约35%),国产化率最高,是产业链中最具国际竞争力的环节。

2) 通过海外并购整合,中国大陆封测市场迅速壮大,市场份额跃居全球第二。

3) Yole预测中国到2020年先进封装的年复合增长率将达到18%,国内封测企业不断在先进封装技术领域加强研发力度加快布局。

4) 半导体封测技术:封装技术正从传统的引线键合向倒装芯片、硅通孔、扇入/扇出型晶圆级封装等先进封装技术演进,集成度持续提升。

半导体封测设备:受益晶圆扩产规模增加,设备国产化空间巨大

1) 受晶圆厂扩产推动,长电科技与华天科技等封测龙头宣布扩产,封测企业也将进入新一轮资本开支周期,上游封测设备企业将直接受益。

2) 半导体封装设备龙头ASMP(市占率25%);测试设备龙头泰瑞达(市占率48%)、爱德万(市占率39%),中国企业市场份额有很大提升空间

全球封装设备龙头ASMP:近10年来营业收入复合增速17%

1) 全球半导体封装设备龙头,业绩持续增长,盈利能力维持高位:市值近330亿元人民币,近10年营收复合增速17%。2017年ASMP实现销售收入147亿元人民币,同比增加15%;实现净利润亿元,同比增长80%。主营业务中的后工序业务和SMT解决方案业务连续多年全球市占率第一;2017年整体毛利率达到40%新高。

2) 专注半导体封装领域,研发投入规模维持高位:高强度研发投入保障产品巩固市场地位、紧跟前沿需求,2012年来研发费用占营收比例均高于8%。

3) 持续并购获取外部资源保持成长性:2010年和2014年公司先后收购SEAS表面贴装业务和DEK印刷机业务,进入表面贴装SMT领域。2018年,收购NEXX与AMICRA纳入后工序设备业务分部。

4) 顺应半导体产能转移趋势全球布局:ASMP紧盯下游产能转移灵活布局,切入中国市场,2017年在中国大陆的营收占比,有稳步上升趋势。

重点关注:ASMP、美国泰瑞达、日本爱德万、长川科技、精测电子

1) ASMP():全球半导体封装设备龙头,产品优势明显。

2) 美国泰瑞达():全球半导体测试设备龙头,市值约550亿人民币。

3) 日本爱德万():日本半导体测试设备龙头。

4) 长川科技(300604):国内测试设备龙头企业,有望率先实现进口替代。

5) 精测电子(300567):面板领域检测设备龙头,成功切入半导体检测设备。

我们战略看好半导体封测设备行业。重点关注ASMP、美国泰瑞达、日本爱德万、长川科技、精测电子。

风险提示:半导体行业扩产进度不及预期 ,设备进口替代进展不及预期。

299 评论

阿优米酱

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

177 评论

VIP111rena

先进的芯片尺寸封装(CSP)技术及其发展前景2007/4/20/19:53 来源:微电子封装技术汽车电子装置和其他消费类电子产品的飞速发展,微电子封装技术面临着电子产品“高性价比、高可靠性、多功能、小型化及低成本”发展趋势带来的挑战和机遇。QFP(四边引脚扁平封装)、TQFP(塑料四边引脚扁平封装)作为表面安装技术(SMT)的主流封装形式一直受到业界的青睐,但当它们在引脚间距极限下进行封装、贴装、焊接更多的I/O引脚的VLSI时遇到了难以克服的困难,尤其是在批量生产的情况下,成品率将大幅下降。因此以面阵列、球形凸点为I/O的BGA(球栅阵列)应运而生,以它为基础继而又发展为芯片尺寸封装(ChipScalePackage,简称CSP)技术。采用新型的CSP技术可以确保VLSI在高性能、高可靠性的前提下实现芯片的最小尺寸封装(接近裸芯片的尺寸),而相对成本却更低,因此符合电子产品小型化的发展潮流,是极具市场竞争力的高密度封装形式。CSP技术的出现为以裸芯片安装为基础的先进封装技术的发展,如多芯片组件(MCM)、芯片直接安装(DCA),注入了新的活力,拓宽了高性能、高密度封装的研发思路。在MCM技术面临裸芯片难以储运、测试、老化筛选等问题时,CSP技术使这种高密度封装设计柳暗花明。2CSP技术的特点及分类之特点根据J-STD-012标准的定义,CSP是指封装尺寸不超过裸芯片倍的一种先进的封装形式[1]。CSP实际上是在原有芯片封装技术尤其是BGA小型化过程中形成的,有人称之为μBGA(微型球栅阵列,现在仅将它划为CSP的一种形式),因此它自然地具有BGA封装技术的许多优点。(1)封装尺寸小,可满足高密封装CSP是目前体积最小的VLSI封装之一,引脚数(I/O数)相同的CSP封装与QFP、BGA尺寸比较情况见表1[2]。由表1可见,封装引脚数越多的CSP尺寸远比传统封装形式小,易于实现高密度封装,在IC规模不断扩大的情况下,竞争优势十分明显,因而已经引起了IC制造业界的关注。一般地,CSP封装面积不到节距QFP的1/10,只有BGA的1/3~1/10[3]。在各种相同尺寸的芯片封装中,CSP可容纳的引脚数最多,适宜进行多引脚数封装,甚至可以应用在I/O数超过2000的高性能芯片上。例如,引脚节距为,封装尺寸为40×40的QFP,引脚数最多为304根,若要增加引脚数,只能减小引脚节距,但在传统工艺条件下,QFP难以突破的技术极限;与CSP相提并论的是BGA封装,它的引脚数可达600~1000根,但值得重视的是,在引脚数相同的情况下,CSP的组装远比BGA容易。(2)电学性能优良CSP的内部布线长度(仅为)比QFP或BGA的布线长度短得多[4],寄生引线电容(<Ω)、引线电阻(<)及引线电感(<)均很小,从而使信号传输延迟大为缩短。CSP的存取时间比QFP或BGA短1/5~1/6左右,同时CSP的抗噪能力强,开关噪声只有DIP(双列直插式封装)的1/2。这些主要电学性能指标已经接近裸芯片的水平,在时钟频率已超过双G的高速通信领域,LSI芯片的CSP将是十分理想的选择。(3)测试、筛选、老化容易MCM技术是当今最高效、最先进的高密度封装之一,其技术核心是采用裸芯片安装,优点是无内部芯片封装延迟及大幅度提高了组件封装密度,因此未来市场令人乐观。但它的裸芯片测试、筛选、老化问题至今尚未解决,合格裸芯片的获得比较困难,导致成品率相当低,制造成本很高[4];而CSP则可进行全面老化、筛选、测试,并且操作、修整方便,能获得真正的KGD芯片,在目前情况下用CSP替代裸芯片安装势在必行。(4)散热性能优良CSP封装通过焊球与PCB连接,由于接触面积大,所以芯片在运行时所产生的热量可以很容易地传导到PCB上并散发出去;而传统的TSOP(薄型小外形封装)方式中,芯片是通过引脚焊在PCB上的,焊点和pcb板的接触面积小,使芯片向PCB板散热就相对困难。测试结果表明,通过传导方式的散热量可占到80%以上。同时,CSP芯片正面向下安装,可以从背面散热,且散热效果良好,10mm×10mmCSP的热阻为35℃/W,而TSOP、QFP的热阻则可达40℃/W。若通过散热片强制冷却,CSP的热阻可降低到,而QFP的则为[3]。(5)封装内无需填料大多数CSP封装中凸点和热塑性粘合剂的弹性很好,不会因晶片与基底热膨胀系数不同而造成应力,因此也就不必在底部填料(underfill),省去了填料时间和填料费用[5],这在传统的SMT封装中是不可能的。(6)制造工艺、设备的兼容性好CSP与现有的SMT工艺和基础设备的兼容性好,而且它的引脚间距完全符合当前使用的SMT标准(),无需对PCB进行专门设计,而且组装容易,因此完全可以利用现有的半导体工艺设备、组装技术组织生产。的基本结构及分类CSP的结构主要有4部分:IC芯片,互连层,焊球(或凸点、焊柱),保护层。互连层是通过载带自动焊接(TAB)、引线键合(WB)、倒装芯片(FC)等方法来实现芯片与焊球(或凸点、焊柱)之间内部连接的,是CSP封装的关键组成部分。CSP的典型结构如图1所示[6]。目前全球有50多家IC厂商生产各种结构的CSP产品。根据目前各厂商的开发情况,可将CSP封装分为下列5种主要类别[7、3]:(1)柔性基板封装(FlexCircuitInterposer)由美国Tessera公司开发的这类CSP封装的基本结构如图2所示。主要由IC芯片、载带(柔性体)、粘接层、凸点(铜/镍)等构成。载带是用聚酰亚胺和铜箔组成。它的主要特点是结构简单,可靠性高,安装方便,可利用原有的TAB(TapeAutomatedBonding)设备焊接。(2)刚性基板封装(RigidSubstrateInterposer)由日本Toshiba公司开发的这类CSP封装,实际上就是一种陶瓷基板薄型封装,其基本结构见图3。它主要由芯片、氧化铝(Al2O3)基板、铜(Au)凸点和树脂构成。通过倒装焊、树脂填充和打印3个步骤完成。它的封装效率(芯片与基板面积之比)可达到75%,是相同尺寸的TQFP的倍。(3)引线框架式CSP封装(CustomLeadFrame)由日本Fujitsu公司开发的此类CSP封装基本结构如图4所示。它分为Tape-LOC和MF-LOC两种形式,将芯片安装在引线框架上,引线框架作为外引脚,因此不需要制作焊料凸点,可实现芯片与外部的互连。它通常分为Tape-LOC和MF-LOC两种形式。(4)圆片级CSP封装(Wafer-LevelPackage)由ChipScale公司开发的此类封装见图5。它是在圆片前道工序完成后,直接对圆片利用半导体工艺进行后续组件封装,利用划片槽构造周边互连,再切割分离成单个器件。WLP主要包括两项关键技术即再分布技术和凸焊点制作技术。它有以下特点:①相当于裸片大小的小型组件(在最后工序切割分片);②以圆片为单位的加工成本(圆片成本率同步成本);③加工精度高(由于圆片的平坦性、精度的稳定性)。(5)微小模塑型CSP(MinuteMold)由日本三菱电机公司开发的CSP结构如图6所示。它主要由IC芯片、模塑的树脂和凸点等构成。芯片上的焊区通过在芯片上的金属布线与凸点实现互连,整个芯片浇铸在树脂上,只留下外部触点。这种结构可实现很高的引脚数,有利于提高芯片的电学性能、减少封装尺寸、提高可靠性,完全可以满足储存器、高频器件和逻辑器件的高I/O数需求。同时由于它无引线框架和焊丝等,体积特别小,提高了封装效率。除以上列举的5类封装结构外,还有许多符合CSP定义的封装结构形式如μBGA、焊区阵列CSP、叠层型CSP(一种多芯片三维封装)等。3CSP封装技术展望有待进一步研究解决的问题尽管CSP具有众多的优点,但作为一种新型的封装技术,难免还存在着一些不完善之处。(1)标准化每个公司都有自己的发展战略,任何新技术都会存在标准化不够的问题。尤其当各种不同形式的CSP融入成熟产品中时,标准化是一个极大的障碍[8]。例如对于不同尺寸的芯片,目前有多种CSP形式在开发,因此组装厂商要有不同的管座和载体等各种基础材料来支撑,由于器件品种多,对材料的要求也多种多样,导致技术上的灵活性很差。另外没有统一的可靠性数据也是一个突出的问题。CSP要获得市场准入,生产厂商必须提供可靠性数据,以尽快制订相应的标准。CSP迫切需要标准化,设计人员都希望封装有统一的规格,而不必进行个体设计。为了实现这一目标,器件必须规范外型尺寸、电特性参数和引脚面积等,只有采用全球通行的封装标准,它的效果才最理想[9]。(2)可靠性可靠性测试已经成为微电子产品设计和制造一个重要环节。CSP常常应用在VLSI芯片的制备中,返修成本比低端的QFP要高,CSP的系统可靠性要比采用传统的SMT封装更敏感,因此可靠性问题至关重要。虽然汽车及工业电子产品对封装要求不高,但要能适应恶劣的环境,例如在高温、高湿下工作,可靠性就是一个主要问题。另外,随着新材料、新工艺的应用,传统的可靠性定义、标准及质量保证体系已不能完全适用于CSP开发与制造,需要有新的、系统的方法来确保CSP的质量和可靠性,例如采用可靠性设计、过程控制、专用环境加速试验、可信度分析预测等。可以说,可靠性问题的有效解决将是CSP成功的关键所在[10,11]。(3)成本价格始终是影响产品(尤其是低端产品)市场竞争力的最敏感因素之一。尽管从长远来看,更小更薄、高性价比的CSP封装成本比其他封装每年下降幅度要大,但在短期内攻克成本这个障碍仍是一个较大的挑战[10]。目前CSP是价格比较高,其高密度光板的可用性、测试隐藏的焊接点所存在的困难(必须借助于X射线机)、对返修技术的生疏、生产批量大小以及涉及局部修改的问题,都影响了产品系统级的价格比常规的BGA器件或TSOP/TSSOP/SSOP器件成本要高。但是随着技术的发展、设备的改进,价格将会不断下降。目前许多制造商正在积极采取措施降低CSP价格以满足日益增长的市场需求。随着便携产品小型化、OEM(初始设备制造)厂商组装能力的提高及硅片工艺成本的不断下降,圆片级CSP封装又是在晶圆片上进行的,因而在成本方面具有较强的竞争力,是最具价格优势的CSP封装形式,并将最终成为性能价格比最高的封装。此外,还存在着如何与CSP配套的一系列问题,如细节距、多引脚的PWB微孔板技术与设备开发、CSP在板上的通用安装技术[12]等,也是目前CSP厂商迫切需要解决的难题。的未来发展趋势(1)技术走向终端产品的尺寸会影响便携式产品的市场同时也驱动着CSP的市场。要为用户提供性能最高和尺寸最小的产品,CSP是最佳的封装形式。顺应电子产品小型化发展的的潮流,IC制造商正致力于开发甚至更小的、尤其是具有尽可能多I/O数的CSP产品。据美国半导体工业协会预测,目前CSP最小节距相当于2010年时的BGA水平(),而2010年的CSP最小节距相当于目前的倒装芯片()水平。由于现有封装形式的优点各有千秋,实现各种封装的优势互补及资源有效整合是目前可以采用的快速、低成本的提高IC产品性能的一条途径。例如在同一块PWB上根据需要同时纳入SMT、DCA,BGA,CSP封装形式(如EPOC技术)。目前这种混合技术正在受到重视,国外一些结构正就此开展深入研究。对高性价比的追求是圆片级CSP被广泛运用的驱动力。近年来WLP封装因其寄生参数小、性能高且尺寸更小(己接近芯片本身尺寸)、成本不断下降的优势,越来越受到业界的重视。WLP从晶圆片开始到做出器件,整个工艺流程一起完成,并可利用现有的标准SMT设备,生产计划和生产的组织可以做到最优化;硅加工工艺和封装测试可以在硅片生产线上进行而不必把晶圆送到别的地方去进行封装测试;测试可以在切割CSP封装产品之前一次完成,因而节省了测试的开支。总之,WLP成为未来CSP的主流已是大势所驱[13~15]。(2)应用领域CSP封装拥有众多TSOP和BGA封装所无法比拟的优点,它代表了微小型封装技术发展的方向。一方面,CSP将继续巩固在存储器(如闪存、SRAM和高速DRAM)中应用并成为高性能内存封装的主流;另一方面会逐步开拓新的应用领域,尤其在网络、数字信号处理器(DSP)、混合信号和RF领域、专用集成电路(ASIC)、微控制器、电子显示屏等方面将会大有作为,例如受数字化技术驱动,便携产品厂商正在扩大CSP在DSP中的应用,美国TI公司生产的CSP封装DSP产品目前已达到90%以上。此外,CSP在无源器件的应用也正在受到重视,研究表明,CSP的电阻、电容网络由于减少了焊接连接数,封装尺寸大大减小,且可靠性明显得到改善。(3)市场预测CSP技术刚形成时产量很小,1998年才进入批量生产,但近两年的发展势头则今非昔比,2002年的销售收入已达亿美元,占到IC市场的5%左右。国外权威机构“ElectronicTrendPublications”预测,全球CSP的市场需求量年内将达到亿枚,2004年为亿枚,2005年将突破百亿枚大关,达亿枚,2006年更可望增加到亿枚。尤其在存储器方面应用更快,预计年增长幅度将高达。

164 评论

相关问答

  • 几何量检测现状及发展论文

    给一下邮箱,我发给你。

    白色犬犬 4人参与回答 2023-12-10
  • 芯片设备机械手臂的论文

    机械制造在一定程度上反映了一个国家的综合实力,我国是发展中国家,发展中科技进步、社会发展等方面都离不开机械制造。下文是我为大家整理的关于3000字机械类论文的

    粉嘟嘟的Pinky 2人参与回答 2023-12-07
  • 包装设计论文研究现状

    不知道你的疑问在哪里,但是凭借个人在外贸设计上的经验,在论文素材的搜集方向是给点建议:1.外贸设计与国内设计之区别:例如,美国的包装着重在各项安规和法律意义上;

    lin12345610 5人参与回答 2023-12-08
  • cpu卡芯片设计研究论文

    随着人们对计算机紧凑性设计的要求越来越高,计算机的CPU芯片也在朝着高度集成的方向不断发展,由此造成其在性能方面对温度也更加敏感,其散热技术也成为了相关领域的研

    Titi080808 2人参与回答 2023-12-12
  • 逻辑芯片检测论文

    EDA技术的发展与应用电子设计技术的核心就是EDA技术,EDA是指以计算机为工作平台,融合应用电子技术、计算机技术、智能化技术最新成果而研制成的电子CAD通用软

    爱我大兴 2人参与回答 2023-12-10