doubledennis
电磁学计算方法的研究进展和状态摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术
蛋蛋徐要发疯
美国文学的国图分类为:I712为开头的是美国文学 古代文学 中世纪文学 近代文学 现代文学 各体文学的评论和研究 I712. 072 诗歌 戏剧文学 小说 I712. 075 报告文学 散文、杂著 民间文学 儿童文学 少数民族文学 宗教文学 文学史、文学思想史 古代 中世纪 近代 现代 作品集 作品综集 诗歌 戏剧文学 小说 报告文学 散文、杂著 民间文学 歌谣 故事、传说、神话 寓言 谚语 谜语、笑话 儿童文学 诗歌、童谣 戏剧、歌舞剧 小说 故事 报告文学 散文 童话、寓言 少数民族文学 宗教文学 美国文学(America literature)表现为平民化,多元化,富于阳刚之气,热爱自由,追求以个人幸福为中心的美国梦。美国文学大致出现过3次繁荣:19世纪前期形成民族文学,第一和第二次世界大战后,美国文学两度繁荣,并产生世界影响,已有近10位作家获得诺贝尔文学奖。
实创佳人
很遗憾,没有帮你找到向量值函数的确切分类号,但我查遍了中图网亦无所获,根据:O183向量(矢量)和张量分析 也许它属于O18 几何 拓扑类吧,下面的这个网址包含了所有的分类号,你可以再去查找一下,再下面就是我所知的分类号: • • • O1-0数学理论 • O1-6数学参考工具书 • O1-8计算工具 • O11古典数学 • O119中国数学 • O12初等数学 • O13高等数学 • O14数理逻辑、数学基础 • O15代数、数论、组合理论 • O17数学分析 • O18几何、拓扑 • O19动力系统理论 • O21概率论与数理统计 • O22运筹学 • O23控制论、信息论(数学理论) • O24计算数学 • O29应用数学 • • • O1-64数学表 • • O1-641乘法表、因数表、质数表 • O1-642倒数表 • O1-643乘方与开方表 • O1-644对数表 • O1-645三角函数表 • O1-646积分表 • O1-647概率论、数理统计用表 • O1-648特殊函数表 • O1-649计算数学用表 • O112中国古典数学 • O113/117各国古典数学 • O121算术 • O122初等代数 • O123初等几何 • O124三角 • 代数式 • 方程式 • 不等式 • 排列、组合、二项定理 • 极大与极小 • 对数、指数 • 级数 • 平面几何 • 立体几何 • 几何各论 • 极大与极小 • 轨迹与几何作图 • 三角形与圆的几何学、近世几何学 • 平面三角 • 球面三角 • O141数理逻辑(符号逻辑) • O142应用数理逻辑 • O143数学基础 • O144集合论 • 命题演算、谓词演算、类演算 • 证明论 • 递归论(递归函数、能行性理论) • 模型理论 • 谓词演算(命题函项演算) • 类演算 • 非标准分析 • 基本概念 • 悖论 • 公理集合论 • 类型论 • 描述集合论(解析集合论) • O151代数方程论、线性代数 • O152群论 • O153抽象代数(近世代数) • O154范畴论、同调代数 • O155微分代数、差分代数 • O156数论 • O157组合数学(组合学) • O158离散数学 • O159模糊数学 • 代数方程论 • 线性代数 • 有限群论 • 交换群论(阿贝尔群论) • 线性群论 • 拓扑群论 • 李群 • 群表示论 • 群的推广 • 群论的应用 • 偏序集合与格论 • 布尔代数 • 环论 • 域论 • 泛代数 • 范畴论 • 同调代数 • 代数K-理论 • 初等数论 • 代数数论 • 几何数论 • 解析数论 • 二次型(二次齐式) • 超越数论 • 丢番图分析(丢番图数论) • 组合分析 • 组合设计 • 组合几何 • 编码理论(代数码理论) • 图论 • 图论的应用 • O171分析基础 • O172微积分 • O173无穷级数论(级数论) • O174函数论 • O175微分方程、积分方程 • O176变分法 • O177泛函分析 • O178不等式及其他 • 微分学 • 积分学 • 实分析、实变函数 • 傅里叶分析(经典调和分析) • 调和函数与位势论 • 函数构造论 • 复分析、复变函数 • 特殊函数 • 贝赛尔函数 • 球面调和函数 • 圆柱面调和函数 • 椭圆面调和函数 • 欧拉积分 • 单复变数函数几何理论 • 整数函数论、亚纯函数论(半纯函数论) • 代数函数论 • 椭圆函数、阿贝尔函数、自守函数 • 拟共形映射(拟保角变换)、拟解析函数、广义解析函数 • 多复变数函数 • 逼近论 • 插值论 • 矩量问题 • 正交级数(傅里叶级数) • 傅里叶积分(傅里叶变换) • 殆周期函数 • 描述理论 • 测度论 • 凸函数、凸集理论 • 多项式理论 • 常微分方程 • 偏微分方程 • 微分算子理论 • 高阶偏微分方程(组) • 积分方程 • 积分微分方程 • 差分微分方程 • 边值问题 • 特征值及特征值函数问题 • 解析理论 • 定性理论 • 稳定性理论 • 非线性常微分方程 • 抽象空间常微分方程 • 稳定性理论 • 一阶偏微分方程 • 二阶偏微分方程 • 数理方程 • 椭圆型方程 • 抛物型方程 • 双曲型方程 • 混合型方程 • 非线性偏微分方程 • 极小曲面方程 • 等周问题 • 大范围变分法 • 希尔伯特空间及其线性算子理论 • 巴拿赫空间及其线性算子理论 • 线性空间理论(向量空间) • 广义函数论 • 巴拿赫代数(赋范代数)、拓扑代数、抽象调和分析 • 积分变换及算子演算 • 谱理论 • 积分论(基于泛函分析观点的) • 非线性泛函分析 • 泛函分析的应用 • 其他 • O181几何基础(几何学原理) • O182解析几何 • O183向量(矢量)和张量分析 • O184非欧几何、多维空间几何 • O185射影(投影)几何、画法几何 • O186微分几何、积分几何 • O187代数几何 • O189拓扑(形势几何学) • v 向量分析 • 张量分析 • O192整体分析、流形上分析、突变理论 • O193微分动力系统 • O221规划论(数学规划) • O223统筹方法 • O224最优化的数学理论 • O225对策论(博弈论) • O226排队论(随机服务系统) • O227库存论 • O228更新理论 • O229搜索理论 • v O241数值分析 • O242数学模拟、近似计算 • O243图解数学、图算数学 • [O244]程序设计 • O245数值软件 • O246数值并行计算 • 误差理论 • {}最小二乘法 • 插值法 • 数值积分法、数值微分法 • 数值逼近 • 线性代数的计算方法 • 非线性代数方程和超越方程的数值解法 • 微分方程、积分方程的数值解法 • 数学模拟 • 近似计算 •
浅陌时光
某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。
壹家生活
中图分类法O1数学O1数学O1-0数学理论O1-6数学参考工具书O1-64数学表O1-641乘法表、因数表、质数表O1-642倒数表O1-643乘方与开方表O1-644对数表O1-645三角函数表O1-646积分表O1-647概率论、数理统计用表O1-648特殊函数表O1-649计算数学用表O1-8计算工具O11古典数学O112中国古典数学O113/117各国古典数学O119中国数学O12初等数学O121算术四则比例、百分法、利率开方心算法、速算法珠算、筹算O122初等代数代数式方程式不等式排列、组合、二项定理极大与极小对数、指数级数O123初等几何平面几何立体几何几何各论极大与极小轨迹与几何作图三角形与圆的几何学、近世几何学O124三角平面三角球面三角O13高等数学O14数理逻辑、数学基础O141数理逻辑(符号逻辑)命题演算、谓词演算、类演算谓词演算(命题函项演算)类演算证明论递归论(递归函数、能行性理论)模型理论非标准分析O142应用数理逻辑O143数学基础O144集合论基本概念悖论公理集合论类型论描述集合论(解析集合论)O15代数、数论、组合理论O151代数方程论、线性代数代数方程论线性代数矩阵论行列式论多线性代数向量代数、因子代数、代数不变量论线性不等式线性代数的应用O152群论有限群论交换群论(阿贝尔群论)线性群论拓扑群论李群群表示论群的推广群论的应用O153抽象代数(近世代数)偏序集合与格论布尔代数环论域论泛代数 O154范畴论、同调代数范畴论同调代数代数K-理论 O155微分代数、差分代数O156数论初等数论代数数论代数数域、域扩张局部数域分圆域类域论几何数论解析数论二次型(二次齐式)超越数论丢番图分析(丢番图数论)O157组合数学(组合学)组合分析组合设计组合几何编码理论(代数码理论)图论图论的应用O158离散数学O159模糊数学 O17数学分析O171分析基础O172微积分微分学积分学O173无穷级数论(级数论)发散级数、可求和性、收敛因子连分式论O174函数论实分析、实变函数描述理论测度论凸函数、凸集理论多项式理论傅里叶分析(经典调和分析)正交级数(傅里叶级数)傅里叶积分(傅里叶变换)殆周期函数调和函数与位势论函数构造论逼近论插值论矩量问题复分析、复变函数单复变数函数几何理论整数函数论、亚纯函数论(半纯函数论)代数函数论椭圆函数、阿贝尔函数、自守函数拟共形映射(拟保角变换)、拟解析函数、广义解析函数多复变数函数特殊函数贝赛尔函数球面调和函数圆柱面调和函数椭圆面调和函数欧拉积分O175微分方程、积分方程常微分方程解析理论定性理论稳定性理论非线性常微分方程抽象空间常微分方程偏微分方程稳定性理论一阶偏微分方程二阶偏微分方程数理方程椭圆型方程抛物型方程双曲型方程混合型方程非线性偏微分方程微分算子理论高阶偏微分方程(组)积分方程积分微分方程差分微分方程边值问题特征值及特征值函数问题O176变分法极小曲面方程等周问题大范围变分法 O177泛函分析希尔伯特空间及其线性算子理论巴拿赫空间及其线性算子理论线性空间理论(向量空间)拓扑线性空间半序线性空间其他线性空间广义函数论巴拿赫代数(赋范代数)、拓扑代数、抽象调和分析积分变换及算子演算谱理论积分论(基于泛函分析观点的)非线性泛函分析泛函分析的应用其他O178不等式及其他O18几何、拓扑O181几何基础(几何学原理)O182解析几何平面解析几何立体解析几何(空间解析几何) O183向量(矢量)和张量分析向量分析张量分析O184非欧几何、多维空间几何O185射影(投影)几何、画法几何射影(投影)几何画法几何O186微分几何、积分几何微分几何古典微分几何黎曼几何射影微分几何广义空间(一般空间)微分形式(外微分形式)大范围微分几何直接微分几何积分几何O187代数几何代数曲线、代数曲面簇(代数簇)域上多胞形和其他环O189拓扑(形势几何学)一般拓扑拓扑空间(空间拓扑)维论模糊拓扑学(不分明拓扑学)代数拓扑组合拓扑同调和上同调群同伦论纽结理论拓扑K-理论解析拓扑学流形的几何微分拓扑微分流形纤维丛(纤维空间)O19动力系统理论O192整体分析、流形上分析、突变理论O193微分动力系统O21概率论与数理统计O211概率论(几率论、或然率论)概率基础几何概率与组合概率分布理论极限理论随机变量随机过程平稳过程与二阶矩过程马尔可夫过程随机微分方程过程统计理论分支过程描述性概率期望与预测概率论的应用 O212数理统计一般数理统计抽样理论、频率分布序贯分析多元分析判决函数(决策函数)试验分析与试验设计非参数统计贝叶斯统计O213应用统计数学质量控制可靠性理论其他统计调整 O22运筹学O221规划论(数学规划)线性规划非线性规划动态规划整数规划随机规划多目标规划组合规划参数规划O223统筹方法O224最优化的数学理论O225对策论(博弈论)O226排队论(随机服务系统)O227库存论O228更新理论O229搜索理论O23控制论、信息论(数学理论)O231控制论(控制论的数学理论)线性控制系统非线性控制系统随机控制系统分布参数系统[]复杂系统其他O232最优控制O233逻辑网络理论O234学习机理论O235模式识别理论O236信息论(信息论的数学理论)[]编码理论(代数码理论)O24计算数学O241数值分析误差理论{}最小二乘法插值法数值积分法、数值微分法数值逼近线性代数的计算方法非线性代数方程和超越方程的数值解法微分方程、积分方程的数值解法常微分方程的数值解法偏微分方程的数值解法积分方程的数值解法差分方程的稳定性理论共形变换(保角变换)中的计算问题实用调和分析O242数学模拟、近似计算数学模拟近似计算[]有限元法哈特里(Hartree)近似法牛顿-拉弗森(Newton-Raphson)法帕德(Pade)近似法雷利-里茨(Rayleigh-Ritz)法松弛法索末菲尔德(Sommer-feld)近似法随机近似法区间分析法O243图解数学、图算数学[O244]程序设计O245数值软件O246数值并行计算 O29应用数学
moon黄月月
实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。实数包括所有的有理数和无理数,比如0、 、、π 等。但仅仅以枚举的方式不能描述实数的全体。根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1cm的正方形为例,其对角线有多长?在规定的精度下(比如误差小于厘米),总可以用有理数来表示足够精确的测量结果(比如厘米)。但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击;见第一次数学危机。从古希腊一直到十七世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。在当时,尽管虚数已经出现并广为使用,实数的严格定义却仍然是个难题,以至函数、极限和收敛性的概念都被定义清楚之后,才由十九世纪末的戴德金、康托等人对实数进行了严格处理。在目前的初等数学中,没有对实数进行严格的定义,而一般把实数看作小数(有限或无限的)。实数的完整定义在几何上,直线上的点与实数一一对应;见数轴。实数可以分为有理数(如42、)和无理数(如π、√2)两类,也可以分为代数数和超越数(有理数都是代数数),或正数,负数和零三类。实数集合通常用字母R或表示。而Rn表示n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续变化的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。[编辑]历史在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。[编辑]定义[编辑]从有理数构造实数实数可以用通过收敛于一个唯一实数的十进制或二进制展开如{3, , , , ,…}所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。[编辑]公理化方法设R是所有实数的集合,则:集合R是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。域R是个有序域,即存在全序关系≥,对所有实数x, y和z:若x ≥ y则x + z ≥ y + z;若x ≥ 0且y ≥ 0则x'y ≥ 0。集合R满足戴德金完备性,即任意R的非空子集S (S ⊆ R, S ≠ ∅),若S在R内有上界,那么S在R内有上确界。最后一条是区分实数和有理数的关键。例如所有平方小于2的有理数的集合存在有理数上界,如;但是不存在有理数上确界(因为不是有理数)。实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域R1和R2,存在从R1到R2的唯一的域同构,即代数学上两者可看作是相同的。[编辑]例子15 (整数) (有限小数)... (无限循环小数)π = ... (无限不循环小数) (无理数) (分数)[编辑]性质[编辑]基本运算在实数域内,可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数;只有非负实数才能开偶次方,其结果还是实数。[编辑]完备性作为度量空间或一致空间,实数集合是一个完备空间,它有以下性质:所有实数的柯西序列都有一个实数极限。有理数集合就不是完备空间。例如,(1, , , , , , ...)是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限。实数是有理数的完备化:这亦是构造实数集合的一种方法。极限的存在是微积分的基础。实数的完备性等价于欧几里得几何的直线没有“空隙”。[编辑]完备的有序域实数集合通常被描述为“完备的有序域”,这可以几种解释。首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z,z + 1将更大)。所以,这里的“完备”不是完备格的意思。另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是R的子域。这样R是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。[编辑]高级性质实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的ZFS公理系统相互独立。所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于R。这两个性质使R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。实数集拥有一个规范的测度,即勒贝格测度。实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于R,但也同样满足和R一样的一阶逻辑命题。满足和R一样的一阶逻辑命题的有序域称为R的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在R中证明要简单一些),从而确定这些命题在R中也成立。[编辑]拓扑性质实数集构成一个度量空间:x和y间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:令为一实数。的邻域是实数集中一个包括一段含有的线段的子集。是可分空间。在中处处稠密。的开集是开区间的联集。的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。每个中的有界序列都有收敛子序列。是连通且单连通的。中的连通子集是线段、射线与本身。由此性质可迅速导出中间值定理。区间套定理:设为一个有界闭集的序列,且,则其交集非空。严格表法如下:.[编辑]扩展与一般化实数集可以在几种不同的方面进行扩展和一般化:最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。有时候,形式元素 +∞和 -∞加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。
这种问题最好给出具体的函数,而不是泛泛地问,因为根据函数的复杂程度,可能用解析法,也可能用数值法.解析法适用于函数积分能够求出解析表达式的情况,例如:syms
大学生党校结业论文 1我参加了由学院举办的第xx期发展对象培训班。通过培训学习,使我提高了对理论学习的认识。特别是当前党和国家正在加强共产党员的先进性教育与加强
随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。 《 化学工
联系方式如何交易
我们知道,用牛顿-莱布尼兹公式计算定积分时,首先要求出被积函数的原函数。但在工程技术问题中,常常会遇到下面的一些情况。例如,被积函数不是用解析表达式表示,而是由