• 回答数

    3

  • 浏览数

    165

再遇见67
首页 > 职称论文 > 函数的提出与发展研究论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

小豆包么么

已采纳

把它的历史背景抄上,在写点自己的感想,不就成了吗。

给你点材料吧!

1.1 早期函数概念——几何观念下的函数

十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。

1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。

1.2 十八世纪函数概念——代数观念下的函数

1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。

18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。

欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。

他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。

1.3 十九世纪函数概念——对应关系下的函数

1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。

1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。

1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。

”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受。

至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。

等到康托尔(Cantor,德,1845-1918)创立的 *** 论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“ *** ”和“对应”的概念给出了近代函数定义,通过 *** 概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。

1.4 现代函数概念—— *** 论下的函数

1914年豪斯道夫(F.Hausdorff)在《 *** 论纲要》中用“序偶”来定义函数。

其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。

库拉托夫斯基(Kuratowski)于1921年用 *** 概念来定义“序偶”,即序偶(a,b)为 *** {{a},{b}},这样,就使豪斯道夫的定义很严谨了。

1930年新的现代函数定义为,若对 *** M的任意元素x,总有 *** N确定的元素y与之对应,则称在 *** M上定义一个函数,记为y=f(x)。

元素x称为自变元,元素y称为因变元。

函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。

因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。

我就知道这些,你再问问别人吧!!!!!

337 评论

WTF=WheresTheFood

数学思想是人脑对现 /a>思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物。函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。这是一种考虑运动变化、相依关系,以一种状态确定地刻划另一种状态过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是在知识和方法反复学习运用中抽象出的带有观念性的指导方法。 所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。下面简单介绍一下运用函数思想来解决方程、不等式、数列、参数的取值范围等问题。一、运用函数思想求解方程问题 函数与方程既是两个不同的概念,又存在着密切的联系。一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数。一个方程的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标。因此,许多有关方程的问题都可用函数思想来解决。例1 求证:不论 a取什么实数,方程x2 - ( a2 + a ) x + a - 2=0必有两个不相等的实根。分析:此题若用常规解法,求出判别式△是一个关于a的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数f(x)=x2-(a2+a)x+a-2,要证明命题成立,只需证明函数y=f(x)的图象与x轴有两个交点,由于它的开口向上,只要找到一个实数X0,使f(x0)<0即可。比如f(1)=1-(a2+a)+a-2= - a2-1<0。故函数y=f(x) 的图象与x轴有两个交点,因此命题成立。例2 已知关于x的实系数二次方程x2+ax+b=0 有两个实数根α,β,证明:(I)如果 |α|< 2,|β |< 2,那么2| a |< 4+b且| b | < 4;(II)如果2| a |< 4+b且 | b | < 4,那么|α|< 2,|β| < 2;分析:本题表面上看是方程问题,方程的根的分布与参数a,b之间满足的关系式,如果用纯方程理论处理则十分繁琐;如果用函数思想来分析,将方程根的分布问题转化为函数图像与x轴交点问题,则可抓往本质。解:本题(I)(II)的结果是2 | a | < 4+b{ <==> α,β ∈(-2,2)| b | < 4可设函数f(x)=x2+ax+b( I )由二次函数的图像知f(2)>0α,β∈(-2,2) ==>{ f(-2)>0|b|=|α�6�1β|< 44+2a+b>0 2a> - (4+b)==>{ ==> {4-2a+b>0 2a< 4+b==> 2|a| <4+b且|b| < 42 |a| <4+b 4+2a+b>0 f(2)>0(Ⅱ) 如果{ ==> { ==>{ 则| b | < 4 4-2a+b>0 f(-2)>0α,β在(-2,2)之内或在(-2,2)之外,若α,β在(-2,2)之外,则 |α�6�1β| = b > 4,这与| b | < 4相矛盾,故α,β∈(-2,2)。二 、运用函数思想证明不等式例3 设 a , b , c 均为正数,且a+b>c,a b c求证:----- + ------ > -------1+a 1+b 1+ca b c分析:不等式左右两边,结构相似: -----, ------, -------,因1+a 1+b 1+c此可以联想函数f(x)=x / (1+x) (x>0)的单调性。证明:先证函数f(x)=x / (1+x) (x>0)的单调性。任取x1>0 , x2>0,不妨设x1 0 , x2> 0 ∴ 1+ x1 >0 , 1+ x2 >0又∵x1< x2 ∴x1- x2< 0x1- x2 ∴------------------- < 0(1+ x1)(1+ x2)即f(x1)c>0 ∴f(a+b)>f(c)a+b c即--------- > ----1+a+b 1+ca b a b a+b∵------ + ------ > ------- + ------- = -------1+a 1+b 1+a+b 1+a+b 1+a+b a b c∴------ + ------ > -------1+a 1+b 1+c例4 已知a、b、x、y都是实数,且a2+b2=1,x2+y2=1,求证:ax+by≤1分析:已知条件中有平方和等于1,可联想正、余弦之间的平方关系,再利用函数的有界性进行证明。证明:∵a2 + b2 = 1 , x2 + y2 = 1∴可设a=sinα, b=cosα, x=sinβ, y=cosβ则有ax+by=sinαsinβ+cosαcosβ=cos(α-β)≤1∴ax+by≤1三、运用函数思想解数列问题数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2......n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。因此,有些数列的问题可用函数思想来解决。例5 在等差数列中,前n项为Sn,已知Sp = q , Sq =p( p、q∈ N*且p≠q),求Sp+q分析:本题的常规解法是用求和公式建立方程组,求出a1和 d,进而求出Sp+q,但计算十分繁琐。若考虑到等差数列的前n项和是关于n的二次函数,且无常数项。故可考虑建立目标函数Sn=an2+bn(a,b为待定系数),可优化解题过程。解:设Sn=an2 + bn (a,b为待定系数)则Sp=ap2+bp ∴ap2+bp=q (1)Sq=aq2+bq ∴aq2+bq=p (2)(1) - (2)整理得(p-q)[a (p+q) + b)]=-(p-q )∵p≠q ∴p-q≠0 ∴a(p+q)+b= -1又∵Sp+q=a ( p + q )2 + b ( p + q ) = ( p + q ) [ a ( p+q ) + b ]= - (p+q)∴Sp+q= - (p+q)四、运用函数思想求参数(或变量)的范围(一)构造一次函数求参数的范围例6 若不等式2x-1>m(x2-1)对 |m|≤2的所有m均成立,求x的取值范围。解:构造关于m的一次函数f(m)=(x2-1)m - 2x+1,则由f(m)<0对m∈[-2,2]恒成立,得f(-2)<0 2x2+2x-3>0 √7 - 1 √3 + 1{ => { => ------------ < x < ----------f(2)<0 2x2-2x-1<0 2 2√7 - 1 √3 + 1∴x的取值范围是(---------- ,----------- )2 2(二 )构造二次函数求变量的范围例7 已知实数a , b , c , d , 满足a+b+c+d=5,a2+b2+c2+d2=7,求a的取值范围。解:构造关于x的二次函数f(x)=(x - b)2+(x - c)2+(x - d)2=3 x2 - 2(b + c + d) x+(b2 + c2 + d2)∵f(x)≥0 ∴△≤0即4(b + c + d)2-12(b 2+ c2 + d2)≤0亦即 4( 5 - a)2 - 12(7 - a2)≤0∴2a2-5a+2≤0∴1/2≤a≤2∴a的取值范围为[1/2,2] 这个 开头的话 和中间一些还是不错的啦 具体自己组织下~ 1、坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,因此判断平面直角坐标系中的一个点是否在函数图象上,只需把点的坐标代入函数解析式进行检验,能满足函数解析式的表明点在图象上,不满足函数解析式的则表明点不在图象上。2、求两个函数的交点坐标,即求这两个函数解析式组成的二元方程组的解。3、在解决有关函数的问题时,要注意利用平面直角坐标系中X轴与Y轴之间的夹角为直角、以及勾股定理等平面几何知识,要能很熟练地求出函数与坐标轴的交点坐标。5、根据函数的概念、性质以及它们的图象,进行形与数、形与方程、形与不等式之间的相互转换,是解决函数问题的重要方法。 函数概念在数学中占有重要的地位。它在整个中学函数教学的这条主线上,起到承前启后的关键作用。函数概念以及它的思想方法成为中学数学教学的主线之一,函数概念的学习,是学生对现实世界中具体的数量关系的认识向抽象的数量关系的认识的一个飞跃。然而由于函数概念的复杂性,使它成为初中教学的一个难点。本文在前人的研究基础上,从函数的概念出发,通过问卷调查和个案访谈,从函数概念的定义、表示方法和应用三个角度调查了本人所在的中学的初中学生对函数概念的理解,并将此结果加以对比分析,得出以下结论:1.初中学生对函数概念本质的理解不深刻,不能全面认识自变量x与因变量y之间的关系,这与在新课程标准要求下对学生进行训练的重点有关。2.学生对图形和图表表征的函数的识别发展显著落后于对解析式表征的函数的识别。3.初中学生对函数概念的应用能力较低。4.初中学生在函数的认知发展水平方面存在差异,但总体没有明显差异:(1)在运用解析式来描述函数概念方面的能力,初三学生强于初二学生;(2)对于图表和图像法的运用方面,初二学生强于初三学生。本文对研究结果进行深入分析,结合教学实际,对初中现阶段的函数概念教学提出以下改进措施:(1)加强对函数概念的本质认识;(2)加强函数表示形式间的转换;(3)关注日常生活中的函数模型。 这些也可以用下的~

118 评论

liuyanfei0451

函数教学论文【1】

摘 要:初中数学中的函数知识非常重要,搞好这部分内容的教学,必须要理解基本概念,理清知识结构,树立“运动变化”的理念,渗透数形结合的思想。

关键词:初中数学 函数教学 数形结合

初中数学中变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进。

尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察、研究、解决问题的能力是十分有益的。

不仅如此,函数概念还是高中代数的核心部分,学好初中函数的有关知识,可以为研究高中数学中的各种初等函数奠定一定的基础。

因而,初中函数概念的基础性作用是显而易见的。

在教学中应从四个方面引导学生正确理解函数的概念,进而掌握函数的特征和性质。

一、正确理解三组关系,系统把握函数概念

点的坐标的定义与点与坐标的一一对应关系;函数定义中某一变化过程和自变量与函数的对应关系;函数图象定义中的自变量值。

函数值→有序数对→点的坐标→点→图象,加强这三组关系的理解,有利于把函数的解析式、点的坐标和函数图象结合起来,建立起较完整的函数概念。

二、理清知识结构,构建知识体系

用这样一个知识结构图,可以把平面直角坐标系、点、图象和解析式有机地结合起来,并从中可以找到相互之间的联系和问题的转化方式。

三、树立运动变化的观点

函数概念的核心意义是反映在某一变化过程中两个变量之间的依赖关系,即一个量的变化随着另一个量的变化而变化。

这就使得原本静止的数的概念之间产生了一种动感的联系。

在教学过程中,应引导学生通过寻找、发现身边的事例来体会这种变量关系。

例如,生长期的身高随着年龄的变化而变化;一天中的气温随着时间的变化而变化;工厂的收入随着产量的增加而增加;二元一次方程的无数解,在方程3x-2y=1中,当x的取值发生变化时,y的值随着x的变化而变化……

在阐述这种运动关系的同时,还应该用式子、表格、图示的方法来举例描述,以加深学生对这种抽象的运动关系的直观认识,这样就可以逐步地帮助学生树立一种“运动变化”的观点。

四、培养数形结合的思想

数学教学过程应该体现明暗两条线:一条是明线,即数学知识内容的教学;另一条是暗线,即数学思想方法的形成。

由于数学思想方法既是数学的基础知识,又是将知识转化成能力的桥梁,用好了数学思想就是发展了数学能力。

因此,在教学中老师要注重培养学生对数学思想方法的渗透、概括和总结、应用能力的提升。

数形结合的思想方法是初中数学中一种重要的思想方法。

何为数形结合的思想方法?我们知道,数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维和形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图象性质或其位置关系的讨论,或把图形间的待定关系转化为相关因素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答,就是数形结合的思想方法。

在函数这部分内容中,蕴含着丰富的数学思想,如坐标的思想、数形结合的思想等,其中最重要的是数形结合的思想。

那么在函数的教学过程中如何渗透与应用数形结合的思想方法,就显得尤为重要。

例如,一次函数就是一条直线,这条直线上的点的坐标无论怎样变化都满足解析式。

直线是由点组成的,点可以用数来描述。

反过来,直线就反映了数的变化特征。

一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助,教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。

在初中数学教学中常见的体例有:(1)数与数轴的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)集合元素和几何条件为背景建立起来的概念;(5)所给的等式或代数式的结构有明显的几何意义。

当然,以上谈及的几点内容仅仅是本人在教学实践中的一点体会,事实上,初中函数部分的内容及要求是极其丰富的,培养学生的思维能力以及能够灵活地应用知识才是我们学习的最终目的,在讨论社会问题、经济问题、跨学科综合等问题时,越来越多的运用到了数学的思想、方法,其中函数的内容占有相当重要的地位。

因此,我们一定要在教与学的过程中认真钻研教材,深入挖掘教材中蕴含的思想、方法和观点,以达到提高学生的思维能力、应用能力和认知水平的目的。

初中函数教学【2】

【摘要】数学思想方法乃是数学规律与本质,学生掌握了数学思想方法,就能更快捷的获取知识,更透彻地理解知识。

初中函数教学应教给学生掌握学习函数的思想方法。

本文仅对初中函数教学作初步探索.

【关键词】函数教学

一、认识函数思想,引领教学方向

函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律,函数的思想方法就是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究解决问题的一种数学思想方法。

尽管内容不多,但函数的思想已经有所体现,它仍占据着重要地位。

二、理清初中函数概念,系统掌握初等函数知识

1、理解概念的逻辑性。

数学概念可分为两个重要方面:一是概念的'质',也就是概念的内涵(概念的本质属性);二是概念的'量'也就是概念的外延(概念所有对象的和)概念的外延还有大小之分,外延大的概念叫做种概念,外延小的概念叫做属概念,一个属概念与其他属概念本质上的差别又称为属差,要想给某一个概念下定仪,首先应给学生指出被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,既概念定义 = 种概念 + 属查。

2、明确概念的层次性。

一般的概念都是通过对实验现象或对某中具体事物分析经过抽象概括而导出的,他是一个形成过程,中学中的许多概念,是从几个原始概念和公理出发,通过一番的推理而扩展成为一系列的定义和公里,而每一个新出现的概念都依赖着旧的概念来表达,或是由旧概念推倒出来的。

3、掌握概念的抽象性。

初中学数学中的许多原始概念,都是对具体的数和形的感知而形成表象,再从表象经过抽象概括而形成的。

概念是人们对感性材料进行抽象的产物,感性认识是形成概念的基础。

如果学生没有感性认识或感性认识不怎么完备时,我们就应该借助与实物、模型、多媒体课件、或形象的语言进行较直观的教学,使学生从中获得感性认识。

三、绘制初等函数图象 ,理解初等函数性质

著名数学家华罗庚先生说:"数缺形时少直观,形缺数时难入微"。

因此要想绘制初等函数图象,理解其性质,首先要了解"数形结合"的思想。

数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。

我们要抽象复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的。

四、运用函数同其他学科和实际的联系,培养学生学习函数的兴趣

函数是这样定义的,"设在某变化过程中的两个变量x和y,若对于x在某一范围内的每一确定的值,y都有唯一确定的值与它对应,那么,就把y称为x的函数 ,x是自变量,y是因变量"。

如图1⑴中,在矩形ABCD中,AB=10cm,BC=8cm。

点P从点A出发,沿路线A→B→C→D运动,到点D停止;点Q从点D出发,沿D→C→B→A路线运动,到点A停止。

若P、Q两点同时出发,点P的速度为1厘米/秒,点Q的速度为2厘米/秒。

a秒时,P、Q两点同时改变速度,点P的.速度变为b厘米/秒,点Q的速度变为d厘米/秒。

图1第2个图是点P出发x秒后△APD的面积S1(平方厘米)与x(秒)的函数关系图象。

图1第3个图是点Q出发x秒后△AQD的面积S2(平方厘米)与x(秒)的函数关系图象。

2、函数与市场经济

例2、某化工材料销售公司购进了一种化工原料共7000千克,购进价格为每千克30元。

物价部门规定其销售单价不得高于每千克70元,也不得低于30元。

市场调查发现:单价定为70元时日均销售60千克;单价每低1元日均多售出2千克。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。

设销售单价为x元,日均获利y元。

顶点坐标为(65,1950)。

二次函数的草图(如图2)所示。

观察草图可知,当单价定为65元时,日均获利最多,是1950元。

⑶、当日均获利最多时,单价为65元,日均销售60+2×(70-65)=70千克,那么总获利为1950×(7000÷70)=195000元

当销售单价最高时,单价为70元日均销售60千克,将这种化工原料全部售完需700÷60≈117天。

那么总获利为(70-30)×7000-117×500=221500元

∵ 221500>195000,且221500 - 195000 = 26500

∴销售单价最高时获总利最多,且多获利26500。

可见,函数的应用非常广泛,它与其它学科有着密切的联系,是解决实际问题的重要工具,因此可以提高和培养学生学习初等函数的兴趣。

当今世界科技发展一日千里,科学知识急剧增加,学生在今后的工作生活和进一步学习中有许多需要认识、探讨、分析和解决的纷繁复杂的问题,我们要把函数的思想方法作为一把金光闪闪的钥匙来交给学生,让他们运用这把金钥匙来开启知识的宝库,迎接新生活的挑战!

中学函数教学【3】

【摘要】从数学自身的发展过程来看,变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进,尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察问题、研究问题和解决问题的能力都是十分有益的。

【关键词】学习兴趣 情境教学

函数是初中数学里重要的数学知识,函数学习的好坏对于学生的继续学习影响深远,特别是现在新的课程标准提出研究性学习,更多地注重学生识图能力的培养,并尝试用数形结合思想和函数思想解决问题。

笔者结合多年的中学数学教学,就如何搞好中学函数教学,浅谈如下思考。

一、明确学习函数的重要性,培养学生学习函数的兴趣

函数概念在初中数学关于式、方程、不等式等主要内容中起到了横向联系和纽带作用,从本质上看:代数式可看作函数的解析式或值;两个代数式A与B恒等等价于函数y=A-B恒等于零;方程的根可看作函数图像与x轴的交点的横坐标;在不等式的证明中,函数的性质经常是有力的工具。

由于函数应用十分广泛,而函数的概念的形成和发展是中学数学中从常量到变量的一个认识上的飞跃,理解和掌握函数的思想方法无疑会有助于实现这一飞跃。

在初中阶段我们学习的函数是比较简单的,属于函数启蒙,但是它是高中数学乃至整个数学体系的主要内容,所以初中阶段是函数概念和函数思想形成的关键阶段,这一阶段教学的成败,直接关系到学生进入高中、大学的数学学习乃至一生的数学造诣。

让学生充分认识到函数的重要性,有利于提高他们学习函数的兴趣。

二、进行情境教学

教师可以把数学知识点以问题的形式提出,激发学生的学习欲望,在思考的过程中加深对知识点的思考,同时创设情境为其提供思考空间,使其思维从形象过渡到抽象,完成思维的转换.进行课堂教学, 很多问题都是要靠学生自己想象出来的, 但是如果每个问题都让学生去室外感受也是不可能的,这就需要我们很好地加强学生的抽象思维能力. 尤其是在学习函数的时候,就更需要学生一定的理解能力与思维水平。

学习函数知识的最终目的是要能够用于实际生活中. 因此教师在进行函数教学时,将具体情境中的材料作为启发学生的思考的材料,通过相互交流、合作学习、独立思考等形式来讲,加强学生对知识点的理解.

当学生在一个问题情境中,则更能够把握问题的理解,在问题情境中,教师要给予一定的指导和帮助. 教师遵守循序渐进、逐渐理解的方式,为学生创设问题情境,创设学习的机会. 在问题情境中邀游,学生能够沐浴在数学活动中. 问题情境是一种加强数学理解与问题解决的有效方式.

三、坚持相互联系、运动发展的观点进行教学

函数表现出两个变量之间的相互依存关系,一个变量会随着另一个变量的变化而发生变化,两者处于相互牵制、共同变化发展的秩序之中,看似静止的数的概念之间存在着运动的联系。

在初中函数教学中,教师应带领学生在学习函数基础知识以及解题过程中,培育学生们树立相互联系、运动发展的数学理念,在动态的思维模式中掌握函数知识的基本要领。

两个变量间的相互影响关系,对于刚刚接触函数知识的学生来说不太容易理解。

初中函数教师可以根据“一个量随另一个量的变化而变化”这一关系,让学生结合熟悉的数学知识以及日常生活实际来举例,比如“汽车的汽油消耗量随着行车路程的变化而变化”,或者“圆形的面积随着半径长的变化而变化”等等。

这样,便使学生更迅速地理解自变量与变量的定义,并能在活跃的思维环境中锻炼分析、解决问题的能力。

函数中的变量关系,与数学知识体系中的很多领域都存在着融会贯通的关系,比如求路程问题“距离=速度*时间”等,体现出函数的重要性。

学习函数知识,实际上也打开了更多数学领域的视角。

另外,函数同其他学科的联系也十分紧密,是解决实际问题的重要工具。

初中数学教师可以利用函数的广泛联系性,在广征博引中激发学生的学习热情,从而达到真正的教学实效。

四、讲解中注意类比法的运用

在讲解一次函数的图像时,我们一般由特例导出。

例如:在同一直角坐标系中画出下列函数的图像:(1)y=2x+3(2)y=2x+5 (3)y=2x-3;(4)y=-2x+3(5)y=-2x-3

然后由学生归纳出一次函数的图像是一条直线,并让学生由上述图像得出:当(1)k>0,b>0 ;

(2)k>0, b<0;(3)k<0, b>0;(4)k<0, b<0时函数图像所经过的象限及单调性,最后老师总结,学生理解记忆。

这套程序很一般化,学生也难以记忆。

不如先让学生回忆正比例函数(1)y=2x;(2)y=-2x的图像与性质,再画出以上函数图像,借助类比的方法得出一次函数的图像及性质。

向学生演示正比例函数图像的平移变化即得到一次函数图像,这样可以避免学生把二者割裂开,把握它们的共性,区分正比例函数的特殊性。

通过类比,培养学生知识迁移能力。

五、加强学科之间的相互沟通,增强学生运用数学的意识

当前教育改革的方向之一是加强各学科知识间的综合运用。

数学作为一门基础学科,不仅服务于其他学科,而且在研究数学的应用时,若能结合别的学科特点,运用别的学科知识解释其基本原理,无疑对数学应用的理解也有很大的帮助,进而对学生的综合能力的培养也将有极大的好处。

例3、一根弹簧原长15cm,已知在20公斤内弹簧的长度与所挂的质量成一次函数关系。

现测得当挂重4公斤时,弹簧的长度为17cm,问当弹簧的长度为22cm时,挂重多少公斤?

分析:由已知条件弹簧的长度与挂重成一次函数关系,则可用待定系数法求出函数关系。

再通过计算即能求得问题的解答。

解:设挂重x(kg)(0≤x≤20)时,弹簧长度为y(cm),依题意可设,y=kx+b (k≠0)由条件:x=0时,y=15 即b=15

当 x=4时,y=17 即4k+15=17 所以K=

故函数解析式为:y= x+15 (0≤x≤20)

所以当y=22时,由 x+15=22,得x=14

答:当弹簧长为22cm时,挂重14公斤。

对于物理问题,必须根据物理概念,物理知识列出函数关系式,把它转化为数学问题,再运用数学方法进行运算,其它学科也如此。

总之,中学函数学得如何,将直接影响到学生今后数学学习兴趣和成绩的好坏,因此广大中学数学老师肩负着关键的职责,一定要引起我们的高度重视。

以上几点是笔者的拙见,希望能给同行一点帮助,并敬请同行斧正。

【参考文献】

[1]张凤林.浅谈初中函数教学[J].学问, 2009(15).

[2]徐德本.初中函数教学要把握好“四个一”[J].中学数学教学参考.2008,(18).

[3]王学海;探究初中生学习函数困难及教学策略[J];成功(教育);2011年18期

285 评论

相关问答

  • 研究数学的发展历程论文

    数学──自然科学之父,起源于用来计数的自然数的伟大发明。人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念后来,群居发展

    建安五金 3人参与回答 2023-12-05
  • 中职数学函数的研究的论文

    数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内

    小甜甜不赖你 3人参与回答 2023-12-07
  • 发展数字经济与挑战研究论文

    从字面上看,数字经济就是基于数字技术的经济,而数字技术的发展往往与互联网技术的发展难以分清,所以很多时候数字经济也常被称作互联网经济或网络经济。早在上世纪互联网

    dreamy8594 4人参与回答 2023-12-10
  • 函数概念的发展毕业论文

    一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变

    草莓天天见 4人参与回答 2023-12-07
  • 复变函数多值函数论文研究

    《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质

    吃生鱼片的猫 4人参与回答 2023-12-09