• 回答数

    4

  • 浏览数

    112

shiyeyouyou
首页 > 职称论文 > 齐次线性方程组的研究论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

爱逛DP的小吃货

已采纳

令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关,若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。

通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的,若向量组的秩小于向量的个数,则该向量组是线性相关的。

定义

若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。

146 评论

星耀夜阑

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程.而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?.”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大贝祖(Bezout Etienne )法国数学家.少年时酷爱数学,主要从事方程论研究.他是最先认识到行列式价值的数学家之一.最早证明了齐次线性方程组有非零解的条件是系数行列式等于零.他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法.他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理.1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究. 十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根. 十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》. 十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角. 十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现.后人所称的“杨辉三角”即指此法. 十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作. 1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方. 1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例. 1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”.书中提出的联立一次同余式的解法,比西方早五百七十余年. 1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作. 1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和. 1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法. 1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等). 十四世纪中叶前,中国开始应用珠算盘. 1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”. 1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学. 1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识. 1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式. 1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题. 1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论. 1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表. 1614年,英国的耐普尔制定了对数. 1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积. 1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分. 1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”. 1638年,法国的费尔玛开始用微分法求极大、极小问题. 1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就. 1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作. 1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”. 1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱. 1654年,法国的帕斯卡、费尔玛研究了概率论的基础. 1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学. 1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》. 1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究. 1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分. 1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法. 1670年,法国的费尔玛提出“费尔玛大定理”. 1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线. 1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》. 1686年,德国的莱布尼茨发表了关于积分法的著作. 1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究. 1696年,法国的洛比达发明求不定式极限的“洛比达法则”. 1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线. 1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》. 1711年,英国的牛顿发表《使用级数、流数等等的分析》. 1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》. 1715年,英国的布·泰勒发表《增量方法及其他》. 1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试. 1733年,英国的德·勒哈佛尔发现正态概率曲线. 1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机. 1736年,英国的牛顿发表《流数法和无穷级数》. 1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作. 1742年,英国的麦克劳林引进了函数的幂级数展开法. 1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面. 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论. 1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一. 1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷.书中包括微分方程论和一些特殊的函数. 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用. 1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法. 1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始. 1772年,法国的拉格朗日给出三体问题最初的特解. 1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学. 1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》. 1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表. 1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学. 1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多. 1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根. 微分方程:大致与微积分同时产生 .事实上,求y′=f(x)的原函数问题便是最简单的微分方程.I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动.他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组.用现在叫做“首次积分”的办法,完全解决了它的求解问题.17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型…….因而微分方程的研究是与人类社会密切相关的.当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等.但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题.方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解.但是在实际工作中,常常出现一些特点和以上方程完全不同的问题.比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等.物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数.解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式.但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方.在数学上,解这类方程,要用到微分和导数的知识.因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程.微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量.微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.

187 评论

Flora已被注册

要型美义美,

173 评论

优雅的猫214

第一种是利用向量组的秩,如果向量组满秩,则该向量组线性无关,如果不满秩则线性相关。还有一种就是将向量组化成行列式求值,若值不为0则无关,否则相关。其实就是求该向量组的秩,满秩无关,否则相关。如果相关,就把向量组化成行阶梯式,有几阶就将这个行阶梯里面的向量取出来构成最大无关组。

347 评论

相关问答

  • 线性方程组研究毕业论文

    数学领域中的一些著名悖论及其产生背景

    春天的玉米粒 3人参与回答 2023-12-08
  • 毕业论文非线性方程

    首先是格式。大学论文是有一定的格式的,大家一定要修改好自己的格式,否则自己的指导老师也不愿意看,最后答辩的时候分数也不会高。第二要注意参考文献引用的规范性。在文

    阿布kingnine 5人参与回答 2023-12-10
  • 线性方程组论文参考文献

    我看了一下下面那个问题的回答除了复杂度之外余下的完全不靠谱,很明显这个人根本不懂计算数学如果没有额外的信息,"稳定地解决大规模线性方程组"只是一个梦想,因为即使

    霸气Annie姐 2人参与回答 2023-12-07
  • 非线性方程求解毕业论文

    还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!

    无敌的小饭桶 2人参与回答 2023-12-10
  • 线性方程组理论的毕业论文

    线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重

    恋水无痕 3人参与回答 2023-12-06