• 回答数

    4

  • 浏览数

    300

emilylovejay
首页 > 职称论文 > 烯烃复分解反应的研究论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

薄荷点点

已采纳

顶1楼!!2005年10月5日,今年的诺贝尔化学奖尘埃落定。法国化学家伊夫·肖万、美国化学家罗伯特·格拉布和理查德·施罗克三人分享了这一殊荣。 谈及此次获奖成果,中国科学院金属有机化学国家重点实验室主任麻生明研究员说:“化学界对这一研究的重要意义非常认可。我们的一些研究人员总是希望'大而全’,但是看看这次的获奖成果,再看看上次(2001年)有机化学家的获奖成果,就知道化学家一生有这样一个'反应’就很了不起了。” 该实验室的丁奎岭研究员告诉记者:“2002年,我和戴立信院士合写《中科院发展报告》中有关烯烃复分解反应的章节时,就曾提到格拉布催化剂的反应活性以及对反应底物的适用性,可与传统的碳-碳键形成方法如Diels-Alder反应和Wittig反应相媲美,而这两项研究都已经获得诺贝尔奖,我们也曾暗示格拉布等人的研究有问鼎诺贝尔奖的实力,现在他们果然获奖了。” 指挥烯烃分子“交换舞伴” 诺贝尔化学奖评委会主席佩尔·阿尔伯格将烯烃复分解反应描述为“交换舞伴的舞蹈”。授奖当天,在瑞典皇家科学院华丽的议事厅里,阿尔伯格和一位皇家科学院教授以及两位女工作人员一起,用舞蹈向听众诠释烯烃复分解反应的含义。最初两位男士是一对舞伴,两位女士是一对舞伴,在“加催化剂”的喊声中,他们交叉换位,转换为两对男女舞伴。 “用互换舞伴来解释这一获奖的化学反应很形象。”麻生明告诉记者。今年诺贝尔化学奖的三位得主,获奖原因就是他们弄清了如何指挥烯烃分子“交换舞伴”,将分子部件重新组合成别的物质。 一个碳原子可以通过单键、双键或三键方式与其他原子连接,有着碳-碳双键的链状有机分子被称为烯烃。丁奎岭说,研究碳-碳键的断裂与形成规律是有机化学中需要解决的核心问题之一。为了切断碳-碳键并使其按照人们希望的方式重新结合,需要寻找合适的催化剂,这也是化学家面临的挑战课题。关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到上世纪50年代中期。但是刚开始时,科学家们所研制的催化剂均为多组分催化剂,“这么做是因为当时的科学家实际上没有认清反应的机理,不知道到底是哪种活性物质发挥了作用,只好使用多种混合物来进行催化。”这些催化体系还受到苛刻的反应条件等因素的限制,更加促使科学家们进一步认识和理解反应进行的机制。 20世纪70年代,法国石油研究所的伊夫·肖万实现了理论上的突破。他阐明了烯烃与金属卡宾通过〔2+2〕环加成形成金属杂环丁烷中间体的相互转化过程,这一机制后来被广泛认同。金属卡宾是指一类有机分子,其中有一个碳原子与一个金属原子以双键连接,如果用舞蹈的方式来简单解释,它们可被看作一对拉着双手的舞伴。而在烯烃分子里,两个碳原子也像双人舞的舞伴一样,拉着双手在跳舞。金属卡宾在与烯烃分子相遇后,两对舞伴会暂时组合起来,手拉手跳起四人舞蹈。随后它们“交换舞伴”,组合成两个新分子,其中一个是新的烯烃分子,另一个是金属原子和它的新舞伴。后者会继续寻找下一个烯烃分子,再次“交换舞伴”。 寻找更优秀的催化剂 有了漂亮的理论,下一步的重点就是确定哪种金属卡宾适合充当促成舞伴交换的“中间人”,理查德·施罗克和罗伯特·格拉布正是寻找优秀催化剂的“伯乐”。 1990年,在美国麻省理工学院工作的施罗克和合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。实践也证明,钼卡宾用于催化烯烃的复分解反应,取得了比以往的催化体系更容易引发的、更高的反应活性,反应条件也更温和,同时为发现性能更优秀的催化剂奠定了基础。 1992年,美国加州理工学院的格拉布发现了钌卡宾络合物,并成功应用于降冰片烯的开环聚合反应,该催化剂克服了其他催化剂对功能基团容许范围小的缺点,不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性。在此基础上,1996年格拉布对原催化剂作了改进,使其成为应用最为广泛的烯烃复分解催化剂。1999年,格拉布通过用氮卡宾配体代替膦配体,发展了第二代格拉布催化剂,其催化活性比第一代催化剂提高了两个数量级。丁奎岭说:“这点很重要,因为钌是贵金属。”在开环复分解聚合反应中,催化剂用量可以降低至百万分之一;在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低。 麻生明说:“如果没有肖万的理论,就没有施罗克和格拉布的成果;但是如果没有后者的工作,肖万也得不到这个诺贝尔奖。这恰好体现了理论和实践相辅相成的道理。” 奖励来得理所应当 对于此次诺贝尔化学奖的归属,很多人表示是理所当然、水到渠成的事情,这不仅是因为这一科研成果本身非常重要,更重要的是它在生产生活领域有着极其广泛的实际应用,每天都惠及人类。 诺贝尔奖的文告指出:烯烃的复分解反应是基础科学对人类、社会和环境做出重要贡献的例子。该方法现在被广泛应用于化工业,主要用于研发药品和先进塑料材料。通过肖万、格拉布和施罗克等人的工作,复分解法变得更加有效,反应步骤比以前简化,所需要的资源也大大减少;使用起来也更简单,只需要在正常温度和压力下就可以完成;对环境的污染也大大降低,使人们向着“绿色化学”又迈进了一大步,大大减少了有害废物对人们的危害。 丁奎岭说,由于格拉布催化剂的诞生,使得过去许多令化学家束手无策的复杂分子的合成变得轻而易举,如亲水性高分子、高分子液晶、抗癌药物、昆虫信息素等的合成,用乙烯和丁烯来制备丙烯等。麻生明还告诉记者:“上次格拉布教授来我们所访问,介绍了他做出的一种高分子材料,用子弹打也无法穿透,很适合做防弹材料。” 不过,麻生明认为,金属卡宾络合物催化的烯烃复分解反应还不是完全的绿色反应。就像做衣服时,如果能把所有的布料,包括边角余料都用上,才算百分百的经济;从原子的经济性来讲,很多烯烃复分解反应还没有达到百分百绿色的程度。丁奎岭认为只能说这种反应比较“符合绿色原则”,废物很少。他还指出,烯烃复分解反应的研究还面临不少挑战,工业的大规模应用还很少,主要还是用在精细化工领域。 记者问及我国在该领域的研究水平,两位专家都回答,我国这方面的研究还很薄弱。丁奎岭说,《科学观察》指出,从论文引用次数来看,这一领域在国际上是炙手可热的科学前沿。但中科院文献情报中心的统计表明,我国在该领域几乎没有大的课题和项目。“虽然也有科学家在使用这些催化剂进行天然气产物和复杂分子的合成研究,但是据我所知,国内可能还没有研究人员在致力于改进这种催化剂。”

196 评论

宇宇酱ovo

碳是地球生命的核心元素。碳原子能以不同方式与多种原子连接,形成小到几个原子、大到上百万个原子的分子。这种独特的多样性奠定了生命的基础,它也是与人类生活密切相关的学科——有机化学的核心。 原子之间的联系称为键,一个碳原子可以通过单键、双键或三键方式与其他原子连接。有着碳-碳双键的链状有机分子称为烯烃。在烯烃分子里,两个碳原子就像双人舞的舞伴一样,拉着双手在跳舞。05年诺贝尔化学奖的三位得主,获奖原因就是他们弄清了如何指挥烯烃分子“交换舞伴”,将分子部件重新组合成别的物质。 20世纪50年代,人们首次发现,在金属化合物的催化作用下,烯烃里的碳-碳双键会被拆散、重组,形成新分子,这种过程被命名为烯烃复分解反应。但当时没有人知道这类金属催化剂的分子结构,也不知道它是怎样起作用的。 人们就此提出了许多假说,但真正的突破发生在1970年。这一年,法国科学家伊夫·肖万和他的学生发表了一篇论文,提出烯烃复分解反应中的催化剂应当是金属卡宾,并详细解释了催化剂担当中间人、帮助烯烃分子“交换舞伴”的过程。 金属卡宾是指一类有机分子,其中有一个碳原子与一个金属原子以双键连接,它们也可以看作一对拉着双手的舞伴。在与烯烃分子相遇后,两对舞伴会暂时组合起来,手拉手跳起四人舞蹈。随后它们“交换舞伴”,组合成两个新分子,其中一个是新的烯烃分子,另一个是金属原子和它的新舞伴。后者会继续寻找下一个烯烃分子,再次“交换舞伴”。 这一理论提出后,越来越多的化学家意识到,烯烃复分解在有机合成方面有着巨大的应用前景,但这对催化剂的要求也很高。到底含有什么金属元素的卡宾化合物最理想呢?在开发实用的催化剂方面,作出最大贡献的是美国科学家罗伯特·格拉布和理查德·施罗克。 1990年,施罗克和他的合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。这是第一种实用的此类催化剂,该成果显示烯烃复分解可以取代许多传统的有机合成方法,并用于合成新型有机分子。 1992年,格拉布等人发现了金属钌的卡宾化合物也能作为催化剂。此后,格拉布又对钌催化剂作了改进,这种“格拉布催化剂”成为第一种被普遍使用的烯烃复分解催化剂,并成为检验新型催化剂性能的标准。 以这些发现为基础,学术界和工业界掀起了研究烯烃复分解反应、设计合成新型有机物质的热潮。新的合成过程更简单快捷,生产效率更高,副产品更少,产生的有害废物也更少,有利于保护环境,是“绿色化学”的典范。它在化工、食品、医药和生物技术产业方面有着巨大应用潜力。一些科学家正在用这种方法开发治疗癌症、早老性痴呆症和艾滋病等疾病的新药。它还拓展了科学家研究有机分子的手段,例如用于人工合成复杂的天然物质。

357 评论

条野太浪

尽管烯烃复分解反应的研究已经取得了很大突破,但仍然存在不少挑战。首先,时下的催化体系,对于形成四取代烯烃的交叉复分解反应以及桶烯的开环聚合还不能有效地实现,钌的催化体系还不能适用于带有碱性官能团(如氨基、氰基)的底物,烯烃复分解反应中的立体化学问题、特别是有关催化不对称转化(尽管使用手性Mo催化剂已经实现了开环聚合反应的动力学拆分)的问题还没有很好地解决,关于交叉复分解反应中产物的顺、反异构体的选择性控制,虽然对于某些特定的底物已经取得了一些成功,但还没有普遍的规律可循;另外,烯烃复分解反应的工业应用还很少。所有这些都是需要解决的问题,其关键是在基础研究方面能否有进一步突破,特别是在催化的效率、选择性等方面。2005年的诺贝尔化学奖颁给了3位在烯烃复分解反应研究方面做出突出贡献的化学家伊夫·肖万、罗伯特·格拉布和理查德·施罗克。【注:图片形象地表示一对舞者(烯烃),在催化剂(金属卡宾)作用下,和另一对舞者(另一烯烃)连成环状,接着相互改变搭档(形成两个新的烯烃)。】

96 评论

辉love玉

碳是地球生命的核心元素。碳原子能以不同方式与多种原子连接,形成小到几个原子、大到上百万个原子的分子。这种独特的多样性奠定了生命的基础,它也是与人类生活密切相关的学科——有机化学的核心。 原子之间的联系称为键,一个碳原子可以通过单键、双键或三键方式与其他原子连接。有着碳-碳双键的链状有机分子称为烯烃。在烯烃分子里,两个碳原子就像双人舞的舞伴一样,拉着双手在跳舞。 05年诺贝尔化学奖的三位得主,获奖原因就是他们弄清了如何指挥烯烃分子“交换舞伴”,将分子部件重新组合成别的物质。 20世纪50年代,人们首次发现,在金属化合物的催化作用下,烯烃里的碳-碳双键会被拆散、重组,形成新分子,这种过程被命名为烯烃复分解反应。但当时没有人知道这类金属催化剂的分子结构,也不知道它是怎样起作用的。 人们就此提出了许多假说,但真正的突破发生在1970年。这一年,法国科学家伊夫·肖万和他的学生发表了一篇论文,提出烯烃复分解反应中的催化剂应当是金属卡宾,并详细解释了催化剂担当中间人、帮助烯烃分子“交换舞伴”的过程。 金属卡宾是指一类有机分子,其中有一个碳原子与一个金属原子以双键连接,它们也可以看作一对拉着双手的舞伴。在与烯烃分子相遇后,两对舞伴会暂时组合起来,手拉手跳起四人舞蹈。随后它们“交换舞伴”,组合成两个新分子,其中一个是新的烯烃分子,另一个是金属原子和它的新舞伴。后者会继续寻找下一个烯烃分子,再次“交换舞伴”。 这一理论提出后,越来越多的化学家意识到,烯烃复分解在有机合成方面有着巨大的应用前景,但这对催化剂的要求也很高。到底含有什么金属元素的卡宾化合物最理想呢?在开发实用的催化剂方面,作出最大贡献的是美国科学家罗伯特·格拉布和理查德·施罗克。 1990年,施罗克和他的合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。这是第一种实用的此类催化剂,该成果显示烯烃复分解可以取代许多传统的有机合成方法,并用于合成新型有机分子。 1992年,格拉布等人发现了金属钌的卡宾化合物也能作为催化剂。此后,格拉布又对钌催化剂作了改进,这种“格拉布催化剂”成为第一种被普遍使用的烯烃复分解催化剂,并成为检验新型催化剂性能的标准。 以这些发现为基础,学术界和工业界掀起了研究烯烃复分解反应、设计合成新型有机物质的热潮。新的合成过程更简单快捷,生产效率更高,副产品更少,产生的有害废物也更少,有利于保护环境,是“绿色化学”的典范。它在化工、食品、医药和生物技术产业方面有着巨大应用潜力。一些科学家正在用这种方法开发治疗癌症、早老性痴呆症和艾滋病等疾病的新药。它还拓展了科学家研究有机分子的手段,例如用于人工合成复杂的天然物质。

273 评论

相关问答

  • 煤化工烯烃论文参考文献

    乙烯生产技术简介: 煤制烯烃。全球首个煤制烯烃工业化装置工程-神华集团煤制油有限公司的煤制烯烃项目于2005年10月28日举行了奠基仪式。该项目的厂

    lisalisa喵喵 5人参与回答 2023-12-12
  • 羰氨反应研究论文

    要看被加成或者取代的官能团的性质,比如羰基是吸电子基团,所以和它邻近的碳原子就是裸露的核子,即发生亲核反应。而推电子基团接的碳就发生亲电反应。

    babyfaceonlyme 3人参与回答 2023-12-12
  • 论文中药临床不良反应的研究

    中成药不良反应的产生原因及预防措施探究 [摘要] 中成药在中国已有几千年的历史,由于其疗效确切稳定、使用方便、易于携带和保存,深受临床医生和广大患者的重视,中

    痴货小逗逗 3人参与回答 2023-12-09
  • 丙二醇反应的研究论文下载

    以硝酸铜、硝酸锰、硝酸铝和碳酸钠为原料,通过共沉淀法制备了不同Mn含量的Cu-Mn-Al催化剂。采用BET,XRD,SEM,TEM,H2-TPR和NH3-TPD

    joyzhou512 3人参与回答 2023-12-06
  • 角鲨烯的研究论文

    这种鲨鱼科学家称之为铠鲨,来自比利时鲁汶天主教大学和新西兰国家水和大气研究所的科学家们将研究重点放在了铠鲨、灯笼乌鲨和南方乌鲨上。其中,铠鲨是目前已知的最大的发

    还有谁没吃 5人参与回答 2023-12-07