• 回答数

    5

  • 浏览数

    96

pangdaxiang
首页 > 职称论文 > 幂等矩阵可对角化毕业论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

猫咪抱抱

已采纳

你好!解答如图,需要借助两个定理才容易证明。经济数学团队帮你解答,请及时采纳。谢谢!

255 评论

猪头小队长1982

A2=A 可以x2-x=0看做A的一个零化多项式,再由无重根就可得到该矩阵可对角化。

幂等矩阵的运算方法:

1)设 A₁,A₂都是幂等矩阵,则(A₁+A₂) 为幂等矩阵的充分必要条件为:A₁·A₂ =A₂·A₁=0,且有:R(A₁+A₂) =R (A₁) ⊕R (A₂);N(A₁+A₂) =N(A₁)∩N(A₂);

2)设 A₁, A₂都是幂等矩阵,则(A₁-A₂) 为幂等矩阵的充分必要条件为:A₁·A₂=A₂·A₁=A₂,且有:R(A₁-A₂) =R(A₁)∩N (A₂);N (A₁- A₂) =N (A₁)⊕R (A₂);

3)设 A₁,A₂都是幂等矩阵,若A₁·A₂=A₂·A₁,则A₁·A₂为幂等矩阵,且有:R (A₁·A₂) =R(A₁) ∩R (A₂);N (A₁·A₂) =N (A₁) +N (A₂)。

扩展资料:

幂等矩阵的其他性质:

1.幂等矩阵的特征值只可能是0,1;

2.幂等矩阵可对角化;

3.幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);

4.可逆的幂等矩阵为E;

5.方阵零矩阵和单位矩阵都是幂等矩阵;

6.幂等矩阵A满足:A(E-A)=(E-A)A=0;

7.幂等矩阵A:Ax=x的充要条件是x∈R(A);

的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。

参考资料来源:百度百科-幂等矩阵

354 评论

Lisa艳艳

一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^

216 评论

黑糖miko

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

360 评论

寳呗颖1

矩阵对角化有三种方法

1、利用特征值和特征向量将矩阵对角化

由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。

2、利用矩阵的初等变换将矩阵对角化

矩阵的初等变换

矩阵的初等行变换和初等列变换,统称矩阵的初等变换。下面的三种变换称为矩阵的初等行变换:

1 对调两行;

2 以数k≠0乘某一行的所有元素;

3 把某一行所有元素的k倍加到另一行对应的元素上去。

把上面定义中的“行”换成“列”,既得矩阵的初等列变换的定义。

如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。

另外:分块矩阵也可以定义初等变换。

3、利用矩阵的乘法运算将矩阵对角化

矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分的广泛。

130 评论

相关问答

  • 实对称矩阵对角化的研究论文

    1、实对称矩阵A的不同特征值对应的特征向量是正交的。 2、实对称矩阵A的特征值都是实数,特征向量都是实向量。 3、n阶实对称矩阵A必可相似对角化,且相似对角阵上

    杨枝甘露儿 5人参与回答 2023-12-06
  • 毕业论文矩阵

    LZ是文科生吧

    大大大吉CQ 5人参与回答 2023-12-09
  • 幂等矩阵可对角化毕业论文

    你好!解答如图,需要借助两个定理才容易证明。经济数学团队帮你解答,请及时采纳。谢谢!

    pangdaxiang 5人参与回答 2023-12-07
  • 反对称矩阵毕业论文

    还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!

    麻麻是超人 5人参与回答 2023-12-09
  • 矩阵可对角化论文答辩ppt

    矩阵对角化有三种方法 1、利用特征值和特征向量将矩阵对角化 由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。 2、利用矩阵的

    天天快乐1414 5人参与回答 2023-12-05