随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:
我也给你提供一些提示.如果A是非奇异的,则A的伴随矩阵与其逆矩阵仅差一个常数倍(即行列式的值),故A的伴随矩阵的特征值应是矩阵A的逆矩阵的特征值,即A的矩阵的特征值的倒数.如果A是奇异的,且A的秩 矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。 矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇编的时候,比如在TF-IDF方法中,也会用到文件项矩阵来追踪特定词汇在多个文件中的出现频率。早期的密码技术如希尔密码也用到矩阵。然而,矩阵的线性性质使这类密码相对容易破解。计算机图像处理也会用到矩阵来表示处理对象,并且用放射旋转矩阵来计算对象的变换,实现三维对象在特定二维屏幕上的投影。多项式环上的矩阵在控制论中有重要作用。化学中也有矩阵的应用,特别在使用量子理论讨论分子键和光谱的时候。具体例子有解罗特汉方程时用重叠矩阵和福柯矩阵来得到哈特里-福克方法中的分子轨道。 一般来说毕业答辩都是由五个过程组成,首先是自我介绍,然后是答辩人陈述论文,导师提问与答辩,最后是自我总结与感谢。 自我介绍需要一个良好的开端,一个优秀的开场白,将自己的姓名学号专业进行介绍在过程中要落落大方面带微笑,礼貌得体的态度就让你的毕业答辩成功了一半。 陈述论文:良好的开端让我们会信心大增,接下来就到了毕业答辩的重头戏——陈述论文,主要包括了我们论文的主题,论文的研究背景以及我们选择的原因还有就是我们研究的问题现在的一个发展情况,我们要将我们所持的观点,进行研究的过程还有一些数据以及我们得出的结果,我们在这其中承担的一些工作等进行一次逻辑完美的描述。 导师提问:在我们完成描述之后就到了最灵活多变 也是最让人紧张的一个环节,与导师交流通常会让同学们觉得紧张,但是只有克服自己就已经优秀的完成了这次答辩,这是一个相互交流的过程,一般都是一个由浅入深的过程。 自我总结:在我们完成上述过程后就要对我们此次答辩醉一次总结,一般都是对我们此次论文创作的体会以及我们答辩的收获,导师们在这个时候会做出他们的点评以及对我们的一些建议 最后就是致谢在毕业论文写作中给我们帮助的人以及导师。 我叫×××,XXXX级社会学专业学生。我的毕业论文题目是《社会学视野下金庸小说中的婚恋观》。我的指导老师是张红老师。从确定选题、拟定提纲、完成初稿,到最后定稿,我得到了张老师的精心细致指导,使我很快掌握了论文的写作方法,并在较短的时间里完成了论文的写作。不管今天答辩的结果如何,我都会由衷的感谢指导老师的辛勤劳动,感谢各位评委老师的批评指正。截至目前,在学术界有关金庸武侠小说的论著非常多,但尚无从社会学视野下对金庸小说中婚恋观的研究。选择金庸小说作为毕业论文的写作题材,一方面是因为我对金庸小说比较喜欢,包括由金庸小说改编而成的电视剧。的确,金庸小说不仅向我们展现了侠客的快意恩仇,还借用江湖这个社会,使人物摆脱传统社会的束缚或少受社会制度的束缚。男女侠客不问出身,不讲家庭地位、社会背景,只讲两性相悦、以情相许,能实现真正意义上的男女平等、恋爱自由。另一方面结合当今社会现实,许多现象与金庸小说中的情节有一些相似,揭示其中的联系,警示世人,以倡导和谐的、理想的婚姻。在这篇论文中,主要采用了内容分析和现实对比的写作手法,各部分安排按照先典型分析,具体对照现象,理论分析,再阐明现代性特征的层次进行。具体结构如下:第一部分为所归纳的金庸小说中的五种爱情类型;第二部分为金庸小说中与现实相对应的婚姻类型;第三部分为关于金庸小说中择偶的社会学分析,分为宏观和和微观两个方面分析。宏观方面的主要理论有:对于择偶的个人主义解释;择偶的社会文化解释;择偶梯度理论;同类匹配理论。微观方面的理论有:1、相似性理论;2、需求互补理论。从以上这些择偶理论我们可以做出如下推论:相似性原则是择偶的基本规律。无论从哪个理论角度这个结论总是成立的,虽做出如下推论:相似性原则是择偶的基本规律。无论从哪个理论角度这个结论总是成立的,虽然对具体是什么“相似”有些争议。在外在社会条件上符合“同类匹配”,内在条件上又符合“需求互补”,这似乎就是最完满的理想婚姻模式。 毕业论文书面答辩可以根据自己毕业论文所写的内容详细的介绍自己在答辩过程中应该怎么样去回答老师的问题 论文书面答辩的时候,一定要根据书面书写的时候论文的形式来回答,回答的时候注重于知识的解答 and , Matrix Analysis,这个中译本也有的。, Linear Algebra and its Applications.奇异值分解虽然是最有用的矩阵分解之一,但其本质和谱分解定理差不多,所以单纯讲矩阵的书上可能不会讲太多应用,可以考虑再去看一下PCA(principal component analysis)方面的文献。 [证明] 因为n阶矩阵A具有n个两两不同的特征值, 令这些特征值为λ1, λ2, …, λn, 则f(λi) = |λiE - A| = 0, i = 1, 2, …, n. 又因为对应于不同的特征值的特征向量是线性无关的, 所以A具有n个线性无关的特征向量, 令这些特征向量为p1, p2, …, pn. 于是有可逆矩阵P = (p1, p2, …, pn)使得 P^{-1}AP = [λ1 0 … 00 λ2 … 0... ... ... ...0 0 ... λn] = D, 而且P^{-1}f(A)P = f(P^{-1}AP) = f(D) = [f(λ1) 0 … 0 0 f(λ2) … 0 ... ... ... ... 0 0 ... f(λn)] = O. 由此可得 f(A) = POP^{-1} = O. [参考文献] 张小向, 陈建龙, 线性代数学习指导, 科学出版社, 2008. 周建华, 陈建龙, 张小向, 几何与代数, 科学出版社, 2009. 网上用搜索引擎找关键字:矩阵特征值应用矩阵特征向量应用矩阵 特征值 特征向量 应用 你不采纳我,我也不会,此等问题,无名小辈 1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。 代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。 线性代数教学中线性相关性的一种解释和理解[摘要]线性相关性的内容是线性代数课程中的重点和难点,特别是被表示向量组的线性相关性与被表示向量组中向量的个数以及表示向量组中向量的个数之间的关系的有关结论,对学生来说是很难理解的,在教学中,我们把线性相关解释为“多余”,线性无关解释为“没有多余”,在教学上可收到较好的效果。[关键词]线性相关线性无关多余没有多余线性相关性在线性代数课程中是一个重要内容,对学生来说是非常困难的内容,许多学生学完线性代数后还没有弄懂,有的学生学到这一内容时觉得很难学,就丧失信心。认为整个线性代数都很难学,甚至放弃学习。线性相关性是线性代数课程中教学的难点,它与后面线性方程组的解的理论有密切的联系,对于这一难点的处理是非常重要的。根据不同层次的学生采用不同的教学要求。使得学生正确的理解线性相关性的定义,定理。大多数经济类的本科线性代数课程的教材在叙述向量组的极大无关组和向量组的秩的理论时,由于这一章节的理论性比较强,一般都是从定理到定理,从证明到证明,例子较少。在教学中,在讲完线性相关的定义和有关定理后,在介绍向量的极大无关组之前,用”多余”来解释线性相关性,可使后面的问题简单化,直观化。我们以龚德恩等主编的《经济数学基础》的第二分册线性代数的教材为例进行说明。首先来看线性组合的概念。对于向量组α1,α2,…,αs和向量β,如果存在s个数k1,k2,…,ks使得β=k1α1+k2α2+…+ksαs则称向量β是向量组α1,α2,…,αs的线性组合。换句话说向量β相对于向量组α1,α2,…,αs是“多余”的向量。关于线性相关概念,对于向量组α1,α2,…,αs,如果存在不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0称向量组α1,α2,…,αs线性相关。因k1,k2,…,ks不全为零,不妨假设α1≠0则α1=-k2k1α2-…-ksk1αs。因此向量组α1,α2,…,αs线性相关,看成是向量组α1,α2,…,αs中至少有一个“多余”的向量。关于线性无关概念,对于向量组α1,α2,…,αs,如果仅当k1,k2,…,ks都等于零时,才能使得k1α1+k2α2+…+ksαs=0成立。称向量组α1,α2,…,αs线性无关。由于α1,α2,…,αs线性无关等价于其中任何一个向量不能由其余向量线性表示,因此向量组α1,α2,…,αs线性无关看成是α1,α2,…,αs中“没有多余”的向量。一些结论也可作相应的理解和解释。如:“如果一个向量组中的部分组线性相关,则整个向量组也线性相关”,解释为如果一个向量组中的部分组有多余的向量,则整个向量组也有多余的向量。“如果一个向量组线性无关,则它的任意一个部分组也线性无关”,解释为如果一个向量组中没有多余的向量,则该向量组去掉一些向量后也没有多余的向量。下面两个定理是学生们在学习向量组的线性相关性的过程中感到最难理解和掌握的。定理1设向量组(Ⅰ)α1,α2,…,αs可由向量组(Ⅱ)β1,β2,…,βt线性表示,且s>t,则α1,α2,…,αs线性相关。在课堂教学中我们是作如下解释的,向量组(Ⅰ)α1,α2,…,αs称为“被表示向量组”,向量组(Ⅱ)β1,β2,…,βt称为“表示向量组”。条件s>t,看成是有”多余”的向量。即“被表示向量组(Ⅰ)α1,α2,…,αs相对于表示向量组(Ⅱ)β1,β2,…,βt有多余的向量,则α1,α2,…,αs线性相关,这样解释便于学生理解和记忆。推论1如果一个向量组α1,α2,…,αs线性无关,并且可由向量组β1,β2,…,βt线性表示。则s≤t。推论1可解释为:如果“被表示向量组α1,α2,…,αs线性无关,则被表示的向量组α1,α2,…,αs相对于表示向量组β1,β2,…,βt没有多余的向量,即s≤t。推论2两个等价的线性无关向量组所含的向量的个数相同。两个向量组都线性无关,且彼此可相互线性表示,两个向量组彼此相对于另一个向量组都没有多余的向量,得两个向量组所含的向量的个数相同。下面再举一些例子进行说明。例1设向量组α1,α2,…,αs线性无关,且可由向量组β1,β2,…,βt线性表示,则必有()。 简单的说,是有用解的向量数。 ①比如回答多说:秩是阶梯型矩阵非0行的个数,为什么呢? 因为如果是0行(初等行变换后),0X1+0X2+0X3+0X4+0X5+……=0,对解这个方程没有任何帮助,就不能包括在秩里面。(X为未知数,不是乘号) 同样地,为什么秩是极大线性无关组的个数? 因为一旦线性相关,矩阵就可以将相关的一组中的一行通过初等行变换化为0,那就是无用解了。如:|1 2 3||2 4 6|1X1+2X2+3X3=02X1+4X2+6X3=0你会发现,两个方程其实是一样的,这就是线性相关。我们也可以通过初等行变换来做|1 2 3||2 4 6|r2-r1乘2=0,秩为1 ②从空间角度来说,秩是矩阵占用的维数,比如我们可以用三元一次方程组解出三个未知数,(三个方程三个未知数)那么我们称为满秩。 可以理解成三个未知数分别是X轴,y轴,和Z轴,可以组成三维空间。 但如果无用解存在,其实就不再是三个方程,那么就不满秩,这时候会有引入基础解系。 以上内容只讨论齐次线性方程组,并且并不准确,只适用于初学者。 矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。 能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关) 矩阵的秩的几何意义如下:在n维线性空间V中定义线性变换,可以证明:在一组给定的基下,任一个线性变换都可以与一个n阶矩阵一一对应;而且保持线性;换言之,所有线性变换组成的空间End 扩展资料: A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。 特别规定零矩阵的秩为零。 显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r 由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。 由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的。 奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。 如果A是复矩阵,B中的奇异值仍然是实数。 SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。 参考资料来源:百度百科——矩阵的秩 第一个角度,也就是书本上的定义,矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。 对一个矩阵,存在某个r阶行列式,值不为0,这个r阶行列式就是对一个矩阵你画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。 第二个角度,如果我们把矩阵进行初等行变换,将矩阵变换为一个行阶梯形矩阵后,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是通过运算的角度来给出的矩阵的秩的定义,对矩阵进行初等行变换后得到的行阶梯形矩阵的非0行的个数。 第三个角度,是从线性方程组的角度来给出的,我们可以把秩理解为一种约束,因为方程我们就可以理解为约束,当我们把矩阵看成齐次线性方程组的系数的时候,矩阵的秩就是这个方程组里真正存在的方程的个数。 虽然写出了很多个方程,但有一些是没有用的,可以由其他方程来表示的,这些没用的消去之后剩下的真正的约束的个数就是这个矩阵的秩。 第四个角度,将矩阵看成由一个个向量放在一起拼成的,这个秩就是向量组中独立的向量的个数,其实和上述方程组的角度是差不多的。 扩展资料 定理:矩阵的行秩,列秩,秩都相等。 定理:初等变换不改变矩阵的秩。 定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。 定理:矩阵的乘积的秩Rab<=min{Ra,Rb}; 引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。 当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。 当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。 参考资料来源:百度百科-矩阵的秩 通过化简矩阵 使矩阵达到最简 有多少行非零的 秩就是多少 秩和解的个数有关伴随矩阵论文答辩稿子怎么写
矩阵特征值参考论文文献
线性代数矩阵论文参考文献
毕业论文矩阵的秩