琳子Yulander
and , Matrix Analysis,这个中译本也有的。, Linear Algebra and its Applications.奇异值分解虽然是最有用的矩阵分解之一,但其本质和谱分解定理差不多,所以单纯讲矩阵的书上可能不会讲太多应用,可以考虑再去看一下PCA(principal component analysis)方面的文献。
最好的我~
[证明] 因为n阶矩阵A具有n个两两不同的特征值, 令这些特征值为λ1, λ2, …, λn, 则f(λi) = |λiE - A| = 0, i = 1, 2, …, n. 又因为对应于不同的特征值的特征向量是线性无关的, 所以A具有n个线性无关的特征向量, 令这些特征向量为p1, p2, …, pn. 于是有可逆矩阵P = (p1, p2, …, pn)使得 P^{-1}AP = [λ1 0 … 00 λ2 … 0... ... ... ...0 0 ... λn] = D, 而且P^{-1}f(A)P = f(P^{-1}AP) = f(D) = [f(λ1) 0 … 0 0 f(λ2) … 0 ... ... ... ... 0 0 ... f(λn)] = O. 由此可得 f(A) = POP^{-1} = O. [参考文献] 张小向, 陈建龙, 线性代数学习指导, 科学出版社, 2008. 周建华, 陈建龙, 张小向, 几何与代数, 科学出版社, 2009.
随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序
你怎么也做分块矩阵的应用毕业论文??
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.
求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性
随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用: