首页 > 学术期刊知识库 > 圆柱圆锥论文范文

圆柱圆锥论文范文

发布时间:

圆柱圆锥论文范文

皮鞋为什么越擦越亮每到星期天,我总要完成妈妈交给我的擦鞋任务。告诉你,这可是我一星期零花钱的来源哦!拿到沾满灰尘的皮鞋后,我先把鞋面的灰尘擦掉,然后涂上鞋油,仔仔细细地擦一擦,皮鞋就会变得又亮又好看了。可这是为什么呢? 我找了同样牌子同样款式的新旧两双皮鞋进行对比观察。我先用手触摸两双皮鞋的鞋面,发现新皮鞋的表面比旧皮鞋的表面光滑得多。旧皮鞋涂上鞋油,仔细擦过后,虽然亮了许多,但仍无法与新皮鞋相比。皮鞋的亮度是否与鞋面的光滑程度有关呢? 我取来一双没擦过的旧皮鞋,在放大镜下鞋面显得凹凸不平的。然后,我再在皮鞋上圈出两块表面都比较粗造的A区和B区,A区涂上鞋油并仔细擦拭,B区不涂鞋油作空白对照。我发现A区擦拭后,表面明显变光滑了许多,而且放在阳光下也比B区有光泽。为什么两者会产生这样的差别呢? 我想到在物理课上老师曾经讲过:影剧院墙壁的表面是凹凸不平的,这样可以使声音大部分被吸收掉,让观众不受回声的干扰。同样道理,光线照到任何物体的表面都会产生反射,假如这个平面是高低不平的,光线就会向四面八方散射掉;假如这个平面是光滑的,那么我们就可以在一定的方向上看到反射光。 皮鞋的表面原来就不是绝对的光滑,如果是旧皮鞋,它的表面当然更加的不平,这样它就不能使光线在一定的方向上产生反射,所以看上去没有什么光泽。而鞋油中有一些小颗粒,擦鞋的时候这些小颗粒正好可以填入皮鞋表面的凹坑中。如果再用布擦一擦,让鞋油涂得更均匀些,就会使皮鞋的表面变得光滑、平整,反射光线的能力也加强了。 通过实验,我终于知道了皮鞋越擦越亮的秘密啦!树干为什么是圆的在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。 在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。 经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。 以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。自己修改下就OK了,或者按它这格式你自己写篇

五年级写论文? 听着还以为是大学毕业呢XX大家可能队它不很了解,下面让我给你们介绍下..XXX非常正确,因为..这就是XX了..

对中学数学教学的几点思考 进入新世纪以后,我们面临的问题很多,其中最关键的就是怎样使产业升级,在这方面起重要作用是人才。究竟需要什么样的人才呢,专家们指出需要以下四种素质的人才:第一,有新观念;第二,能够不断从事技术创新;第三,善于经营和开拓市场;第四、有团队精神。为此数学教学中应加强学生这四个方面能力的培养。 一、在数学教学中培养学生的新观念、新思想 新观念中不仅包含对事物的新认识、新思想,而且包含一个不断学习的过程。为此作为新人才就必须学会学习,只有不断地学习,获取新知识更新观念,形成新认识。在数学史上,法国大数学家笛卡尔在学生时代喜欢博览群书,认识到代数与几何割裂的弊病,他用代数方法研究几何的作图问题,指出了作图问题与求方程组的解之间的关系,通过具体问题,提出了坐标法,把几何曲线表示成代数方程,断言曲线方程的次数与坐标轴的选择无关,用方程的次数对曲线加以分类,认识到了曲线的交点与方程组的解之间的关系。主张把代数与几何相结合,把量化方法用于几何研究的新观点,从而创立解析几何学。作为数学教师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,灵活运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法研究证明不等式。 例 已知 a>=0,b>=0, 且 a+b=1, 求证 (a+2) (a+2) +(b+2) (b+2)>=25/2 证明这个不等式方法较多,除基本证法外,可利用二次函数的求最值、三角代换、构造直角三角形等途径证明。若将 a+b=1(a>=0,b>=0) 作为平面直角坐标系内的线段,也能用解析几何知识求证。证法如下:在平面直角坐标系内取直线段 x+y=1,(0=<x>=1), (a+2) (a+2) +(b+2) (b+2)看作点(-2,-2)与线段x+y=1上的点(a,b)之间的距离的平方。由于点到一直线的距离是这点与该直线上任意一点之间的距离的最小值。而 d*d=( -2-2-1|)/2=25/2, 所以(a+2) (a+2) +(b+2) (b+2)>=25/2。“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。 二、在数学教学中培养学生的创新能力 创新能力在数学教学中主要表现对已解决问题寻求新的解法。“学起于思,思源于疑”,学生探索知识的思维过程总是从问题开始,又在解决问题中得到发展和创新。教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达,探索未知领域,寻找客观真理,成为发现者,要让学生自始至终地参与这一探索过程,发展学生创新能力。如在球的体积教学中,我利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。每组出一人又组成许多小组,各小组分别将圆锥放入圆柱中,然后用半球装满土倒入圆柱中,学生们发现它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题解决的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。 三、在数学教学中培养学生经营和开拓市场的能力 一切数学知识都来源于现实生活中,同时,现实生活中许多问题都需要用数学知识、数学思想方法去思考解决。比如,洗衣机按什么程序运行有利节约用水;渔场主怎样经营既能获得最高产量,又能实现可持续发展;一件好的产品设计怎样营销方案才能快速得到市场认可,产生良好的经济效益。为此数学教学中应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市场的能力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。如证明组合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明。即构造一个组合模型,原式左端为m个元素中取n个的组合数。原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法;一类为必取a1有Cn-1m-1种取法。由加法原理及解的唯一性,可知原式成立。又如,经营和开拓市场时,我们常常需要对市场进行一些基本的数字统计,通过建立数学模型进行分析研究来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和应用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。 四、 在数学教学中培养学生团队精神 团队精神就是一种相互协作、相互配合的工作精神。数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如我又在讲授球的体积公式时,课前我让20名学生用厚厘米的纸板依次做半径为10、、9 …… 厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让40名学生用厚厘米的纸板依次做半径为10、、 …… 、厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,发现第二组比第一组的体积接近于半球的体积,如果纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发现了球的体积公式另一证法。同时不仅向学生讲教学过程中的实验材料为什么让大家各自准备,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。通过这些使学生认识到只有齐心协力才能达到成功的彼岸。数学教学具有不仅使学生学知,学做;而且使学生学共同生活,学共同发展的目标任务。参考资料:

科学小论文 关键字:六年级 我走在大街上,正要赶去补课的地方,上了公交车,把头偏向窗外,正想欣赏窗外美丽的景色时,却被窗户上的结上雾挡住了,我不禁有了疑问:为什么公交车的窗户上会结上雾?补完课后,我急匆匆赶回了家,上网查找到资料。 网上是这样说的:当车窗两面的温差大时,温度高的一面空气中的水蒸气会预冷凝结,形成大家所说的雾,也就是说,当冬天时车外的空气会比较冷,玻璃也会变得比较凉,此时车内的空气温度较高而起湿度较大时,车内空气中的水蒸气就会在玻璃上产生小水珠,如果大家不信可以做个试验,将一块玻璃或眼镜放入冰箱,在冰箱中冷却到同冰箱一样的温度时,此时玻璃上并没有雾气,如果将玻璃从冰箱中取出后放在空气中就可以发现上面会很快产生浓重的雾气。戴眼镜的弟兄们可能会有体会,冬天从寒冷的室外进入室内后眼镜会被严重的雾气遮盖,看不到任何东西。其实车窗的起雾同此是一个道理。 我做了实验果然没错,我又有了疑问:怎么克服这个困难呢? 我又在网上寻找了答案: 所以目前的除雾方式是在冬天打开点车窗,让车内外温差减少一些就可以了,或者打开冷气选择除雾档吹上半分钟就可以除雾了,还有就是使用除雾产品。 寻找了答案,希望各位多多用以上方法

圆锥曲线论文范文

圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。

高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究

圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.

一、高中数学圆锥曲线教学现状

1.从教师角度分析

高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.

考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.

2.从学生角度分析

圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.

二、提升高中数学圆锥曲线教学效率的措施

1.培养学生学习圆锥曲线的兴趣

众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.

2.教师要重视演示数学知识的形成过程

考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.

3.坚持学生的主体地位

教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.

三、结语

高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.

高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考

【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。

【关键词】 椭圆;双曲线;相似性质

学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:

1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。

2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。

3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?

4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。

5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。

我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。

首先,有关椭圆的第一定义与双曲线的第一定义。

“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。

比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。

其次,有关用二次平方法化简方程。

在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。

数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。

根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。

最后,椭圆与双曲线的相关性质。

在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。

通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。

1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。

例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。

又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。

例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。

3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。

例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。

鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。

通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。

在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。

参考文献

[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.

[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.

[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.

高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题

摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。

关键词:课程标准 数学高考 解析几何 存在性问题 思考

前言

最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]

一、是否存在这样的常数

例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.

(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

二、是否存在这样的点

【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.

三、是否存在这样的直线

【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条

件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]

四、是否存在这样的圆

【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系

结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.

2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;

参考文献:

[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003

[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012

[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006

圆锥曲线的光学 性质及其应用 历史上第一个考查圆锥曲线的是梅纳库莫斯(公元前375年—325年);大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线。他们两位对圆锥曲线的研究是很实在的:考察不同倾斜角的平面截圆锥其切口所得到的曲线,也就是说如果切口与底面所夹的角小于母线与底面所夹的角,则切口呈现椭圆;若两角相等,则切口呈现抛物线;若前者大于后者,则切口呈现双曲线。并且,阿波罗尼奥还进一步研究了这些圆锥曲线的光学性质,比如椭圆,他发现如果把椭圆焦点F一侧做成镜面,并在F处放置光源,那么经过椭圆镜反射的光线全部通过另一个焦点F。热也和光一样发生反射,所以这时便会被烤焦,这也就是焦点名称的由来。据说这一发现是他在研究椭圆的作法(也就是现行教材中一开始介绍的作法)时得出的。 而圆锥曲线真正从后台走上前台,从学术的象牙塔中进入现实生活的世界里,应归功于德国天文学家开普勒(公元1571年—1630年),开普勒在长期的天文观察及对记录的数据分析中,发现了著名的“开普勒三定律”,其中第一条是:“行星在包含太阳的平面内运动,划出以太阳为焦点的椭圆”,就这样,梅纳库莫斯和阿波罗尼奥出于数学爱好而研究的曲线在近2000年之后于天文学的舞台上登场了。后来哈雷又利用圆锥曲线理论及计算方法准确地预测到哈雷彗星与地球最近点的时刻,1758年在哈雷逝世16年之后,哈雷彗星与地球如期而遇,这引起了全欧洲、乃至全世界的轰动,也进一步推动人们对圆锥曲线研究兴趣的提升。 圆锥曲线的光学性质有大致有三点,即椭圆的光学性质、双曲线的光学性质和抛物线的光学性质。 1:椭圆的光学性质:从椭圆的一个焦点发出的光线或声波在经过椭圆周上反射后,反射都经过椭圆的另一个焦点。(如图1所示) 在圆锥曲线的定义中的定点,之所以称作为焦点,是源于它们的光学上聚焦性质.设一个镜面的轴截面的廓线是椭圆,那么当你把一个射线源置于定点F1处,所有射线通过椭圆反射后,都会集中到另一个定点F2;反过来也是一样(见图7-78).射线集中现象在光学上称为聚焦,因此自然称这两个定点F1,F2为焦点了.椭圆的这种光线特性,常被用来设计一些照明设备或聚热装置.例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热. 图1 2:双曲线的光学性质:如果光源或声源放在双曲线的一个焦点F2处,光线或声波射到双曲线靠近F2的一支上,经过反射以后,就从另一个焦点F1处射出来一样。(如图2所示) 双曲线的光学性质同样也有聚焦性质,但它是反向虚聚焦,即置于双曲线一个焦点处的射线源,被双曲线反射后,其反射线的反向延长线,必定经过另一个焦点双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用 图2 3:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴。(如图3所示) 把抛物线看作为一个焦点在无穷远处的“椭圆”,椭圆从一个焦点处发出的射线,聚焦到另一个焦点的椭圆的光学特性,表现在抛物线上,形式就与椭圆大不相同了:设想射线源在位于无穷远处的那个焦点处,无穷远处出发的射线,经抛物线反射后,到达位于有限位置的另一个焦点,但无穷远处出发的射线,在处于有限位置的你看来,只能是平行于对称轴的射线束(例如太阳虽然离开地球很遥远,但毕竟还没有在无穷远处,就这样,我们都已经觉得太阳光线是平行的,而不是像灯泡那样是散射的光线.)因此平行于对称轴的射线经抛物线反射,必定聚焦于焦点(见图7-80).反之把射线源置于抛物线的焦点(它在有限位置处),经抛物线反射后,所有的射线也要聚到在无穷远处的那个焦点去,因此反射射线也只能是平行于对称轴的,即从焦点发出的射线,经抛物线反射后成为平行于对称轴的射线束. 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样的接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图3 这三个圆锥曲线的光学性质在生活中有着很广泛的应用。 一只小灯泡(图4)发出的光,会分散地射向各方,但把它装在手电筒(图5)里,经适当的调节,就能射出一束比较强的平行光,这是为什么呢? 原因就是手电筒内,在小灯泡后面有一个反光镜,它的形状是抛物面,而它的作用就是能把由焦点发出的光线,以平行光(平行抛物面的轴)射出。探照灯(图6)也是利用这个原理做的。 (图4) (图5) (图6) 再根据光的可逆性,可以设计出用于加热水和食物的太阳灶(图7、图8)。在太阳灶上装有一个可旋转抛物面形的反光镜,当它的轴与太阳光线平行时,太阳光线经反射后集中于焦点处,这一点的温度就会很高。其他如聚光灯、雷达天线、卫星天线、射电望远镜等也都是利用抛物线的光学性质原理制成的。 (图7) (图8) 还有,电影放映机的聚光灯有一个反射镜,它的形状是旋转椭圆面。为了使片门(电影胶片通过的地方)处获得最强的光线,聚光灯泡与片门应分别对应于椭圆的两个焦点处,如下图所示: 由于水波、声波和光波都是波的一种形式,因此有很多类似的性质。如对水波遇到椭圆面、双曲线线面及抛物面的反射情况进行分析: 为了使在展览厅走动的游客们都能听清讲解员的解说,根据圆锥曲线的光学性质及声波的相关原理, 展览厅常设计为椭圆形。 圆锥曲线因其方程简单,线型多变美观,且 具有某些很好的力学性质,因此在建筑方面也不 乏应用;特别是流行于当前的大型薄壳顶棚建筑, 其纵剖线很多就是圆锥曲线. 圆锥曲线的光学性质即椭圆的光学性质、双曲线的光学性质和抛物线的光学性质,它在生活方面有着极其广泛的应用。我们应该不断深入了解和探索它的性质,利用它的性质为人类造福。科学永无止境!

建议看看下面的资料网,在这里想要谁给现写一篇,可能不会有,因为z这里没人会为了这个区花费一些时间去写的,所以根据我搜集的一些网站来看,希望对你有所帮助,用心去做,不管毕业论文还是平时作业吗,我相信你都可以做好的。写作资料也很多,下面给你一些范文资料网: 如果你不是校园网的话,请在下面的网站找: 百万范文网: 分类很细 栏目很多 毕业论文网 : 这个网站的论文都是以words的形式原封不动的打包上传的 引文数据库: 社科类论文: 经济类论文: 论文之家: 范文网: 如果你是校园网,那就恭喜你了,期刊网里面很多资料: 中国知网: 龙源数据库: 万方数据库: 优秀论文杂志 论文资料网 法律图书馆 法学论文资料库 中国总经理网论文集 职业经理人论坛 财经学位论文下载中心 公开发表论文_深圳证券交易所 中国路桥资讯网论文资料中心 论文商务中心 法律帝国: 学术论文 论文统计 北京大学学位论文d样本收藏

汽缸圆度圆柱度检测论文结论

测量汽缸的圆度和圆柱度前要先把汽缸内用干净布擦干净,把百分表装好并校好,测量时每个汽缸要测N个面,每个面至少3个数 ,测量完成后用每个面里最大的减最小的除以2就是圆度 。N个面里最大的圆度为这个缸的圆度, 用N个面里所有的数中最大的减最小除以2就是这个缸的圆柱度。

测量方法

1、两点法

测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值, 并以所有各被测截面示值中的最大值与最小值的一半作为圆柱度误差值。

2、三点法

测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值的一半作为圆柱度误差值。

扩展资料

测得的半径差由电子计算机按最小条件确定圆柱度误差。在配有电子计算机和相应程序的三坐标测量机上利用坐标法也可测量圆柱度。

一般量仪主轴、测杆外圆、陀螺仪轴颈、一般机床主轴、较精密机床主轴箱孔、柴油机、汽油机活塞、活塞销孔、铣床动力头、轴承箱座孔、高压空气压缩机十字头销、活塞、较低精度滚动轴承配合的轴。

大功率低速柴油机曲轴、活塞、活塞销、连杆、气缸、高速柴油机箱体孔、千斤顶或压力油缸活塞、液压传动系统的分配机构、机车传动轴、水泵及一般减速器轴颈。

参考资料来源:百度百科-气缸

一、摘要本文主要介绍一台东风牌汽车发动机大修镶新丝套后,出现了窜油故障,但检测有关部件的密封配合, 以及用量缸表测量气缸体圆度、圆柱度偏差,均符合技术要求。后经拆检分析发现,窜油故障是由气缸体承孔加工不符合标准要求,精度偏差超过极限所致。关键词:窜烧机油;气缸体承孔加工精度低;外径配合不良二、前言发动机燃烧机油是汽车的一种常见故障,而故障通常由活塞连杆组、配气机构、汽缸体等部件的密封配合不良,或机油加注过量等造成的。但在修理过程中,如没有注意零件材料质量的优劣,或者维修加工工艺不规范、不标准,技术精度达不到要求,同样会引起发动机窜油的故障。以下内容跟帖回复才能看到三、正文(一)发动机窜烧机油的故障现象我曾对一台东风车用的发动机进行大修,该车大修后不久,就出现了窜油现象,表现为:汽车行驶时,低、中、高速都有蓝烟,且机油压力低,起动困难,行驶乏力。动力性能和经济性能大大下降,燃油和机油损耗增加,机油约5天时间补加一次,废气排放超标。打开机油加注口察看,有一定的脉动烟雾冒出;检查曲轴和进气口,有刺激气味烟雾窜出;看排气管口,有油湿现象,检查火嘴,积炭明显。以上特征表明发动机窜油现象突出。(二)造成发动机窜机油故障的原因分析发动机在正常温度下运转,要取得动力性和经济性,工作时就必须要使进入燃烧室的混合气的压缩力符合设计要求,而且保证进气充分并且燃烧彻底,因为只有压缩压力达到最大要求和进气充分,才能保证发动机做功时能产生足够的爆破力,从而产生足够的动力,带动发动机曲轴高速运转。而要保证发动机气缸压缩力达到最大要求,则要求发动机配气机构以及曲轴连杆机构等各配合部件密封配合良好。保证密封配合良好,则要求各配合间隙符合技术要求。一旦发动机各密封配合件磨损过大,将会影响其密封性,使发动机出现窜烧机油的故障,最终令其输出功率下降且不能正常行驶。造成发动机窜烧机油有以下几个原因:1.由配气机构引起配气机构的气门、气门杆、气门导管的磨损,令其配合间隙增大。当气门杆和气门导管由于修理工艺及磨损不均匀时,会造成密封配合不良,产生漏油现象。配气机构出现上述故障,将使机油窜入燃烧室燃烧,从而影响发动机的动力性和经济性。2.由曲柄连杆机构引起(1)活塞环磨损或失效、各环环口对口。活塞环是活塞连杆组中磨损最快的零件,尤其是第一道活塞环的磨损更为剧烈。在燃烧的作用下,环背产生很大的压力,当然大的环背压力有助于密封,但另一方面也加速了环背的磨损。活塞环磨损或失效后,弹力减弱,开口间隙、边隙以及背隙增大,令活塞环与气缸体的配合间隙增大,使气缸内密封性变差而出现窜油,造成发动机的动力性能降低,机油消耗升高,引致通风系统严重冒烟,排气冒蓝烟和燃烧室表面积炭。(2)活塞磨损引起的窜油。活塞磨损最快的部位,是活塞环槽与活塞销座孔环槽的磨损,其中第一道环槽磨损最严重,由上至下,依此减轻,环槽的磨损,使活塞环槽中配合间隙增大,结果容易引起窜油现象。3.由气缸磨损引起气缸的工作表面,在正常情况下一般是在活塞环运动的区域形成不均匀的磨损,沿气缸轴线方向磨成上大下小的圆锥形,磨损产生圆柱度误差,最大的磨损部位是活塞在上止点位置时,第一道环所对应的缸壁处,而沿横向截面是磨成不规则的椭圆形,磨损产生圆度误差。最大的磨损在进气门对面的气缸壁上,由于此处受新鲜混合气流较强冲袭作用,导致润滑油膜稀释磨料增多,温度降低,使该部位磨损严重。4.由机油加注过多而造成由于机油加注过量,发动机高速运转时,飞溅润滑的油多,使气缸壁产生过量机油,而活塞环亦无法把其完全刮掉而窜到燃烧室燃烧。(三)排除故障的措施和方法根据以上分析,围绕着发动机出现窜烧机油的问题,本人针对以上得出的可能产生的原因,逐项进行解体检查分析。首先,拆下气缸盖检查,发现有个别排气门座有灰白的积炭,进气门有油湿。我将有问题的气门进行导管与杆的配合间隙的测量,发觉其配合间隙大于原厂标准以上,造成个别进排气门与座的配合密封不良而产生积炭。显然这是由于维修工艺不规范或材质不佳而造成的。而部分气门杆与导管的配合间隙过大,同样不排除工艺与材质的因素。于是我重新更换气门、气门导管和气门油封。与此同时,我又重点检查活塞环几个重要数据,没有发现对口现象;个别环的漏气弧长所对应的圆心角度偏大,>45�0�2;环的端隙、背隙和侧隙均符合标准,弹力正常,端隙为~。背隙低于环槽岸表面通常为0~。我怀疑环的材质有问题,因为目前市面上的正、副厂原件都有,质量参差不齐,而环的工作条件恶劣,受高温、高压的影响。高温达到600K,压力有时会达到5MPa以上。润滑条件差,如环的材质跟不上,会使磨损加快。于是,我又选一副原厂生产、认为质量可靠的活塞环试配,重新装好发动机启动试运转,燃烧机油和动力不足现象有明显改善,但尚有蓝烟从排气管排出。即发动机窜烧机油的故障还未排除。我又重新用量缸表测量汽缸体的圆度和圆柱度误差,圆度误差为,圆柱度误差为,且无拉伤痕迹,符合大修标准。但检查汽缸表面的粗糙度时,发现气缸有局部位置与活塞环无接触的痕迹。根据这种情况,估计故障可能是气缸体承孔与气缸套外径配合不良造成,因为如果气缸套与承孔……另有·《基于神经网络的电控汽油发动机的智能故障诊断研究》 ·《基于波形分析的电控发动机故障诊断技术的研究》 ·《针对汽车发动机的故障诊断方法研究》 ·《大型柴油机横向异常振动诊断的理论与实践》 ·《汽油发动机点火正时及故障模式的仿真模拟研究》 ·《发动机电喷系统故障模拟显示系统的研究》 ·《基于波形分析法的电喷汽油机空燃比控制系统故障诊断研究》 ·《基于虚拟仪器的发动机功率检测与故障诊断的研究》 ·《基于神经网络的汽车发动机智能故障诊断研究》 ·《异常条件下发动机气门失效仿真分析系统研究》 ·《基于神经网络的汽车发动机故障诊断系统》 ·《汽车发动机故障诊断方法研究》 ·《基于子带能量法的发动机振动信号分析研究》 ·《发动机机械加工设备状态监测策略研究》 ·《汽车发动机故障诊断中不确定性问题的贝叶斯网络解法》 ·《基于波形分析法的电喷汽油机故障诊断研究》任选,发给你

内径千分卡。和角尺

测量汽缸的圆度和圆柱度前要先把汽缸内用干净布擦干净,把百分表装好并校好 ,测量时每个汽缸要测N个面,每个面至少3个数 ,测量完成后用每个面里最大的减最小的除以2就是圆度 。N个面里最大的圆度为这个缸的圆度, 用N个面里所有的数中最大的减最小除以2就是这个缸的圆柱度。

测量方法

1、两点法

测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值, 并以所有各被测截面示值中的最大值与最小值的一半作为圆柱度误差值。

2、三点法

测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值的一半作为圆柱度误差值。

按公差等级,可划分以下应用:

1、高精度量仪主轴、高精度机床主轴、滚动轴承滚珠和滚柱等。

2、精密量仪主轴、外套、阀套、高压油泵柱塞及套、纺锭轴承、高速柴油机进、排气门、精密机床主轴轴颈、针阀圆柱表面、喷油泵柱塞及柱塞套。

3、小工具显微镜套管外圆、高精度外圆磨床轴承、磨床砂轮主轴套筒、喷油嘴针阀体、高精度微型轴承内、外圈。

4、较精密机床主轴、精密机床主轴箱孔、高压阀门活塞、活塞销、阀体孔、小工具显微镜顶针、高压油泵柱塞、较高精度滚动轴承配合的轴、铣床动力头箱体孔。

参考资料来源:百度百科-圆柱度

圆锥曲线的研究论文

附件10:论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告论文(设计)题目 圆锥曲线切线的几个性质及其应用探究系(院) 数学与应用数学 专业班级 09级数本(2)班 学科 理科学生 姓名 成骏 指导教师 姓名 徐权年学号 0925809070 职称 教授一、 选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。2、撰写要求:宋体、小四号。)1.选题的来源及意义圆锥曲线是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。圆锥曲线的主要内容之一是圆锥曲线切线的相关问题,课本中虽然没有对该类问题进行深入探究。但在考试中却常常出现与圆锥曲线切线相关的题目。而国内外的参考文献中涉及到这方面的研究大都只给出抽象的性质和证明,很少给出性质的相关应用,实际处理具体问题时学生难于灵活运用这些性质,因此,本选题具有十分重要的实际价值和意义2.国内外研究状况从目前参考道德文献资料中所了解的信息看,对圆锥曲线切线的性质,近几年研究者们从各自的角度出发,进行了一定的探讨,得到一系列结果。比如:在《圆锥曲线的一个性质的证明与推广》一文中张留杰得出了准线上任意一点与焦点弦的两端点,焦点弦所在直线的斜率之间的关系的性质:在《圆锥曲线切点弦的一个性质》一文中周伟林得出了圆锥曲线切点弦的共通性质:在《圆锥曲线的一个几何特征》一文中黄堰创得出了圆锥曲线的切线,对称轴以及顶点在圆锥曲线上的三角形的内在性质:在《圆的重要性质在圆锥曲线上的推广》一文中吴翔雁得出了切线长的性质:在《圆锥曲线的一个性质》一文中张家瑞得出了切线,割线间的关系的性质:在《圆锥曲线的一个性质及应用》一文中潘德党得出了圆锥曲线的焦点,准线与切线三者间的位置关系的性质及应用:在《高中几何学习指导》一文中李铭祺得出了切线长相等的性质等等。3.研究目标通过探讨从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线的相关性质及应用,揭示圆锥曲线隐藏的统一特性。4.本文创新点在现有的参考文献的基础上,通过从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线,对圆锥曲线切线进行研究,得到了圆锥曲线切线的5个性质并加以应用,以揭示圆锥曲线切线隐藏的统一性质。5.主要参考文献[1]郑观宝.圆锥曲线的一个公共性

1640年,帕斯卡发表了《略论圆锥曲线》的论文,引出了400多条推论,提出了被笛沙格称为神秘的六边形的射影几何基本定理,作出了自阿波罗尼以来关于圆锥曲线的最重要研究。这个以帕斯卡的名字命名的几何定理很简洁;若一个六边形内接于一圆(更一般是圆锥曲线),则每两条对边相交而得到三个点,它们在同一条直线上。也可以说,如果圆内接六边形的三对对边所在直线分别相交,那么三个交点必定共线。数学史家认定,单就这一个定理,就足以让帕斯卡流芳百世。的确,这时的帕斯卡不过刚刚十六七岁。当时著名的大数学家笛卡尔读到论文时,不敢相信这么重要的定理竟然出自一个少年,他摇头说:“17岁的少年不会发现这个定理!”

圆锥曲线毕业论文本科

圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。

高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究

圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.

一、高中数学圆锥曲线教学现状

1.从教师角度分析

高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.

考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.

2.从学生角度分析

圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.

二、提升高中数学圆锥曲线教学效率的措施

1.培养学生学习圆锥曲线的兴趣

众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.

2.教师要重视演示数学知识的形成过程

考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.

3.坚持学生的主体地位

教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.

三、结语

高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.

高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考

【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。

【关键词】 椭圆;双曲线;相似性质

学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:

1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。

2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。

3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?

4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。

5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。

我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。

首先,有关椭圆的第一定义与双曲线的第一定义。

“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。

比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。

其次,有关用二次平方法化简方程。

在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。

数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。

根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。

最后,椭圆与双曲线的相关性质。

在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。

通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。

1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。

例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。

又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。

例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。

3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。

例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。

鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。

通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。

在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。

参考文献

[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.

[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.

[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.

高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题

摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。

关键词:课程标准 数学高考 解析几何 存在性问题 思考

前言

最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]

一、是否存在这样的常数

例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.

(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

二、是否存在这样的点

【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.

三、是否存在这样的直线

【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条

件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]

四、是否存在这样的圆

【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系

结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.

2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;

参考文献:

[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003

[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012

[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

附件10:论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告论文(设计)题目 圆锥曲线切线的几个性质及其应用探究系(院) 数学与应用数学 专业班级 09级数本(2)班 学科 理科学生 姓名 成骏 指导教师 姓名 徐权年学号 0925809070 职称 教授一、 选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。2、撰写要求:宋体、小四号。)1.选题的来源及意义圆锥曲线是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。圆锥曲线的主要内容之一是圆锥曲线切线的相关问题,课本中虽然没有对该类问题进行深入探究。但在考试中却常常出现与圆锥曲线切线相关的题目。而国内外的参考文献中涉及到这方面的研究大都只给出抽象的性质和证明,很少给出性质的相关应用,实际处理具体问题时学生难于灵活运用这些性质,因此,本选题具有十分重要的实际价值和意义2.国内外研究状况从目前参考道德文献资料中所了解的信息看,对圆锥曲线切线的性质,近几年研究者们从各自的角度出发,进行了一定的探讨,得到一系列结果。比如:在《圆锥曲线的一个性质的证明与推广》一文中张留杰得出了准线上任意一点与焦点弦的两端点,焦点弦所在直线的斜率之间的关系的性质:在《圆锥曲线切点弦的一个性质》一文中周伟林得出了圆锥曲线切点弦的共通性质:在《圆锥曲线的一个几何特征》一文中黄堰创得出了圆锥曲线的切线,对称轴以及顶点在圆锥曲线上的三角形的内在性质:在《圆的重要性质在圆锥曲线上的推广》一文中吴翔雁得出了切线长的性质:在《圆锥曲线的一个性质》一文中张家瑞得出了切线,割线间的关系的性质:在《圆锥曲线的一个性质及应用》一文中潘德党得出了圆锥曲线的焦点,准线与切线三者间的位置关系的性质及应用:在《高中几何学习指导》一文中李铭祺得出了切线长相等的性质等等。3.研究目标通过探讨从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线的相关性质及应用,揭示圆锥曲线隐藏的统一特性。4.本文创新点在现有的参考文献的基础上,通过从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线,对圆锥曲线切线进行研究,得到了圆锥曲线切线的5个性质并加以应用,以揭示圆锥曲线切线隐藏的统一性质。5.主要参考文献[1]郑观宝.圆锥曲线的一个公共性

  • 索引序列
  • 圆柱圆锥论文范文
  • 圆锥曲线论文范文
  • 汽缸圆度圆柱度检测论文结论
  • 圆锥曲线的研究论文
  • 圆锥曲线毕业论文本科
  • 返回顶部