首页 > 学术期刊知识库 > 活性炭燃点论文参考文献

活性炭燃点论文参考文献

发布时间:

活性炭燃点论文参考文献

活性炭会着火,这是肯定的,着火点随炭的品种不同而异,磷酸法活性炭着火点较低,约在300~400度就着火。因此加工运输的时候要注意。着火的原因其实很简单,达到一定温度时炭中的碳元素与空气中的氧发生燃烧反应,生成一氧化碳和二氧化碳。因此,对方活性炭或加工时要防止炭在瞬间温度上升,否则容易着火。

活性炭是可以点燃的,不过由于它特殊的工艺,燃烧需要很高的温度!活性炭是黑色粉末状或颗粒状的无定形碳。活性炭主成分除了碳以外还有氧、氢等元素。活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,因此它是一种多孔碳,堆积密度低,比表面积大。 活性炭在高温下的含水量较大,在高温下可以点燃,或者高温烘干后点燃,燃烧生成二氧化碳和水。

活性炭的着火点是300度

300摄氏度

活性炭吸附毕业论文

改性就是对现有活性炭表面进行物理或化学的处理,改变其比表面积、孔度以及表明官能团,使其具有选择吸附能力。常见的有氧化改性和还原改性,分别用酸和氨水处理。另外也可以加入其他离子,处理镉的话氧化改性的效果不错。

你可到你学校图书馆里查找!输入关键字在中国中知网上查或中国学术期刊网上查相关资料!论文格式一般包括主标题 副标题 作者姓名 指导教师 中英文摘要 关键字词 正文 参考文献等!

我也想了解这方面的信息 请高人赐教

活性炭吸附钼毕业论文

煤质颗粒活性炭煤质颗粒活性炭选用优质无烟煤为原料,采用先进的工艺精制而成,外观为黑色不定型颗粒。具有空隙结构发达,比表面积大,吸附能力强,机械强度高,床层阻力小,化学稳定性能好,易再生,经久耐用等优点。稻壳活性炭水稻脱粒时产生的稻壳往往被当做废弃物扔掉,日本研究人员日前报告说,他们开发出了利用稻壳制造高性能活性炭的技术。日本长冈技术科学大学的斋藤秀俊教授在论文中指出,如果单纯将稻壳加热后制成炭,稻壳内残留的二氧化硅会阻碍其作为活性炭发挥作用。但是将上述“稻壳炭”与氢氧化钾和氢氧化钠混合在一起,然后进行热处理,就可以成功去除二氧化硅。据测算,与普通活性炭相比,这种稻壳活性炭及其孔隙的表面积相当于前者的倍。活性炭纤维本产品是以优质椰壳粉末活性炭为吸附材料,采用高分子粘结材料将其粘附在无纺布的基体之上而制成,可有效吸附各种工业废气,如苯、甲苯、二甲苯、甲醛、氨气、二氧化硫等。主要用于制作活性炭口罩,亦可作为鞋垫,广泛用于化工、制药、油漆等行业,防毒除臭效果显著。粉状活性炭粉状活性炭以优质木炭为原料,经特殊生产工艺精制而成,有物理法、化学法两种。经水蒸气活化后,精制处理,粉碎而成。本品外观为黑色粉末状,在一般溶液下均不溶解。无臭无味,具有表面积大吸附力强、纯度高、滤速快、质量稳定,具有絮凝效应和助滤效应等特点。广泛适用于食品、医药、味精化工等产品的脱色、除杂精制。也可以用于水的净化处理。

无碱脱 臭(精制脱硫醇)—— 重催的精制装置乙烯脱盐水(精制填料)——乙烯装置催化剂载体(钯、铂、铑等)——苯乙烯、连续重整装置水净化及污水处理——上水及下水的深度处理 电厂水质处理及保护— —锅炉装置对NO、NOx等有害气体的吸附——锅炉尾部烟道 黄金提取——适用炭浆法、堆浸法提金工艺尾液回收——金矿的废物利用及环境保护 香烟滤嘴、木地板防潮、吸味、汽车汽油蒸发污染控制,各种浸渍剂液的制备等,比如活性炭可以作为活性碳罐的填充物用来生产摩托车碳 罐 汽车碳罐等。1、活性炭吸附法在水处理中的应用活性炭吸 附广泛应用于在城市污水处理、饮用水及工业废水处理。颗粒活性炭常常应用于吸附分子,颗粒活性炭吸附性决定应用性,而吸附性和各种炭型的孔大小分布相关。以水蒸气活化的泥煤基、 褐煤基和椰壳基粉状活性炭为例:泥煤基活性炭具有微孔和中孔,颗粒活性炭可供多种应用;褐煤基炭具中孔较多,颗粒活性炭而且还有较大的中孔,提供优良的可入性;椰壳基颗粒活性炭中主要是微孔,仅适用于低分子的去除。利用化学品活化的颗粒活性炭是非常多孔的,多在微孔和中孔范围,但是,比较水蒸气活化的活性炭、化学品活化的活性炭的孔表面是较少疏水性和较多负电荷。以挤压型和破碎型粒状活性炭为例:泥煤基挤压型活性炭能制成各种不同孔大小分布的品种。颗粒活性炭微孔为主的品种主要用于气相应用的黄金回收。既有微孔又有中孔的品种大都用于液相应用,如水纯化中吸附小分子和大分子的杂质。破碎型煤 基颗粒活性炭兼有微孔和中孔,可供多种目的的应用。褐煤基或椰壳基的粒状活性炭与粉状炭一样具有相同的微孔和中孔结构。活性炭的技术指标非常重要:活性炭产品的性能指标可分为物理性能指标、活性炭化学性能指标、颗粒活性炭吸附性能指标。三种性能指标对活性炭的选择和应用都起到非常重要的作用。活性炭主要物理性能指标有:形状、外观、比表面积、孔容积、比重、目数、粒度、耐磨强度、漂浮率等。颗粒活性炭主要化学性能指标有:PH值、灰分、水分、着火点、未炭化物、硫化物、氯化物、氰化物、硫酸盐、酸溶物、醇溶物、铁含量、锌含量、铅含量、砷含量、钙镁含量、重金属含量、磷酸盐等。活性炭主要吸附性能指标有:亚甲蓝吸附值、碘吸附值、苯酚吸附值、四氯化碳吸附值、焦糖吸附值、硫酸奎宁吸附值、饱和硫容量、穿透硫容量、水容量、 氯乙烷蒸汽防护时间、ABS值等1)城市污水处理废水中的一些有机物是难于为微生物或一般氧化法所氧化分解的,如酚、苯、石油及其产品、杀虫剂、洗涤剂、合成染料、胺类化合物以及许多人工合成有机物,经生化处理后很难达到对排放要求较高的水体中排放的标准,也严重影响废水的回用,因此需要深度处理。由于活性炭对有机物的吸附能力大,在废水深度处理中得到广泛的应用,具有以下优点:①处理程度高,城市污水用活性炭进行深度处理后,BOD可降低99%,TOC可降到1~3mg/L。②应用范围广,对废水中绝大多数有机物都有效,包括微生物难于降解的有机物。③适应性强,对水量及有机物负荷的变动有较强的适应性能,可得到稳定的处理效果。④粒状炭可进行再生重复使用,被吸附的有机物在再生过程中被烧掉,不产生污泥。⑤可回收有用物质,例如用活性炭处理含酚废水,用碱再生吸附饱和的活性炭,可以回收酚钠盐。⑥设备紧凑 、管理方便。2)饮用水深度处理中的应用活性炭吸附是建立在 常规给水处理基础上,一般设置在砂过滤之后,也可与砂滤料组成双层滤料过滤或以活性炭过滤代替砂过滤。在利用活性炭吸附进行饮用水深度处理的过程中,发现在活性炭滤料上生长有大量的微生物,使出水水质提高且再生延长,于是 发展了一种经济有效的去除水中的微污染物质的生物活性炭工艺,流程为原水—(加入混凝剂)—澄清—过滤(加入臭氧)再利用活性炭吸附,最后是出水。2、家用空气净化:用活性炭摆放在室内有效的吸收空气中含有的甲醛\二甲苯等有害物质(特 别是 新装修的房子),家具去异味:活性炭可适用于新买的家具放于橱柜\抽屉\冰箱中.也可放在鞋子里面除臭味.汽车除味:新车一般都含有很多的有害物质\难闻刺鼻的气味,用活性炭可以有效的去除。历史记载活性炭应用的历史,记载如下:⑴公元前1550年,埃及有作为医用的记载;⑵公元前460~359年,希腊医生Hippocrate用以治羊癫疯;⑶ 1518~159 3年,中国李时珍的本草纲目中提及用于治病;⑷ 1993年有外用于溃疡;⑸ 1794年,英国有家糖厂用于加速脱色。上述例证应用的都是木炭,不是活性炭。活性炭作为人造材 料,是在1900年和1901年才发明的,发明者Raphael von Ostrejko,取得英国专利(1900) ;英国专利(1900)德国专利(1901)。他发明将金属氯化物炭化植物源原料或用二氧化碳或水蒸气与炭化材料反应制造活性炭。1911年在维也纳附近的工厂首次用于工业生产,当时产品是粉状活性炭,商品名使Epomit;同年在荷兰有Norit上市;1912年在捷克斯洛伐克有Carboraffin出售。()。历史阶段回顾百年来世界活性炭应用的历史,不妨粗略划分为三个阶段:⑴第一阶段,从20世纪初到约20世纪20年代为萌芽阶段:⑵第二阶段 ,从约20世纪20年代中期为成长阶段;⑶第三阶段,从20世纪中期到20世纪末期为发展阶段,发展成为环保大应用阶段。这三个阶段可用活性炭应用历程中两件历史性大事。作为划分的界限。历史事件第一件大事是活性炭防毒面具,在20世纪20年代在第一次世界大战中的应用。可 以以此作为划分活性炭应用历史的第一阶段和第二阶段的界限。活性炭在初期主要应用是粉炭在糖业中逐步代替了原来的骨炭。在20世纪20年代的第一次世界大 战中出现的颗粒大量应用于防毒面具。这是工业化学史上 辉煌的一页。当时荷兰的Norit和捷克斯洛伐克、德国、法国、瑞士等国的制造商和批发商曾成立一个联合公司,说明在欧洲萌芽的活性炭也是被广为看好的新兴产业。通过防毒面具应用的推动,活性炭历史进入了第二阶段,活性炭市场不断扩大,活性炭的吸附和催化功能在众多行业的精制、回收、合成上的应用陆续开发,美国等的活性炭厂陆续开设。在20世纪中叶不断拓展应用面的活性炭,被视为“万能吸附剂”。第二件大事 是活性炭除臭作用,在20世纪40年代数以百计的自来水厂中采用了活性炭除臭。以此作为划分活性炭应用历史的第二阶段与第三阶段的界限。1927年美国芝加哥自来水厂发生了广大居民难以接受的自来水恶臭事故,这是由于原水中的苯酚和消毒用的氯生成异臭所致。德国等地的自来水厂也发生了同样的事故,这些事故都是用活性炭来解决的。此后,随着环境保护日益受到重视,政府法令的日趋严格。活性炭不仅在净水方面,而且在净气等方面的用量剧增,使得在20世纪的后半叶,环保产业成为活性炭应用的大户。由此活性炭历史进入了第三阶段,即发展阶段中国活性炭 在应用历史上简单分为三个阶段:1、第一阶段是20世纪40年代以前,中国制药工业、化学工业中使用活性炭量大,都用进口货,例如用Carboraffin牌的活性炭。2、第二阶段自20世纪50年代初开始,国产活性炭上市。1951年沈阳和抚顺的单管炉厂、青岛的反射炉闷烧法厂、上海的电热活化法厂,接 着有氯化锌活化法厂,1958年福建、杭州、广州、烟台、东北等地纷纷建厂,1966年太原开创斯列普活化法厂,随后中国陆续开设数以百计的斯列普炉厂。此外,还有不少的转炉、粑式炉等工厂。总生产能力从1951年的三五十吨猛增到20世纪80年代的近十万吨。生产与应用相互促进,活性炭的应用范围被迅速开拓。从原来单一的通用炭向多种的专用炭发展,例如净水炭、糖炭、味 精炭、油脂炭、黄金炭、载体炭、药用炭、针剂炭、试剂炭等等,足见活性炭因国内经济蒸蒸日上而应用量速增,又因产量扩大、成本降低而使出口量上升。中国活性炭的应用,不仅在国内市场发展,而且进入了国际市场。3、第三阶段2003-至今;活性炭应用于装修污染治理,利用先进的造孔技术将活性炭,使其具备与室内有害气体分子大小相匹配的孔隙结构,专用于吸附甲醛、苯系物、氨、氡等所有对人体有害的气体及空气中的浮游细菌。具有吸味、去毒、除臭、去湿、防霉、杀菌、净化等综合功能,有效清除室内环境污染成功应用于装修污染治理。各大市场和超市的家用活性炭众多,活性炭已走进千家万户,成为健康时尚的环保产品。

活性炭可以除甲醛和苯,尤其椰维炭是活性炭中效果最好的一种以椰壳为原料,经过高温活化、碳化处理,同时是一种内含光触媒、碳纤维的新型活性炭。椰维炭对有机气体的吸附能力是普通活性炭的5倍,吸附速率更快。

活性炭净化空气的原理是靠依靠其炭自身发达的孔隙结构和表面积,可以很大程度的接触到周围空气,被动吸附一些污染物到自己的孔隙中,所以说活性炭的表面越大、孔径结构越发达吸附能力就越强。另外活性炭的孔径大小与能吸附什么分子量大小的一定关系,理论研究证明有害物质的分子量越大,越容易被活性炭吸附,如苯的分子量是78,甲醛的分子量是30,活性炭吸附苯的能力要比吸附甲醛的能力强,所以工业生产中活性炭多用于苯系物的吸附剂使用。

活性炭测氡方法研究论文

20世纪60年代初,瑞典用活性炭吸附氡,测量子体214Bi的β射线(最大能量 MeV),寻找铀矿。1977年美国用活性炭法找铀矿,测量的是214Bi的γ射线 MeV能量峰的净峰面积,计算氡的浓度。

我国于20世纪70年代末开展了活性炭吸附氡寻找铀矿工作。

活性炭微细的孔隙丰富,比表面积大(700~1600 m2/g),是氡的强吸附剂,在很大容量范围内呈线性关系。

(一)测量土壤氡的操作程序

取直径3 cm左右的塑料瓶(编号),先装活性炭4~5 cm厚;上面装干燥剂至瓶口,既去湿,也可以去除Tn的影响;用纱布封口,扎紧,装入探杯内,埋于采样坑中(参见图6-4-1),一般4~7 d为宜,使Rn与子体达到平衡。取出后,在实验室铅室内,进行γ射线总量测量,或用高分辨半导体测器的多道γ能谱仪选择适当的单能量峰进行测量,一般可选 MeV(214Bi),或 MeV(214Pb)。计算净峰面积,用来计算氡的平均浓度。

(二)测量空气氡的操作程序

活性炭装置,放在待测位置,空气中氡扩散进入活性炭床被吸附,同时衰变产生的新子体,也沉积在活性炭床内。用多道γ能谱仪测量炭床氡子体产生的γ射线单能峰或能量峰群的净峰面积,可以算出空气中氡的浓度。操作程序如下。

1)将选用的活性炭放入烘箱,在120℃下烘烤5~6 h,取出后放入磨口瓶中密封保存待用。

2)准备好采样盒,一般为塑料或金属制成,直径6~10 cm,高3~5 cm,内装25~200 g烘烤后的活性炭(专用的采盒为直径8 cm,高 cm,内装50 g活性炭。上有圆形金属过滤器孔径56 μm),上面覆盖滤膜,称量总重量。

3)样品盒放置在采样点,放在距地面50 cm以上的地方(架子上),面朝上放置,上面20 cm范围内不得有其他物品,放置2~7 d。收回时,立即封好,防止氡再沉积。

4)放置3 h后测量,此时,再称重量与前者相比,计算水的含量。

5)将活性炭盒放入铅室,用半导体探测器的多道γ能谱仪,测量单能峰( MeV或 MeV)或峰群,计算净峰面积,用下式计算空气中平均氡浓度。

核辐射场与放射性勘查

式中:Ap为采样1 h的响应系数,Bq·m-3/cpm,即仪器刻度系数;nγ为特征能量峰的净计数,cpm;kw为水分校正因子(实验求得);t1为采样时间,h;b为累积指数(实验求得,一般为);t2为采样终止到测量开始时间,h。

根据活性炭强吸附氡的性质,湖南六所研究提出活性炭滤纸测氡方法。即用活性炭(90%含量)制成滤纸(20mg/cm2厚),用该活性炭滤纸作为滤膜,抽取氡气样,然后测量上面α粒子的计数率,用下式计算空气中氡的浓度:

核辐射场与放射性勘查

式中:NRn为空气中氡的平均浓度,Bq·m-3;nα为活性炭滤纸上α粒子计数率,cpm;n底为本底计数率cpm;kp为标定常数,cm/Bq·m-3;FT为温度校正系数。

基本原理

通过天然放射性元素随地质活动的变化规律进行地质构造研究,是核地球物理勘探(Nuclear Geophysical Exploration)的内容之一。用航空 γ能谱测量方法进行区域断裂研究是比较成功的,但用地面γ射线测量方法调查活动断层,虽有一些成功实例,但总的来看效果不好,因为异常与背景相对差值较小,且干扰因素较多,目前还难以控制到最有效程度。目前比较有效的方法是各种以测氡为基础的放射性测量方法。

自发产生核衰变的天然放射性元素有铀系、钍系和锕铀系三个系列,以及一些单独的放射性核素。三个天然放射性系列的共同特点是:①每个系列都有一个长寿命的起始核素。铀系的起始核素是 (铀),半衰期为×109年;钍系是 (钍),半衰期为×1010年;锕铀系是 (铀),半衰期为×108年。它们衰变很慢,可以认为数量基本不变,每个系列的各个子体核素的数量相对稳定。②每个系列经过多次核衰变后,最后一个子体都是稳定的铅同位素。③三个衰变系列中间都有一个放射性气体氡的同位素,铀系是 、钍系是 、锕铀系是 ,他们的半衰期差别很大(见表15-1),在实际测量中根据这一特点,很容易把它们分别测出。219Rn半衰期仅为秒,且含量很低难以利用。作为测氡方法主要是测量222Rn和220Rn。在活断层研究中主要是测量222Rn,因为它迁移距离远,有利于传递深部构造信息。

天然放射性元素在自发进行核衰变时,放出α射线的称为α衰变,放出β射线的称为β衰变。由于α射线是高速运动的质量数为4、带两个正电荷的氦原子核,所以α衰变形成的子体核素是比母体质量数少4,原子序数少2的新核素。而β射线是高速运动的电子,所以β衰变形成的子体核素与母体质量数相同,只是原子序数增加一位。此外,α衰变或β衰变形成的子体核素,有的处于高能级的激发态,这种激发态是不稳定的,很快会退激到低能级的稳定基态,并以电磁波的形式放出多余的能量,称为 γ光子或γ射线。由此可见,γ射线总是伴随着α衰变或β衰变同时产生的。如果激发态保持时间较长,就构成独立核素。因为它与基态核素有相同的质量和相同的原子序数,只是能量不同,所以叫同质异能素。

氡( )是α衰变的辐射体,经过α衰变后转变为 ,再衰变后连续生成几个短寿命的放射性子体核素,包括氡在内都是系列中较强的α、γ辐射体,如表15-1所列。通过测量这些核素的α射线(粒子)或 γ射线强度,可以确定土壤中氡气浓度分布,并依此确定地质构造特征。

镭的同位素衰变成氡的同位素,而氡的同位素又衰变生成新的子体,因此氡的同位素按下述规律由镭同位素积累,并达到数量上的平衡。

表15-1氡同位素及其子体的特征

地质灾害勘查地球物理技术手册

式中:N2为第二种物质,即氡同位素(子体)在t时的原子数;N1为第一种物质,即镭同位素的初始(t=0)原子数;λ1、λ2为母体和子体物质的衰变常数(s-1);t为第二种物质,即氡同位素的积累时间。

考虑到镭同位素的衰变常数A1=×10-11,氡同位素222R的衰变常数为A2=×10-6,即Al<<λ2,因此上式可以简化为:

地质灾害勘查地球物理技术手册

可见氡同位素是按指数规律积累的。

如果已知镭的质量CRa(以贝克贝可(Bq),放射性活度单位,每秒核衰变一次为1Bq(s-1);Bq/kg表示质量活度(比活度);Bq/L和Bq/m3表示体积活度(活度浓度);1埃曼=×103Bq/m3=。计),氡(222Rn)的积累量CRa,可用下式计算:

地质灾害勘查地球物理技术手册

岩石中镭经过核衰变产生氡,但这些氡只有一部分可以析出到岩石的孔隙或裂隙中,并向周围逸散、迁移,这一部分氡称为自由氡,不能析出的氡称为束缚氡。在一定时间内,析出氡量(N1)与产生的氡总量(N2)之比,称为射气系数η=N1/N2×100%。射气系数大小与土壤、岩石的结构关系密切,松散、破碎、孔隙度大的岩石射气系数大,且受湿度、温度影响明显。地下水与岩石作用时,使氡溶于水,其溶解系数(ω)与温度、压力关系密切,在常温下ω为~,在0℃时约为,温度升高到30℃时变为。岩石受挤压,射气系数迅速增大,所以岩层裂隙射气浓度增大是地震的前兆。

自由氡在岩石和土壤中主要通过扩散和对流作用进行迁移。断裂和破碎带使地层由封闭变为开放状态,有利于氡的迁移和聚集,也使氡的子体在这里沉积,形成氡及其子体的分布异常,成为断裂、滑坡、地面塌陷、地裂缝以及地面沉降、地震、火山、煤田自燃等的标志异常。地面沉降(挤压)和扩张都会使射气系数增大。

测定断层含氡气的方法是一个应用比较广泛的方法。气体氡是放射性核素,既有气体的迁移特点,又具有方便现场测量的放射性特色,是极有前景的应用方法。

测量方法

放射性测量主要是测量放射性核素在核衰变过程中放出的α,β,y射线,以及其作用于周围介质,引起的电离或激发所留下的痕迹。

α射线(或称α粒子)质量大,在气体中的径迹是一条直线,在穿过介质时使介质产生电离或激发,收集所产生的电离电荷就可以探测α射线,电离室、硫化锌闪烁体,以及常用的金硅面垒半导体探测器都是利用这个原理。氡及其子体都是主要的 α辐射体,因此这些都是测氡的常规方法。α射线又是带正电的重粒子,而金属薄片的表面具有大量带负电的自由电子,所以α辐射体容易沉积在金属薄片的表面。1913年,卢瑟福就是利用这个方法收集氡及其子体,测量α射线,现在常用的α卡测量方法也是利用这个原理。如果设法使卡片带上负电性(或静电),可以更有效地收集α辐射体,这就是常用的带电α卡或静电α卡测氡方法。α粒子打到醋酸纤维胶片上或某些结晶物质表面,使其造成电离损伤的斑点或痕迹,氡浓度越大,单位面积上产生的斑点就越多,这就是α径迹测氡方法。天然放射性元素放出的α射线能量为4~8MeVα,β,γ射线能量单位:电子伏(electron-Volt),写为eV;103=KeV;106=MeV。,在温度 T=15℃,气压 P=情况下,在空气中的最大射程为,这决定了测氡电离室的大小。

β射线通过物质时主要产生三种作用:①产生电离和激发;②与原子核及核外电子作用,产生多次散射;③当被原子核库伦场阻止时伴生有电磁辐射,称为轫致辐射。对β射线的探测就是利用了这些作用原理。

γγ射线通过物质时能量最强。当一个 γ射线与原子壳层电子(主要是 K或 L层电子)碰撞时,将全部能量传给电子,使电子抛出原子之外,而 γ光子全被吸收。这种光子消失产生电子的作用叫做光电效应。较高能量的 γ光子与壳层电子作用时,将部分能量传给电子,使电子呈一定方向抛出,而光子由于碰撞损失能量改变了原来的运动方向,这种作用叫康普顿效应。当 γ光子能量大于时,与物质原子作用产生电子对效应,即入射光子能量被全部吸收,而抛出正负电子对。这些作用一方面说明 γ射线的基本特征,另一方面表明探测 γ射线和γ射线能谱的基本原理。

铀系222Rn及其子体中218Po、214Po和210Po都是强α辐射体,占铀系α辐射体总能量的;214Pb和214Bi是强γ辐射体,占铀系γ辐射体总照射量率照射量率:γ射线测量专用单位为库伦每千克秒(c/kg·s),而照射量非法定单位是伦琴(R),照射量率为1μR/h=1γ=×10-14C/kg·s。的98%,是测氡各种方法的主要测量辐射体。测量 α射线的方法有:瞬时测氡法、径迹蚀刻(SSNTD)法、α聚集器测量法、钋-210法、硅半导体α仪方法、液体闪烁测量方法等。α和γ兼用的有活性炭吸附器测量法和热释光测量方法等。

下面主要述及几种活断层探测的实用方法。

瞬时氡测量方法

瞬时氡测量方法,又叫传统氡测量方法,目的在于区别20世纪70年代发展起来的多种累积测氡方法。这是最早用于土壤氡测量的方法,不断发展至今仍是测氡的主要方法。它的特点是仪器轻便,现场测量并直接给出测量结果,有异常可以立即重复测量,并加密测点。

土壤氡测量可分为浅孔测量,取样孔深一般为;深孔测量,取样孔深2m左右;浅井测氡,取样孔深从几米到十几米。主要根据覆土层厚度和结构选择测量方式。对于厚度为十几米左右的覆土层,如果透气性较好,通常作浅孔测量,既可达到要求又比较方便。

目前常用的测量仪器,主要有 FD-3017(RaA测氡仪),FD-3016和RM-1003等。无论使用哪种仪器,首先要检查仪器读数的稳定性,然后检查仪器的刻度,确定仪器的刻度系数JRn(Bq/L),以利于从仪器的读数,换算出每个测点的氡浓度(Bq/L)。对于小面积的构造调查,可以不要求刻度系数的准确性,利用仪器出厂给定的刻度系数即可。如果对断裂成因进行研究,观测氡浓度的变化,最好利用氡室对仪器进行刻度。

图15-1FD-3017 RaA测氡仪野外测量概况图

1—操作台;2—探测器;3—高压输出;4—抽气筒;5—活塞;6—导向空向滑杆;7—脚蹬;8—进气三通阀门;9—高压输入;10—取样器;11—收集片;12—干燥器;13—橡皮管

野外测量工作程序如下:

(1)根据地质推测断裂方向,并考虑地表环境有利于测量工作,进行测线布置和测点距的确定,例如西安地裂缝断距不大,一般采用2~5m点距,甚至更小;

(2)在测点上先用六棱钢钎打取气孔(浅孔测量打深),把取气器插入孔中,将周围压实避免大气渗入;

(3)注意取样器与仪器连接的橡皮管不宜过长,避免橡皮管对氡吸附过多。测量方式如图15-1所示;

(4)抽气次数一般5~6次,每点保持一致;

(5)抽完气静置10~20秒,进行读数,然后立即进行排气,准备下一点测量;

(6)发现异常,可适当加密测点,或对部分测点重复检查;

(7)逐点计算氡浓度 N=nJRn,JR。为刻度系数;

(8)用氡浓度 N直接制作剖面图、等值图或平面剖面图,取两倍于背景值以上的值为异常值。

α聚集器测量方法

222Rn衰变的第一代子体218Po(RaA)为α辐射体,半衰期。设法将此α辐射体沉积在一个薄片上,再用α测量仪测量薄片上α粒子的活度。实验证明,α活度与土壤中222Rn浓度成正比。此薄片称为α聚集器,是地质构造探测的常用方法。由此原理出发,演化出的测量方法有多种,主要有如下四类。

(1)α卡测量方法

20世纪70年代,加拿大卡尔顿大学.卡特等根据1913年卢瑟福用金属片收集氡子体的启示,研究成功了α卡测量方法。

该方法属累积测氡方法,探测灵敏度和探测深度都比瞬时测氡方法有很大提高,可达100~200m,或者更深,而且不污染仪器。使用的α卡有金属片(银片、铜片或铝片)和塑料片,卡片面积一般为×。测量仪器有FD-3005、FHS-1α闪烁辐射仪、WAY-80型五通道α辐射仪等。

将α卡片预先放置在专用的T-702型探杯内的支架上固定好,在根据需要布置的测线测点上,挖埋卡探坑,深20cm左右,将杯倒置坑中,上面用塑料布封盖,如图15-2所示。3小时后取出,用仪器测量卡片上沉积218Po的α射线活度。如果埋置时间延长到10小时或更长,则卡上沉积的还会有214Po等子体。根据测量的α活度,可以作剖面图,等值线图或平面剖面图。

图15-2探坑埋杯示意图

在天然环境下,218Po大约有20%带正电性,为了提高探测效率,提出了带电α卡测量方法,即在埋卡同时给α卡加上负300V电压。使用一段时间之后,感到野外应用很不方便,于是进一步提出了静电α卡方法,即:聚乙烯类塑料片通过摩擦易带负电,在野外用一简单的充电设备,在埋片之前先使卡片带静电-600~-800V(每片电压基本一致)。实验证明带电α卡和带静电α卡相对于不带电的天然α卡,可以提高探测灵敏度倍左右。

(2)α膜测量法

为了提高探测灵敏度,用比α卡大25倍的16cm×8cm的透明塑料膜代替α卡,放入特制探杯周围,埋入坑中,取出后反转放入RM-1003型射气仪的闪烁探测室进行α活度测量,它的计数比α卡提高约10倍。其他操作与α卡一致。

(3)α管测量方法

此法与α膜法类似,不同的是用一个专门的取样器,在倒扣探杯下方装一根约半米长、直径、带小孔的深部取气导管,在测点打孔深70~80cm,后插入导管,累积取样10小时左右,取出后用RM-1003射气仪测量α活度。此法的特点是对较厚覆盖地区比较有利,缺点是效率较低。

(4)带电瞬时α测量法(亦称218Po法)

是用充电器使塑料α膜带静电 -1000V,放入探杯,埋入坑中5~8分钟,取出测量(2分钟)α活度。由于收集时间短,只是测量218Po,工作效率较高。钋-210(210Po)测量法

美国海军部下属机构的格雷等人,于1978年报道了他们对210Po测量方法的研究成果,测量精度达×10-3Bq。

222Rn衰变后的长寿命子体有三个,210Po是其中之一,半衰期为天,不同于218Po的是210Po为氡的长时间累积体。210Po的量直接反应222Rn的平均值,它的特点是化学性质稳定,一旦形成,基本上不再离开岩层、裂隙、破碎带以及这些构造上方覆盖的土壤中。因此测量210Po的α射线活度,成为确定断层、裂隙和破碎带的重要方法。

(1)野外取样:按照预先布置测线测点,取土壤样品,深度一般为20~40cm,取土样50g。

(2)样品处理:一般取土样4g(等重量)置于100ml烧杯中,加入抗坏血酸及一片直径16mm一面涂漆的紫铜片,再加入20ml、3mol/g盐酸溶液,放入恒温摇床振荡箱,保持60℃振荡小时(或40℃振荡3小时),期间铜和钋发生置换反应,钋被吸附在铜片表面。然后取出铜片、清洗、晾干。

(3)α活度测量:用FD-3005或WAY-80型五通道α辐射仪测量铜片上的α活度,一般测量10分钟。有时为了消除218Po的干扰,需放置30分钟(218Po的10倍半衰期)后进行测量。用测得的α活度绘制出剖面图、等值线图或平面剖面图。在断裂带、破碎带、塌陷、采空区上方,与瞬时氡一样为高值异常。

径迹蚀刻测量方法

固体核径迹探测器(SSNTD)技术,是20世纪60年代初发展起来的。一片透明的云母片或塑料片,被带电粒子照射之后,化学键被打断,成为辐射损伤微区,易受化学侵蚀,在固体片的表面显出照射粒子的径迹,用一般光学显微镜可读出,由此成为粒子探测器。在地质工作中主要应用的是α粒子径迹探测器,探测氡及其子体放出的α粒子,与α聚集器方法类似,属于累积测氡方法。这一方法的优点是均化了自然环境的影响因素,有效地提高了探测灵敏度,对探测深层构造比较有利。

我国常用的α径迹探测器主要是聚碳酸脂片或美国引进的CR-39探测器。

径迹探测工作程序如下:

(1)根据构造延伸方向和方便野外工作布置测线和测点距。

(2)α径迹探测片切成一定形状的片子,一般大小取×,将探测片固定在探杯(T-702)的支架上,并在径迹片和杯上编号。

(3)在测点挖埋杯探坑,一般深40cm,将探杯倒置坑中,如图15-2所示。用石片或塑料袋装土盖坑,再用覆土盖好,插上标志。埋杯时间20天左右。

(4)将取出的探测器放入10mol的KOH溶液中,加温到60℃左右并保持恒温半小时,取出后用清水冲洗、晾干(注意:CR-39与聚碳酸脂的化学蚀刻溶液条件不同,可按《环境空气中氡的标准测量方法GB/T14582-93》进行处理)。

(5)用一般光学显微镜,计数探测器上的径迹密度,或用径迹扫描仪进行密度计数。

(6)用径迹密度绘制剖面图、等值线图或平面剖面图。

α径迹与α卡方法类似,可以根据已有的设备情况选用。在覆盖土层比较厚的地区,例如几十米,甚至一百米以上的地区,用α径迹法探测基岩构造、活断层比较好,与瞬时测氡、α卡等方法一样,在这些构造上方为高值异常显示。该方法的缺点是工作程序多,不如α卡方便。

活性炭吸附器(ROAC)测氡法

20世纪60年代瑞典最早使用活性炭吸附氡方法寻找铀矿。活性炭微细孔隙丰富,有较高的比表面积,是氡的强吸附剂。以GH-18型(9mm2×层状)活性炭对氡吸附容量最大,且对氡的吸附在很大容量范围内呈线性关系。其次是Φ3柱状活性炭。

吸附器的用法有两种:一种是连接在用抽气筒抽取土壤气的回路中,通过抽气过滤吸附氡,叫瞬时法。但主要用法是累积测氡,作为氡的捕集器。目前使用的是直径3cm左右的塑料瓶,先装炭层4~5cm厚,再装干燥剂硅胶置瓶口处,既去湿也能消除钍射气的影响。像α卡一样,将塑料瓶埋入测点探坑中,上盖一个罩杯,埋置时间4~7天为宜,取出后在铅室内进行γ射线测量。一般用多道γ谱仪,测量214Bi放出的γ射线的照射量率。

热释光(TLD)测量方法

热释光测量有三种方法:α热释光,y热释光和天然土壤热释光。前两种都是利用对α射线或y射线能量储存灵敏的人造结晶物质作为剂量探测器,累积测量α或y射线。天然土壤热释光是以天然环境下土壤中存在的石英、方解石等结晶矿物为热释光探测器。因为接受照射时间长,探测灵敏度高,受干扰小,异常稳定。热释光与α径迹方法一样,属累积测量方法。

在地质工作中主要应用y热释光。一般选用对γ射线能量响应较宽的氟化锂(LiF)热释光探测器。目前主要应用的是GR-200系列中的LiF(Mg,Cu,P)(氟化锂镁铜磷)热释光探测器,它对γ射线的能量响应范围为30Kev~3Mev,其相对误差<20%,重复使用退火温度控制在240±2℃(不得超过245℃),并保持恒温10分钟。

探测元件要放在α径迹使用的T-702型探杯支架上(其他杯亦可),挖探坑深40cm,装好元件的探杯倒扣埋入坑中,一般放置30天左右。取出后用RGD-3型、FJ-369型或其他热释光剂量仪进行热释光测量,计算γ热释光强度(TL),用以制作剖面图等。

仪器设备

氡气法仪器设备见表15-2。

表15-2氡气测量仪器一览表

土壤表面氡析出率的测定

方法提要

国家标准GB50325—2001《民用建筑工程室内环境污染控制规范》规定土壤表面氡析出率测量所须仪器设备包括取样设备、测量设备。取样设备的形状为盆状,工作原理分为被动收集型和主动抽气采集型两种。现场测量设备须满足以下工作条件要求:温度-10~40℃;相对湿度≤90%;不确定度≤20%;探测下限≤(m2·s)。

测量步骤

首先在建筑场地按20m×20m网格点布点,网格点交叉处进行土壤氡析出率测量。测量时,须清扫采样点地面,去除腐殖质、杂草及石块,把取样器扣在平整后的地面上,并用泥土对取样器周围进行密封,防止漏气,准备就绪后,开始测量并开始计时(t)。

土壤表面氡析出率测量过程中,应注意控制下列几个环节。

1)使用聚集罩时,罩口与介质表面的接缝处应当封堵,避免罩内氡向罩外扩散(一般情况下,可在罩沿周边培一圈泥土,即可满足要求)。对于从罩内抽取空气测量的仪器类型来说,必须更加注意。

2)被测介质表面应平整,保证各个测量点测量过程中罩内空间的体积不出现明显变化。

3)测量的聚集时间等参数应与仪器测量灵敏度相适应,以保证足够的测量准确度。

4)测量应在无风或微风条件下进行。

结果计算(使用聚集罩情况)

用下式求被测地面的氡析出率:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:R为土壤表面氡析出率,Bq/(m2·s);Nt为t时刻测得的罩内氡浓度,Bq/m3;V为聚集罩与介质表面所围住的空气体积,m3;A为聚集罩所罩住的介质表面的面积,m2;t为测量经历的时间,s。

被动收集型法

(1)径迹蚀刻法

径迹蚀刻法的原理和方法见中径迹刻蚀法。按下式计算222Rn析出率:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:CRn为222Rn析出率,Bq/(m2·s);TD为单位面积222Rn径迹数,个/m2;V为采样小室体积,m3;S为采样小室底面积,m2;R为CR-39刻度因子,m3·(m2·Bq·s)-1;t为放置时间,h。

测量步骤

把CR-39片子剪成"66mm的圆片,铺到"66mm的采样盒小室内密封。采样时把小盒放到"150mm大塑料盒内部顶端,大盒扣到地面,并在地面放氯化钙干燥剂少许,周围用土壤密封、踩实。采样~2h取出小盒,密封带回实验室测量。

(2)活性炭吸附法

方法提要

本法用活性炭累积吸附,γ能谱分析测定建筑物表面氡析出率,适用于建筑物(含建筑构件)平整表面的氡析出率的测定。各种土壤、岩石表面的氡析出率的测定可参照使用。

仪器和设备

活性炭盒(容器)采用低放射性材料(如聚乙烯、有机玻璃、不锈钢等)制成的内装活性炭的圆柱形容器,其底部直径应等于或稍小于γ探测器的直径,高度以直径的三分之一到三分之二为宜;活性炭选用微孔结构发达、比表面积大、粒径为18~28目的优质椰壳颗粒状活性炭;网罩选用具有良好透气性的材料,如尼龙纱网、金属筛网或纱布,罩于活性炭盒开口表面,网罩栅孔密度应与活性炭粒径相匹配;真空封泥用于密封活性炭盒和待测介质表面之间的缝隙,固定它们之间的相对位置。

γ能谱仪探测器①闪烁探测器NaI(Tl)由不小于"×的圆柱形NaI(Tl)晶体和低噪声光电倍增管组成,探测器对137Cs的γ射线的分辨率应优于9%。②半导体探测器Ge(Li)或高纯锗(HPGe)其灵敏体积大于50cm3,对60Co的特征γ射线的分辨率应优于。

屏蔽室应选用放射性核素含量低且无表面污染的屏蔽材料,探测器应置于壁厚不小于10cm铅当量的屏蔽室中央,屏蔽室内壁距探测器表面的最小距离应大于13cm,铅室的内衬应由原子序数逐渐递减的多层屏蔽材料组成,从外向里可依次由镉、铜及2~3mm厚的有机玻璃材料等组成。屏蔽室应有便于取放试样的门。

高压电源应有保证探测器稳定工作的高压电源,其纹波电压不大于±,对半导体探测器高压应在0~5kV范围内连续可调。谱放大器应有与前置放大器及脉冲高度分析器匹配的具有波形调节的放大器。脉冲高度分析器,NaI(Tl)γ谱仪的道数应不少于256道,对于高分辨半导体γ谱仪其道数应不小于4096道。γ谱仪可以与专用或通用微机联接,进行计算机在线能谱数据处理,亦可以用计算器人工处理。

测量步骤

活性炭盒的制备:将活性炭置于烘箱内,在120℃下烘烤7~8h,以去除活性炭中残存的氡气。将烘烤过的活性炭装满活性炭盒容器,称量,各炭盒间质量差应小于,然后加网罩,加盖,密封待用。留1~2个新制备的,没有暴露于氡和子体的活性炭盒(简称“新鲜”炭盒)于实验室中,作为本底计数测量用。

析出氡的收集:去除实际欲测建筑物表面的灰尘和砂粒。打开活性炭盒,倒扣于该表面,周围用真空泥固定和封严,记下开始收集析出氡的时间。析出氡收集持续5~7d。收集结束时,除去真空泥,小心取下活性炭盒,加盖密封,记录结束时间,带回实验室。

氡的测量:用226Ra检验源检查和调整γ谱仪使之处于正常工作状态。在与试样测量相同的条件下,在γ谱仪上测量“新鲜”活性炭盒的本底γ能谱。收集结束后的活性炭盒放置3h以上。当用高分辨γ谱仪时,测量214Bi的、214Pb的、和其中的一个或几个γ射线峰计数率;当用NaI(Tl)γ谱仪时,测量上述能量相应能区的计数率。

按下式计算建筑物表面氡析出率:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:R为氡的面积析出率,Bq·m-2·s-1;nc为活性炭盒内所选定的氡子体γ射线峰或能区的计数率,s-1;nb为与nc相对应的“新鲜”活性炭盒的计数率,s-1;t1为活性炭盒收集析出氡的时间,s;t2为收集结束时间到测量开始时间的时间间隔,s;ε为与nc相应的γ射线峰能量或能区处的探测效率;S为被测表面的面积,m2;λ为氡的放射性衰变常数,×10-6s-1。

探测效率刻度

体标准源的制备:标准源基质与活性炭盒所用的活性炭种类相同且等量。称取由国家法定计量部门认定的已知比活度的碳酸钡镭标准粉末(精确至),其总活度应在50~500Bq范围内,比活度的相对标准偏差不大于4%。将标准粉末置于500mL烧杯中,以1mol/LHCl溶解,再用稀释到所需体积(应足以使活性炭基质全部浸入),倒入活性炭颗粒,并不断搅拌;将活性炭在红外灯下烘烤,使其水分不断蒸发,在将近恒量时,转移到另一干净烧杯中,用少量洗液清洗用过的500mL烧杯,将清洗液倒入活性炭中(注意不要与目前盛放活性炭的干净烧杯壁接触),再用红外灯烘烤,不断搅匀,直至恒量。将活性炭转入空的活性炭盒内,铺平,加盖,密封,放置30d。待226Ra与氡及其子体处于放射性平衡后备用。标准源的综合不确定度(一倍标准偏差)应控制在±5%以内。

刻度

按照使用说明书的要求正确安装和调整γ谱仪系统,包括探测器、电源、前置放大器、谱仪放大器、脉冲高度分析器和计算机系统,使其处于最佳工作状态。在与试样测量相同条件下,分别获取上述已知226Ra活度的体标准源γ能谱和“新鲜”活性炭盒本底谱。从净谱中选择氡的子体214Pb的、、以及214Bi的中的一个或几个γ射线的全能峰,并计算其净峰计数率。如果使用NaI(Tl)闪烁探测器,在上述几个γ射线峰不能清楚分开时,亦可计算包含上述一个以上峰的能区净计数;根据所选γ射线的全能峰(或所选能区)净计数率,计算探测效率。

测量的相对标准偏差

面积氡析出率测量结果的相对标准偏差为:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:σtotal为总相对标准偏差,%;σcalib为效率刻度的相对标准偏差,%;σct为测量计数相对标准偏差,%。

σct可用下式计算:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:Ns为活性炭盒内选定的氡子体γ射线峰或能区的积分计数;Nb为与Ns相对应的“新鲜”活性炭盒的积分计数;ts为试样计数时间;tb为本底计数时间。

建筑物表面氡析出率的探测下限

主要取决于所用γ谱仪的探测下限,该探测下限是在给定置信度情况下该系统可以测到的最低活度。以计数为单位的探测下限可表示为:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:C(LLD)为探测下限;Kα为与预选的错误判断放射性存在的风险概率(α)相应的标准正态变量的上限百分位数值;Kβ为与探测放射性存在的预选置信度(1-β)相应的值;σ0为净试样放射性测量的计数统计标准偏差。

对于各种α和β水平,K值列于。

表 各种α和β水平对应的K值

如果α和β值在同一水平上,则Kα=Kβ=K0

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

以计数率为单位的探测下限,是在给定条件下,最小可探测的计数率。如果活性炭盒内氡的放射性活度与本底接近时,最小可探测计数率为:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:C(LLD,cT)为最小可探测计数率;tb为本底谱测量时间;Nb为本底谱中相应于某一全能峰或能区的本底计数。

根据最小可探测计数率,按式()可以计算出最小可探测表面氡析出率。

干扰和影响因素

1)活性炭盒倒扣于建筑物表面,所得结果不代表自然状态下氡的析出率,而相当于外界空气中氡浓度为0时氡的析出率,即最大析出率。这种方法不考虑外界空气风速、交换率的影响。但可能引起活性炭盒所扣处被测材料局部含水量的变化,对氡的析出率产生微小干扰。

2)在收集析出氡期间,面积氡析出率实际上受周围环境的气象、温度、湿度、气压、风速变化等影响,因此,测量结果只代表在对应的环境条件下收集期间内面积氡析出率的平均值。

3)在用NaI(Tl)γ谱仪确定活性炭盒所收集的氡活度时,氡子体214Pb的γ射线峰受Th射气子体212Pb的γ射线峰的干扰;该干扰对测量结果的影响小于1%,用高分辨率的半导体探测器测量,不存在这种干扰。

注意事项

1)这种方法的优点是布样方便,无源,不用维修,可重复使用,适合大规模的氡调查。具有测量结果稳定,受环境因素影响小,探测器被动式测量,不需电源,测量简单。活性炭具有良好的吸附性能和稳定的化学特性,可以耐强酸和强碱,能经受水浸、高温、高压的作用,不易破碎,气流阻力小,便于应用。缺点是活性炭对氡的吸附并非完全积累过程,因此采样结束前的氡浓度对平均结果的影响较大,只能用于短期测量(2~7d)。普通型采样器受温、湿度影响较大,但改进型的采样器则不受温、湿度的影响。

2)还有一种利用解析原理的活性炭吸附法,该方法将活性炭吸附的氡通过加热解析到电离室或闪烁室中进行测量。

3)活性炭吸附法测氡析出率的采样装置有许多,如图所示,它由采集桶和活性炭盒(加滤膜)组成,通过测量活性炭的氡浓度来计算氡析出率。有的采样器采用铝质结构,轻便、抗腐蚀,采样器大小恰好与测量仪器探头的尺寸匹配。采样器分为上下两部分,有螺纹可以衔接。上部分为活性炭室,炭床表面放置一金属网,用于固定活性炭,网眼尺寸与活性炭粒度相匹配,装填活性炭时金属网可取下。下部为储气室,呈管状,与上部内径相同。由于针的半衰期很短,选择的储气室高度足以使针射气衰减掉。在上下两部分之间放置一烧结金属过滤器,烧结金属过滤器可取下,测量时过滤器由采样器内侧车床车出的的沿托住,起到过滤湿气的作用,防止活性炭吸潮后吸附效率降低,图为该采样器示意图。

图 常用的采样装置示意图

图 采样器示意图A—活性炭室;B—储气室

(3)驻极体收集法

方法提要

驻极体收集积分测量法是一种多功能快速测量法。既能测定量体积活度,又能测定量析出率。仪器的采样小室是一个上部封口的塑料桶,其中装有驻极体探测器,下部有一个过滤窗底盘。将未装底盘的采样小室直接扣在被测物的表面,即可实现对量析出率的测量。

图 驻极体收集法测量装置结构原理图

测量装置

驻极体收集法氡析出测量装置由采样小室、驻极体探测盒组成。结构原理见图。采样盒是1个圆柱形塑料筒,盒顶部装有驻极体探测盒。被测表面析出的氡在盒内衰变时形成2l8Po粒子,在驻极体电场作用下,2l8Po粒子大部分被吸附在探测器表面。2l8Po衰变时发射的α粒子会使驻极体的表面电荷特性发生变化。利用驻极体表面电位测量仪记录这种变化,经过刻度就可确定待测空气中的氡浓度。根据其氡浓度可确定氡的析出水平,即氡析出率[Bq/(m2·s)]。因驻极体静电场对氡子体的收集效率受空气湿度影响,盒内放干燥剂,可保持恒定的收集效率。

测量步骤

测量时将收集装置扣在待测材料表面,周围用浮土埋好密封。在采样结束后将驻极体探测盒用驻极体保护盖密封起来,用驻极体读数仪读出各自结束的读数并记录。

注意事项

方法灵敏度高,采样周期短,操作方便,可成批采样。采样点分布不太分散时,用30个采样小室一天可采100多个氡析出率试样。

(4)局部静态法

方法提要

局部静态法是测量暴露表面氡析出率的一种方法。该方法为瞬时测量法,有很高的灵敏度,取样时间短,而且设备简单,适合于测量大地、建筑物表面的极低的氡析出率。其受气象等因素影响大,测量重现性差。其工作原理是:用不透气的板材制成的氡收集器倒扣在被测物的表面上,四周用密封材料封好,这时被测物表面析出的氡将被收集在收集器和被测物表面共同包容的收集空间里,这样便可根据收集空间里氡体积活度的变化计算确定氡析出率。

测量装置

局部静态法测量装置由一个由不透气的材料制成积累箱和氡收集器组成。积累箱用有机玻璃制成,尺寸××。

测量步骤

用积累箱开口一侧紧贴待测物体表面,周围用密封材料密封,构成积累箱,经一定时间后采集箱内气体,进行氡活度分析,分别计算出氡的析出率。

主动抽气采集型法

(1)双滤膜法

方法提要

双滤膜法是一种绝对测氡方法,它是通过测量氡在衰变筒内新生子体的α辐射强度以达到测氡的目的。双滤膜法测量的直接对象是氡的短寿子体的α射线,由于衰变链中的氡与其子体之间有着确定的比例关系,所以通过测定其短寿子体的α射线强度就可以求得析出的氡量,从而计算出氡析出率。

测量装置

双滤膜法测量氡析出率的装置见图。

图 双滤膜法测量装置示意图

FT-648绝对测氡仪是测量大气氡的常用仪器,测量时将入气口和进气口与积累腔连接即可。积累腔厚约3mm,扣地面积,腔体容积210L。远大于衰变筒的容积,满足测量要求。

测量步骤

先平整测点处的地面,除去杂草。然后扣上积累腔,其周围用掺水的黏土封堵。此道工序必须认真做好,因封堵不严会导致氡泄漏过大;否则就失去了测量的基础。

1)以积累腔开始封闭的时间作为积累时间的起点,并以测量点所在地的大气氡浓度作为t=0时积累腔内的起始浓度。

2)采样测量时间t可以在0到2h之间任选,工作方法是15'+1'+30'的方式(即15min采样,1min换位,30min累计计数),对不同的地点作氡析出率测量。

3)仪器刻度采用与测量时相同的间隔时间测量。

(2)静电收集法

方法提要

当被测物体表面析出的氡进入收集室后,其衰变产生的带正电的氡子体在收集室壁+2500V高压的作用下被收集到探测器表面,α谱仪根据探测到的不同能量α粒子的计数给出α能谱,微处理器和计算芯片根据α能谱识别出218Po和216Po特征峰,并根据系统参数计算出222Rn和220Rn浓度,再计算出氡析出率。

测量装置

以德国TRACERLAB公司生产的ERS-2型静电收集式氡采样器为例,这是一种主要为测量土壤或建材表面氡钍射气析出率而设计的仪器,同时也具有连续测量氡钍射气浓度的功能。仪器具有一个和仪器主体一体化的金属制半球形的集氡腔,体积,有效半径166mm,金属腔壁上连有2500V正高压。ERS-2型仪器测量222Rn、220Rn析出率示意图如图所示。

主要性能参数

1)仪器放置在有弹簧垫圈的铝制手提箱中,方便运输和野外操作。

2)具有一个和仪器主体一体化的金属制半球形的集氡腔,体积,有效半径166mm,金属腔壁上连有2500V正高压。

3)可以使用100~240V的交流电源或有着连续使用12h左右容量的自带电池为仪器供电。电池的充电时间与使用时间相同,如可以一次性充电8h,然后连续使用8h。

4)仪器可以按照事先选择好的测量周期(1~9999min)存储大于750个周期的完整的α计数谱数据和氡钍射气浓度数据,以备以后读出,其存储器断电后数据不会丢失。

5)仪器使用的是金硅面垒型(PIPS)α探测器和256道多道计数器,测量结果的评价和计算由α谱仪给出的α计数谱完成(见图)。ERS-2具有快速响应、效率高的特点,仪器自带的微处理器和计算芯片将实时给出以Bq/m3为单位的222Rn和220Rn浓度。

图 ERS-2型仪器测量222Rn、220Rn析出率示意图

6)仪器自带流量10~75L/h的气泵,可用于连续测量222Rn或220Rn浓度时将待测气体泵进密封的集氡腔。对于析出率测量,只需把集氡腔密封盖去掉,仪器放置在待测表面即可。

7)仪器具有一个可以实现实时显示氡浓度数据、显示系统参数、设置测量周期,和控制仪器本身与气泵的开关等多项功能的触摸式液晶操作键盘。

8)仪器可以通过RS-232接口与PC机实现实时在线数据交换。PC机可以通过超级终端读取存储器上按周期储存的以Bq/m3单位的222Rn和220Rn浓度数据并保存成文本文档,还可以通过超级终端对仪器实行设置系统参数、清空存储器等多项命令。

9)氡析出率的计算,将在PC机上通过提供的数据处理软件完成。该软件读入超级终端保存好的数据文本,经过计算后给出以mBq/(m2·s)为单位的氡析出率值。对于220Rn析出率的计算,由于220Rn半衰期很短,实测数据中很难观察到其线性增长与指数增长的过程,所以软件只采用平台估计法计算220Rn析出率。

测量步骤

1)将充好电的ERS-2仪器集氡腔密封盖取下,在腔口放置好密封用的硅胶圈,把仪器放在事先平整好的地面上,周围用浮土埋好密封。

2)开启电源、高压,设置测量周期T=10min,开始测量并记录起始测量时间与起始周期序数。

3)测量约4~5个周期,关高压、电源并记录终止周期序数。用泵冲洗集氡腔内残余氡气。

4)连接ERS-2与PC机,通过超级终端读取本次测量起始周期与终止周期之间的各周期谱数据或氡浓度数据,保存成文本文档。

5)在PC机上打开数据处理软件,读入文本文档中数据,观察数据点变化趋势,选择拟合起止点,选择线性拟合方式,记录软件给出的氡析出率值。

6)当仪器显示的周期序数接近750时,用PC机通过超级终端发出清空仪器存储器的命令清理数据。

燃气燃烧设备论文参考文献

锅炉运行方面技术论文篇二 锅炉经济运行技术浅谈 【摘要】锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。 【关键词】锅炉,经济,燃煤 1、概述。锅炉是国民经济中重要的热能供应设备。电力、纺织、造纸、食品、机械、冶金、化工等行业, 以及工业和民用采暖都需要锅炉供给大量的热能。锅炉是将燃料的化学能转变为热能的燃烧设备,它尽可能的提供良好的燃烧条件,以求能把燃料的化学能最大限度地释放出来并使其转化为热能,并利用热能加热锅内的水。 2、锅炉的分类。锅炉按照不同的方式分为以下几类:按锅炉的用途分为:生活锅炉、工业锅炉、电站锅炉和热水锅炉。按锅炉燃用的燃料分类可分为:燃煤炉、燃油炉和燃气炉。按燃烧方式分类可分为:层燃炉、室燃炉和介于二者之间的沸腾(流化床)炉。按有无汽包可分为:汽包锅炉和直流锅炉。按蒸汽压力分类可分为:低压锅炉、中压锅炉、次高压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉和超临界压力锅炉。按锅炉水循环方式分类可分为:自然循环锅炉、强制循环锅炉和复合循环锅炉。 3、锅炉的应用。利用锅炉产生的热水或蒸汽可直接为生产和生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。提供热水的锅炉称为热水锅炉,主要用于生活,工业生产中也有少量应用。产生蒸汽的锅炉称为蒸汽锅炉,是蒸汽动力装置的重要组成部分,多用于火电站、船舶、机车和工矿企业。 4、锅炉的结构。锅炉是热能生成设备的主要构成,锅炉中的炉膛、锅筒、燃烧器、水冷壁过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。是由“锅”和“炉”两部分组成的。“锅”是汽水系统,它主要任务是吸引收燃料放出的热量,使水加热、蒸发并最后变成具有一定热能的热水或过热蒸汽。它由省煤器、汽包、下降管、联箱、水冷壁、过热器和再热器等设备及其连接管道和阀门组成。炉膛又称燃烧室,是供燃料燃烧的空间。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,避免含有高浓度盐分和杂质的锅水随蒸汽进入过热器中。 5.锅炉的工作原理。锅炉主要有以下系统来完成燃料的化学能到蒸汽具备足够的动能(以煤粉炉为例):汽水系统、风烟系统、燃料(煤粉和助燃油)系统、制粉系统、灰渣系统等。制粉系统用于磨制合格的煤粉储存于粉仓内,通过给粉机,由一次风送入炉膛进行燃烧。煤粉在炉膛内和高温烟气充分混合燃烧加热水冷壁内给水,同时产生大量的高温烟气,经各级低温、高温过热器通过辐射、半辐射半对流、对流充分换热冷却后的烟气由风烟系统中的引风机在经过电除尘、布袋除尘器等使烟气粉尘达标后由烟囱排向大气,炉内给水通过各级吸热后,形成高温高压蒸汽输送出去。煤粉燃烧产生的炉渣通过灰渣系统输送出去。 6.锅炉的维护保养。在锅炉的日常运行过程中,各系统辅机运转正常,要注意维持各项参数在许可范围之内,严格控制压力、温度等超标,定期排污维持合格汽水品质,延长设备使用寿命。锅炉停运后仍要进行保养,锅炉保养的方法都是通过尽量减少锅炉水中的溶解氧和外界空气漏入来减轻锅炉的腐蚀。最常见的保养方法一般有湿式保养法、充氮置换法、烘干防腐保养法等几种。 7.锅炉的经济运行。锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。 由于炉膛内燃料的燃烧工况、温度水平、各级受热面的沽污与热交换状态以及辅助动力消耗的不同,其运行经济性也各不相同。必须进行精细的燃烧调整试验,以求得各种负荷下的最佳运行工况,作为日常运行调整的依据,以保证锅炉机组的经济运行状况良好。运行中应根据煤种变化掌握燃烧器特性、风量配比、一次风煤粉浓度及风量调整的规律,重视燃烧工况的科学调整,使炉内燃烧处于最佳状态。为了使燃料在炉膛内与氧气充分混合燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此除通过合理的风粉配比、调节火焰的充满度和合适的火焰燃烧中心外还应依据锅炉的性能试验,设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。 煤粉炉通常采取以下措施来提高锅炉的经济性能: 合理配煤以保证燃煤质量。将各煤种精心混配,减少燃煤的大幅度变化,维持运行参数基本稳定。 合理调整煤粉细度。煤粉细度是影响飞灰可燃物含量的主要因素。经济煤粉细度要根据热力试验进行选取。 控制适量的过量空气系数。煤粉燃烧需要足够的氧气,但过多的冷空气会降低炉内温度水平,且使排烟容积增大。合理的过量空气系数应根据燃烧调整试验及煤种确定。 重视燃烧调整。炉内燃烧状况的好坏、温度水平及煤粉着火的难易程度直接影响灰渣可燃物的含量。 为了考核性能和改进设计,锅炉常要经过热平衡试验。直接从有效利用能量来计算锅炉热效率的方法叫正平衡,从各种热损失来反算效率的方法叫反平衡。考虑锅炉的实际效益时,不仅要看锅炉热效率,还要计及锅炉辅机所消耗的能量。 单位质量或单位容积的燃料完全燃烧时,按化学反应计算出的空气需求量称为理论空气量。为了使燃料在炉膛内有更多的机会与氧气接触而燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此应设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。 8.排放锅炉烟气中所含粉尘(包括飞灰和未燃尽的煤粉)、硫和氮的氧化物都是污染大气的物质,未经净化时其排放指标可达到环境保护法规限定指标的几倍到数十倍。控制这些物质排放的措施有燃烧前处理、改进燃烧技术、除尘、脱硫和脱硝等。借助烟囱只能降低烟囱附近地区大气中污染物的浓度,不能彻底根除污染物。烟气除尘所使用的作用力有重力、离心力、惯性力、附着力以及声波、静电等。对粗颗粒一般采用重力沉降和惯性力的分离,在较高容量下常采用离心力分离除尘静电除尘器和布袋过滤器具有较高的除尘效率。湿式和文氏—水膜除尘器中水滴水膜能粘附飞灰,除尘效率很高还能吸收气态污染物。为了达到较高的除尘效率,一般燃煤机组通常采用多级除尘,电除尘、布袋除尘等并通过脱硫脱销,使烟气的各项指标达到国标要求。 9.锅炉的发展。锅炉未来将向着进一步提高锅炉和电站热效率的方向发展;将进一步降低锅炉和电站的单位功率的设备成本;将极大的提高锅炉机组的运行灵活性和自动化水平;将会发展更多锅炉品种以适应不同的燃料;将会继续提高锅炉机组及其辅助设备的运行可靠性;将会下大力气采取措施减少对环境的污染。 参考文献: [1]张爱存.发电厂燃煤锅炉运行调整与经济性分析[D].华北电力大学 毕业 论文,2003.

二十一世纪的钟声已经敲响,回首二十世纪,我国经济获得了长足的发展,生产力水平大大提高。但是,传统模式下的生产力的提高在驱动经济增长和为企业带来的利润的同时,却使我们的地球家园变得千疮百孔,不堪重负。1987年,世界环境与发展委员会发布了长篇报告《我们共同的未来》。该报告首次提出了“可持续发展”的定义,即“既满足当代人的需要,又不对后代满足其需要的能力够成危害的发展”。关键词:石家庄市 大气污染 原因分析 政府行为对策一、概述二十一世纪的钟声已经敲响,回首二十世纪,我国经济获得了长足的发展,生产力水平大大提高。但是,传统模式下的生产力的提高在驱动经济增长和为企业带来的利润的同时,却使我们的地球家园变得千疮百孔,不堪重负。1987年,世界环境与发展委员会发布了长篇报告《我们共同的未来》。该报告首次提出了“可持续发展”的定义,即“既满足当代人的需要,又不对后代满足其需要的能力够成危害的发展”。这个定义鲜明的表达了两个基本观点:人类要发展,尤其是贫困地区的发展;发展要有限度,他不应危及后代人的发展。石家庄市我国华北地区新型的一座现代化工业城市,是河北省政治、经济、文化、科技中心。总面积15848平方千米,总人口845万。其交通发达,京广、石太、石德铁路和京深、石港、石太高速公路交汇于此。近年来,石家庄市工业迅猛发展,人民生活水平显著提高。但是,经济的快速增长带来了严重的环境问题。 是他一跃成为全国著名的环境污染大市。而其中,尤以大气污染最为突出:尤其是在风力达到一定程度后,尘土满天飞舞,纵横肆虐,有些区域垃圾泛滥成灾。二、 石家庄大气污染现状及原因分析 石家庄大气污染现状近年来,随着城市工业的发展,大气污染日益严重,空气质量进一步恶化。河北省环境监测总站4月11日队本周空气质量检测表明,石家庄的首要污染物可吸入颗粒物(PM10)。由于它们直径很小,且夹杂着细菌,可以被人体吸入体内,引起疾病。同时,由于它们很轻,不宜沉降,总是漂浮在空中,阳光照射在这些微尘上,被吸收或散射,致使天空显得灰蒙蒙的,能见度明显下降。扬尘污染也比较严重,特别是雨后就更显得直观,汽车挡风玻璃上全是泥水,就连眼镜片上也满是泥水。由于少数地区垃圾处理不善,成堆的垃圾在地面上腐烂,随风一锤,一股恶臭扑鼻而来,让人倍觉恶心。工厂排出的废水、废气,也使大气污染受到不同程度的影响,给市民的工作和生活带来严重的不便。 石家庄大气污染原因分析 地形和气候因素是影响石家庄市大气质量的基本原因石家庄位于河北省中南部,西依太行山脉,东、南、北均为辽阔的华北大平原。而与此同时,石家庄属温带大陆性季风气候,四季分明,具有冬季寒冷少雪,春季干旱多风,夏季炎热多雨,秋季晴朗凉爽等特征。这些特定的地理和气候因素,是石家庄的大气污染面临严峻的挑战。由于东南风的作用,石家庄上空的可吸入颗粒物和其他污染物质随风西移,当遇太行山脉的阻挡后,又转向东移,返回原地。而与此类似,当刮西北风的时候,由于太行山脉这一巨大的屏障,使西北风被拦截在山西境内,一些污染物质也无法被刮走,而只能继续停留在石家庄的上空。 城市建设是影响石家庄大气质量的重要原因石家庄气体状态大气污染源调查表根据对主要大气污染的分类统计分析,其主要来源可概括为三大方面:(1)燃料燃烧(2)工业生产过程(3)交通运输等。根据统计资料,以上三方面产生的大气污染所占的比例分别为70%、20%和10%。在直接燃料的燃烧中,燃烧排放的大气污染物数量约占燃料燃烧排放总量的96%,其中燃煤排放的烟尘、SO2、NOX和CO的数量占燃料燃烧排放比例分别为99%、93%、81%和97%。各种工业生产过程中产生的大气污染排放量虽仅占大气污染总排放量的1/5左右,但由于排放点比较集中。浓度较高,所以对工矿区或局部的大气污染较为严重。机动车等流动源在交通比较繁忙的街道,如裕华路、中山路等,可能造成CO、NOX和HC的严重污染。(一)燃料燃烧。在石家庄,天然气在居民的生活中还没有普及,煤仍然是人们的首选燃料。而在燃煤市场上,高硫煤仍占主导地位。由于经济条件的限制,人们不可能放弃廉价的高硫煤而去购买环保型的低硫煤。这就造成SO2的大量排放。同时,由于石家庄地处华北,冬季寒冷,需要供暖,而一些单位为了省钱,实行自给自足的供暖制度,这就增加了煤的燃烧量,使大气背上了沉重的包袱。(二)工业生产过程。近些年来,石家庄纺织工业发展迅速,是我国棉纺织工业基地之一,化学工业也是重点发展部门,有规模较大的华北制药厂和石家庄化肥厂,煤炭工业亦占有重要地位。这些性质的工矿企业即使石家庄的重点发展部门,也是污染最为严重的企业。而且这些工矿企业大多数集中在市区,如具有相当规模的华北制药厂和石家庄化肥厂等。此外,还有一些粉末冶金厂、印染厂也是石家庄大气污染的主力军。(三)交通运输。近些年来,石家庄经济发展迅速,交通运输也随之发展。特别是近年来,私人轿车的数量急遽增多。但是,交通运输的发展带来了严重的环境问题。汽车的尾气中含有大量的CO,对人体的危害极大,特别是一些柴油大货车和冒烟车辆,排放的尾气中夹杂着大量的可吸入颗粒物,是导致疾病的重要因素。据中国科学院王玮博士介绍,一辆柴油车排放的尾气中,夹杂的可吸入颗粒物,几乎是100辆汽油差夹带的总和,是更严重的污染源。而石家庄却允许柴油车进城,促使空气中可吸入颗粒物的浓度急剧上升。(四)市政建设。石家庄的马路普遍存在道路斜坡问题,即马路两侧的人行板道明显高于路面而且与路面垂直,呈“凹”字型。致使马路上的灰尘不能吹走,而且越积越多,这也是因发扬陈天气的直接原因。据资料统计,城区扬尘中的可吸入颗粒物占总量的40%左右,人们却对裸露地面,建筑工地,拆迁工地以及砂石料场造成的扬尘姑息迁就,始终未能采取有效的措施从根本加以治理。此外,工业废水中的化学成分也极容易发生化学反应,产生对人体有害的气体。(五)工业布局。石家庄的一些工矿企业大多数集中在城区的东北部,还有一些分布在市区的不同区域。这些工矿企业的分散性是整个城区的大气污染受到不同程度的影响。(六)绿化。石家庄作为一个新兴的工业城市,绿化还没有跟上工业发展的步伐。只有政府、一些企事业单位,机关团体内部绿化已基本达标,而整个城区的绿化却远远达不到要求。南二环只是近两年来才栽了几批树,其他地方也还是光秃秃的。 市场失灵。所谓市场失灵是指市场存在不完整性(例如:垄断实力的存在,生产要素缺乏流动性,巨大外部型的存在,缺乏知识和信息等)导致市场经济作用被削弱的现象。也就是使市场经济不能实现其理论上的好处的情况。从可持续发展的角度说,外部性是市场失灵的重要因素。外部性是指个人或一个经济单位所承受的收益和成本是另外的个人和经济单位行为的直接结果,而没有得到任何补偿的情况。如一个化肥厂对大气造成污染但老百姓去被迫承受大气污染所造成的损害。由此可见,市场失灵也导致了大气污染。 政府政策失灵。政府并不是万能的,政府决策失灵同样会产生环境问题。例如:河北省政府打算把石家庄建设成为闻名全国“药都”,而制药厂是污染极为严重的企业,这个政策导向势必会对石家庄的大气污染造成不良的影响。 全民对环境的认识不够目前,人们对环境保护存在很多认识上的误区。如对环境问题的潜伏性、长期性、紧迫性和艰难性认识不足,对政府的环境保护政策不理解,由于市民认识上的不足和思想上的不重视,导致他们行为上的不够积极,不够配合。如在石市东南部的尖岭村,本身道路坑洼不平,尘土飞扬,再加上村民自身素质不高,垃圾随处可见。特别是每逢集市过后,更是满地狼藉,叫村民和过路人苦不堪言。三 政府行为对策在生态破坏和环境污染日益严重的今天,“经济发展靠市场,环境保护靠政府”的说法已被广为接受。环境资源配置的失灵,要求政府加大环境保护行政监督力度,采取有效的行政、经济、法律、教育等手段,发挥其在解决环境问题上的重要作用。入世后,我们的环境管理方式将会受到冲击,因此,必须更新观念,提高认识,适应新的形势和环境。1、完善政府机构职能,使宏观与微观有机结合。可持续发展战略的实施要求几乎所以政策领域的变革,改变过去各个部门封闭的、分割地制定和实施经济、社会、环境政策的做法,把环境保护与其他政策的制定和执行结合起来,这样做既有利于环境本身,又可以提高其他政策的效能,这就要求石家庄市政府建立环境管理体系,其绩效分布如顶图:政府要依照此体系,完善机构设置。实行环境质量行政领导负责制,明确各部门职责,对政府及职能部门和企事业单位的工作人员违反环保法规的各项具体行为进行界定。对违反环保法律、法规或贯彻不力导致辖区环境质量下降的部门、机关给予相应处分,使领导的“乌纱帽”和其所负责的区域环保是否达标挂上钩。此外,还要给环保部门下放实权,权责明确,才能贯彻有力。2、搞好监督调查工作,统一布局,分类管理。治理环境污染,必须坚持预防为主、防治结合的原则,实现全面规划,合理布局。 政府环保部门应切实做好环境的监测调查工作。近日河北省环境监测中心站针对日益严重的室内环境污染监督检疫站。今后,对于类似的机构要进一步完善,以加强对空气污染原的监控;实施城市空气质量周报或日报预报,使社会有关各方及时了解可能出现的空气污染情况。使一些污染物排放较大的单位和对空气污染物敏感的人群能预做准备。采取必要的应对措施,并可为环境管理决策提供及时、准确全面的环境质量信息。同时,政府可以投资兴建以监控、信息、检测等三大系统为核心的环境指挥中心,配备机动车尾气遥感监测车,加强环境监理标准化建设。 立足现有规律、规章和制度,制定和完善地方性法规,加强环境执法监督。为使环境保护工作根深蒂固的开展起来,建立适应可持续发展和市场经济的有利于环境保护的环境法律体系是必不可少的。政府可制定一系列相应政策法规完善这一体系(注意既要有综合性法规,又要对各方面进行明确规定,而且要随着科技的发展不断修改。)在此基础上实行环境执法监督,以国家环境政策、法律、法规和标准为依据,围绕国家环保工作重心,结合石家庄环保工作重点,运用国家法律赋予的权利和石家庄市政府授予的行政管理权限,以石家庄市环保局为主体,在有关部门的配合下对一切与环境保护有关的经济行为进行有效的监督动。3、针对石家庄市大气污染的几个主要方面原因采取相应防治措施,强化管理。 政府应利用经济手段来治理工矿企业。企业是各种污染物的主要产生者和排放者,这就要求企业在追求经济利益的同时,采取切实措施以削减排污量,实现经济效益、社会效益和环境效益的统一。使企业改变观念,拚弃环境保护部经济的成见,树立起重视环境更益于经济的观念。宣传和执行“污染者付费、利用这补偿、开发者保护、破坏者恢复”的原则。对破坏环境和随意排放污染物或超过国家规定标准的单位,按照污染种类,数量和程度进行罚款或征收排污费;对排放污染物损坏群众健康或造成财产损失的排污单位,责令向受害者赔偿损失;对利用废弃物生产的产品给以减免税收或其他经济上的优惠;实行开发利用自然资源予以征税收费等制度。 制定严格的标准,控制扬尘和废气污染。关闭不合格的砂石料场,对于建筑工地拆迁工地要求工程承包商在工地周围加高护屏,并在四周的临时交通道路上铺盖沥青;对一些非回镇土要随时运出市区。要求运货车加盖遮篷,以免建筑材料散落街头。各公司要采用现代化的电子过滤塔等先进设备来净化含油脂灰及有害的二氧化硫的废气。化工厂应利用管道将生产过剩中产生的废煤气及其他含有臭味的气体,经过管道输送到煤站燃烧,变成无害的碳酸气体和水蒸气,然后经过高大的烟囱排向高空。制药厂应建立有害气体的回收循环装置,利用回收利用可制成石膏。对工厂和服务性行业制定和执行新的氮氧化合物和挥发性有机化合物排放量标准和燃料的质量鉴定标准。除此之外,政府应加快无燃煤区的建设,将石家庄市中心区(和平路、体育大街、槐南路和仓安路;维明街围和区域)基本建成无燃煤区,并逐步将整个市区建成无燃煤区。同时,政府应下令,对一些具备集中供热条件的单位,必须集中供热。 利用行政手段削减机动车污染。政府应执行严格的地方规章制度,禁止销售未达国家尾气排放标准的汽车,淘汰尾气超标车;安装电喷和三元催化装置;加快机动车燃料改造,使用天然及电力等清洁能源;同时,可以开设电车等无污染车辆。对一些新增公共汽车要购置以天然气为燃料的清洁型车型,建设天然气加油站。禁止拖拉机、机动三轮车及非市区牌号的摩托车进入市区。 政府应严格规划解决石家庄的道路斜坡问题。一方面,在新建道路工程中,尽量避免道路斜坡问题。同时,对一些已形成道路斜坡问题的主干道,政府可以责令有关部门用花坛取代栅栏,并在道路两侧种上树,以达到防止尘沙和净化空气的双重功效。另一方面,可以增设洒水车的数量,用洒水车把一些处理过的污水洒在马路上,一日几次。 调整工业布局实现工业布局园区化。政府要加大力度,逐步改变不合理的工业布局,在城区实施“优二兴三”的产业政策,把工业重心移向开发区,发展工业园区,严格执行产业发展导向政策和“三同时”规定。限制一些敏感区域兴办有污染的工业项目,对一些重污染企业要实行搬迁、停产、转产或限期整改等政策。扩大石市经济技术开发区和高新技术产业开发区的规模。4. 对城市交通和公共设施警醒合理的规划管理。 政府要加大投入。 增加对公共设施的投入。政府可对一些公共设施增加资金投入,如在一些公园、广场兴建喷泉、消防水池等。在适当的地点开设无车区和商业步行街,以减少汽车的流动量。 政府应增加资金投入来治理城市垃圾。政府可以投资在一个小区设置几个垃圾投放点,每天定时投放垃圾,同时政府可以投资开发垃圾产业。当然,出路垃圾也必须坚持以预防为主,防治结合的方针,不能走先污染后治理的路子,政府可以让企业在生产时就考虑到为减少垃圾创造条件,如减少包装,或改一次性包装为重复使用的包装。对一些自然无法分解的垃圾,可以进行焚烧,但一定要严格限制焚烧厂的粉尘和废气排放,烟囱要价高,而且要安装废气过滤装置,把排入大气的有毒物质减少到最低限度。 加强城市绿化工作,建立城市立体绿化体系。在石家庄范围内大规模植树种草,在搞好垂直绿化的基础上,实行立体绿化。随着工业的发展和人民生活方式的变迁,使内绿化已显得十分重要因为许多新建住宅和办公楼都有很多污染物质,其中有些会释放有害气体或尘粒污染空气,它们包括许多种燃料、木材、建材、办公设备、家具、地毯及化工清洗剂等。另外,植物、宠物或房间空调系统也会带有细菌,这些细菌会破坏室内的空气质量。立体绿化就是事室内、地面、楼顶、墙体形成一个立体的绿化网,以阻止细菌霉菌的生长。此外,化学制品应受到限制,如油漆燃料及杀虫剂等。5. 广泛利用宣传、教育等手段提高公民的素质和环保意识。环境保护关系到全民族的生存和发展,保护环境实质就是保护生产力。各地区各部门都要进一步提高对环境保护工作重要性的认识,进一步加强环境保护宣传教育,广泛普及和宣传环境科学知识和法律知识,切实增强市民的环保意识和法制观念,提高其保护环境的自觉性。(1)各地区各部门必须把环境保护法律知识作为干部职工培训的重要内容,提高各级领导干部和人民群众遵守环境保护法律法规的自觉性。各级政府应把环保业绩作为考核政府官员政绩的主要指标,让各级政府把环保提上日程。(2)大中小学要积极开展环境教育。(3)建立公众才与机制,发挥社会团体的作用,鼓励公众参与环境保护工作,检举和揭发各种违反环境保护法律法规的行为。(4)报纸广播电视等新闻媒介应当及时报道和表彰环境保护工作中的先进典型,公开揭发和批评污染、破坏生态环境的违法行为。对严重污染破坏生态环境的单位的个人予以曝光,发挥新闻舆论的监督作用。(5)各级政府可以在居民小区设置宣传栏,宣传环保方面的法律法规,充分调动群众的自觉性。6.大力发展环保科技,推动环保产业的发展。 积极发展科技兴环保企业。我国已经加入WTO,国内所有企业都要面临经济全球化的挑战和考验,那种仅凭人力资源、劳动力价格低廉去打开国际市场的办法是缺乏远见的,以民众的低收入额为代价的竞争,其出发点就不对,其可持续性等更值得怀疑。大量增强企业的科技内涵才是做根本的出路。面对环保领域企业数量小多、规模小的特性,大力发展科技型环保企业更是当务之急。政府应加强对环保企业科技化的支持和政策引导。(1)在财政税收政策上向企业的科技开发行为倾斜,如果通过相应的监督监察机制确证企业投资与技术开发,那么这种投资的税收可以减免;如果经过相应的论证,企业投资与某项技术研究可以促进整个地区整个行业的技术进步,那么可以取得政府的优惠贷款甚至贴息贷款。(2)在环境领域,面向环保企业设立技术研发课题,并有配套的资金保障。(3)选择有规模、有丰富实践经验、具有技术研究基础的环保企业作为重点扶持对象,有的放矢发挥最佳作用。 鼓励支持环境保护和治理污染方面的科技研究和科技发明并力求将研究成果转化为实际成果。 加强同其他地区和国家的联系与合作。 引进国外投资,弥补资金短缺的现状;积极开展与其他地区和国家间的技术交流与合作,研究与应用新形式的环保理念与技术;聘请国内外知名环境专家参与我市环境整治开发治理工作规划的制定等等。

  • 索引序列
  • 活性炭燃点论文参考文献
  • 活性炭吸附毕业论文
  • 活性炭吸附钼毕业论文
  • 活性炭测氡方法研究论文
  • 燃气燃烧设备论文参考文献
  • 返回顶部