首页 > 学术期刊知识库 > 原子吸收分析论文范文

原子吸收分析论文范文

发布时间:

原子吸收分析论文范文

1802年,渥拉斯通(Wollastone)发现了太阳暗线1860年柯希霍夫(Kirchhoff)和本生(Bunsen)解释了太阳暗线产生的原因:由于太阳周围较冷气体中存在的某些元素原子,吸收了太阳的连续光谱而行成的.原子吸收光谱法诞生于1955年:澳大利亚人瓦尔士(Walsh),荷兰人艾柯蒙德(Alkemade)米拉兹(Milatz)分别独立发表了原子吸收光谱分析的论文. 瓦尔士(Walsh)被全世界公认为原子吸收光谱分析的奠基人.他提出将原子吸收光谱法作为常规的分析方法并建立了原子吸收光谱分析法.20世纪50年代末,英国Hilger&Watts公司和美国PE公司分别在Uvispek和P-E13型分光光度计基础上研发了火焰原子吸收分光光度计. Hilger&Watts的Uvispek被称为第一台问世的火焰原子吸收光谱商品仪器.1970年美国PE公司推出了第一台石墨炉原子吸收光谱商品仪器(HGA-70型).1969年Prugger和Torge申请了塞曼背景校正方法的专利.1976年日本Hitachi公司的第一台恒定磁场塞曼原子吸收光谱仪器投放市场.1983年有自吸背景校正方法的论文.同年有仪器参展1990年第一个纵向磁场,横向加热石墨炉塞曼原子吸收光谱仪,PE的年北京瑞利分析仪器公司推出了带富氧空气-乙炔高温火焰原子化器的原子吸收光谱仪器.21世纪前夕,美国Thermo公司与PE公司先后将高分辨的分光系统---中阶梯光栅单色器引入原子吸收光谱仪李.沃屋(L’vov)是石墨炉原子吸收光谱分析法(GFAAS)的提出者和奠基人,又是石墨炉原理样机的发明者.马斯美恩(Massmann)是商品石墨炉原子化器样机的发明者,1968年Massmann炉问世.1970年美国PE推出第一台石墨炉原子吸收分光光度计商品仪器ZL4100.原子吸收发展四阶段:1,1954-1959年实验室仪器装置的研发阶段2,1960-1970年商品仪器初级阶段3,1971-1990年商品仪器完善阶段4,1991-现在商品仪器及技术发展进入了高水平的平台阶段.1965年,吴廷照等组装成功了实验型原子吸收光谱仪。1970年,北京科学仪器厂生产了我国第一台单光束火焰原子吸收分光光度计。1997年北京瑞利分析仪器公司推出了带富氧空气-乙炔高温火焰原子化器的原子吸收光谱仪器

朋友,原子吸收主要用于测试重金属,农业、采矿、工业、环保、教学、卫生等行业都有应用建议您可以到行业内专业的网站进行交流学习!分析测试百科网,分析行业的百度知道,基本上问题都能得到解答,有问题可去那提问,百度上搜下就有。

楼主可以先在各在数据库上搜索一下,对自己需要的,把文献名称等相关信息发到文献求助版去。for more answers about analytics and testing or chemistry questions, you may go to antpedia dot com, good luck.楼主的题目也太大了..上知网万方维普找吧,有很多.

应用化学是介于理科与工科之间的一门理工结合型学科,应用化学专业的毕业生可服务的社会领域非常广泛。下面是我为大家整理的应用化学毕业论文,供大家参考。

摘要:在完善应用化学实验教学内容改革的同时,继续加大了对实验教学设备的调研与采购。着重按照现行企业运行模式中的方式,采用一些先进的小型化设备与仪器,让学生在实验操作技能锻炼的同时,熟悉设备与仪器的使用,这为学生进入企业能尽快投入到工作中奠定一定的基础。

关键词:应用化学;实验

1应用化学实验课程现状

从实验教学内容来看,大体上分为三个部分:其一,典型的物质合成,占实验教学内容的,从教学范畴上属于有机化学实验教学内容,不利于学生应用化学实验的开展;其二,系列产品的配制实验偏多,占实验教学内容的,咋一眼看上去,内容较为丰富,但都属于同一范畴,造成实验类型单一;其三,提取类实验,占实验教学内容的20%,操作方法基本上相同,很难体现出应用化学实验的真正目的。另外,从学科与地方经济发展的角度考虑,包头隶属于稀土产业的主产地,国家中长期发展纲要中,把内蒙古定位成国家重要的能源基地,尤其是在化工行业中尤为突出。然而,从应用化学实验教学内容来看,并没有突出化工行业中典型流程的分离,脱离了地方产业的发展,违背了应用化学实验在人才培养方法中的重要地位。同时,从大的环境来看,高校从事应用化学专业相关的人员很多,但在这个领域中具有技术型的人才偏少,往往因设备、技术和资金等原因只停留在理论阶段,很难实现校企合作,时间长了,理论就会偏离实践。鉴于以上原因,我校化学学院在12版人才培养方案修订的同时,着重对应用化学实验教学内容进行了改革,强化高校与地方产业的联系,重点突出校企合作平台建设,丰富应用化学实验教学内容。

2应用化学实验课教学内容改革

实验教学课时的变动

按照化学学院12版人才培养方案的修订,对于应用化学实验教学内容修订正处于尝试与完善阶段,在人才培养方案修订的同时,兼顾多方面考虑,将原有应用化学实验90课时,缩减为35课时,并且由原来的两学期变成一学期。在应用化学实验教学内容完善并走向正常化运行时,进一步修订补充应用化学实验教学课时,真正实现应用化学实验教学对应用化学专业学生走向社会的需求。

实验教学内容的转换

对于应用化学实验教学内容的改革,我们在吸收原有实验教学内容的基础上,积极与周边化工企业、煤化工企业和环保局等多次接触,一方面了解这些企业岗位群体的实际需求以及对毕业生的要求,另一方面积极学习这些企业对化工原料、煤化工以及环境监测等方面的技术,组织相关专业任课教师依据应用化学实验课程改革要求,结合企业生产环节,充分调研,再通过相关文献检索与其他院校开设应用化学实验教学内容进行对比,初步对应用化学实验教学内容梳理为四个方面。就稀土元素分离与提取模块而言,学生在掌握基本无机化学实验的基础上,通过分层次教学手段,强化学生实验技能的培养,建立与地方稀土企业的密切联系,如与当地金蒙稀土集团有限公司和稀土研究院搭建校企合作平台,让学生形成实验—实践—再实验三者循环模式(见图1),杜绝因课堂实验教学的单一性和程序化给学生实验造成不良的惯性学习习惯。煤化工实验模块,也是应用化学实验尝试引入教学环节的新举措。最近几年来,随着包头新型煤化工企业相继入驻,对煤化工类的人才需求越来越多,学校也非常重视与这些企业的联系,每年利用化工专业见习和专业实习机会,加大拓展实习基地的建设,目前已经与内蒙古乌海化工、鄂尔多斯大陆新区的煤制天然气和煤制油等大型企业建立了良好的合作关系。有必要尽快将煤化工实验模块引入到课堂教学中,除建立以理论教学促进实验教学体系以外,还应建立以实践基地建设来完善实验教学的新模式。既丰富学生教学实验内容,又能为相关用人企业培养具有专业背景的人才,实现学校与企业,企业与学生,学生与学校互利双赢的金三角格局。环境检测与分析模块是结合当前国家重视环境保护,促进生态环境建设而提出的。包头具有丰富的煤炭资源,新型的能源化工企业规模正在逐步扩大,对节约资源、实现环境与效益双赢的意识也越来越高,环境治理与检测相关专业的人才也逐步受到重视。但从现实来看具有这方面的专业人才相对匮乏。为此我们在应用化学实验教学中加大环境监测与分析方面的教学内容,进一步拓宽学生视野,掌握一定的专业技能,为社会输送可用人才。

实验教学设备的完善

在完善应用化学实验教学内容改革的同时,继续加大了对实验教学设备的调研与采购。着重按照现行企业运行模式中的方式,采用一些先进的小型化设备与仪器,让学生在实验操作技能锻炼的同时,熟悉设备与仪器的使用,这为学生进入企业能尽快投入到工作中奠定一定的基础。对于一些大型的、一时无法满足教学实验的仪器,采取积极与临近科研院所沟通的形式,转移课堂教学,通过现场学习的方式进一步完善应用化学实验教学体系。目前,按照我校12版人才培养方案的修订,结合多方面的努力,应用化学实验教学内容已经修订完成。以11级的学生作为研究对象,正在实施运行当中,根据学生的反馈与实际教学效果,反响很理想。当然,在实际实验教学中也发现一些问题,正在积极总结经验,争取进一步完善应用化学实验教学改革。

参考文献

1、应用化学专业建设与实践研究张群正化工高等教育2004-09-30

2、走理工融合之路 培养应用化学专业高素质创新人才杨屹; 陈咏梅; 白守礼; 许家喜; 李蕾; 李保山中国大学教学2013-07-15

摘要:经过近几年的建设,我们制定了明确的课程建设目标和规划,建立了较为完善、科学的课程体系,做到了理论联系实际,课内课外结合,既传授知识和技能,又培养学生的应用能力和综合素质。

关键词:应用化学;仪器

1仪器分析实验课程设置

课程设计理念

“仪器分析实验”是应用化学专业必修的基础课程之一,它是分析化学不可分割的重要组成部分。通过本课程的学习,学生比较系统地掌握仪器分析的基本理论和操作,能根据不同仪器的性能、不同分析对象选择合适的分析方法。能够运用分析技术解决生产和科研的实际问题,并初步具备从事仪器分析方面研究工作的方法与能力。为此,我们的设计理念是“夯实基础,综合训练,创新提高,实践应用”。“夯实基础”要求所有学生都要完成基础性实验,加深理解仪器分析的基本原理,掌握大型仪器的使用方法;“综合训练”是指每个学生必须完成部分综合性实验,能够综合运用所学的知识和各种仪器分析测定实际样品,掌握常用的样品前处理方法;“创新提高”是指学生自主选择1-2个创新性实验,课下完成,针对生产生活实际中的某个问题,查阅文献,设计实验方案,优化实验条件,得到产品,进行表征或测定,并评价其使用效果,无论成功与否,都要给出合理的解释。通过这样的训练,可以培养学生的问题意识和创新能力,为下一步毕业论文和今后的研究生学习奠定基础。“实践应用”是指学生通过见习实习,加深理解课堂上所学的知识;更重要的是利用学到的基本理论和分析方法去解决生产生活中遇到的实际问题,增强综合应用能力。

课时安排

在2011版应用化学专业培养方案中,仪器分析实验在第5学期与仪器分析课同时开设,安排在无机化学及实验、有机化学及实验、分析化学及实验等基础课程之后,48学时,开设12个实验项目,教学大纲提供了26个项目,其他实验项目作为开放实验,供有兴趣的学生课下完成。

课程体系

近年来,我们紧紧围绕应用型人才和创新型人才培养目标,按照仪器分析实验的要求,课程组以教育部精品课程建设宗旨为指导,以学生实验能力和创新能力培养为切入点,对仪器分析实验课程目标和教学内容进行了一系列改革,形成了相对独立的由基础性、综合性与创新性实验以及实践实训构成的课程新体系,体现了从易到难、从简单到综合、从基本技能训练到创新能力养成的认知发展规律。

(1)基础性实验

共有8个基础性实验,其中6个为必做实验。该类实验针对基本的分析方法,选择常用的仪器,开设较为简单的实验,目的是让学生学习和掌握大型仪器的使用方法和基本操作,了解仪器的基本结构,学会记录和分析处理数据,为养成良好的科学素养打下基础。通过第一层次的实验,强化了学生的动手能力和操作技能,并为后续实验奠定了基础。

(2)综合性实验

2个综合性实验为学生必做实验,其余10个为选做实验。综合性实验包括样品前处理和分析测定两部分。目的是让学生进一步熟悉原有仪器的使用,学习新型仪器的操作,如气质联用仪、液质联用仪、X-射线衍射仪等,掌握常用的样品前处理方法,培养学生综合运用知识解决问题的能力。

(3)创新性实验

该类实验难度较大,教师精选生产生活实际中的问题,只给出实验要求。学生必须进行社会调查、查阅文献、设计方案、独立完成实验、分析数据、得出结论。这类实验以开放性实验开出,与大学生创新训练项目、教师科研课题相结合,培养学生的创新能力和科研意识。

(4)实践实训

为了实现应用型人才的培养目标,课程组非常重视学生的实践实训工作,积极开展第二课堂。结合环保主题开展临沂市水质调研、土壤中重金属污染情况的调查,对水质的各种指标和土壤中重金属离子的含量进行测定。学生查阅文献设计方案,不同小组可以选用不同的仪器进行测定,进一步熟悉气相色谱仪、液相色谱仪、ICP-OES光谱仪、原子吸收光度计和原子荧光光度计的使用,掌握样品的前处理方法。比较不同小组的测定结果,并与国家标准对照,确定水或土壤是否被污染。2011年,我们组织的临沂大学沂河水质调研团获山东省暑期“三下乡”社会实践优秀服务队。充分利用现有的实习基地组织学生进行参观学习或实习,在实践中开阔视野,学习了解先进的分析仪器。学生在学习仪器分析之前,接触到的分析仪器都是玻璃仪器,复杂一点的就是紫外-可见分光光度计,所以对于大型仪器非常陌生。开始新课前,我们组织学生分组到仪器分析实验室和分析测试中心,见识将要用到的大型仪器,对于学校没有的较先进的仪器,就带学生去实习单位参观,了解分析化学的应用领域,大型仪器在现代分析中的重要地位,明确仪器分析要解决的问题,让学生带着实际问题学习,增强学习的目的性和针对性,提高学习效果。教学结束时,部分有兴趣的学生,可以再去实习基地见习或实习1~2周,用学到的知识去解决问题,对实际样品进行处理和测定,深刻体会学有所用、学有所成的道理。大四下学期,所有的学生都要去基地实习2-3个月,实习期间,学生进行系统的训练,从设计方案,到优化条件,最终建立一种灵敏度较高、选择性较好的分析方法,或者对已有的方法进行改进,在校内教师和基地老师的指导下完成毕业论文。

2仪器分析实验课程内容

为了适应不断发展变化的社会需求和人才培养需要,我们积极吸收行业企业参与课程内容和课程体系改革,临沂市环境监测站、临沂市出入境检验检疫局、临沂市产品质量监督检验所、临沂市药品检验所等监测部门、山东金正大生态工程股份有限公司、鲁南制药集团股份有限公司、天津药明康德新药开发有限公司、山东潍坊润丰化工有限公司等企业对仪器分析实验项目的设置提出了修改建议。我们主要从以下几方面对实验内容进行了修订。

从生产生活实际出发选择实验内容

仪器分析实验教学的内容要贴近生活、生产实际,强调知识的应用和内容的开放性,这样才能激发学生的好奇心,从而引起对实验的兴趣。讨论问题不能一味地从理论知识开始,应注重从与知识相关的应用和技术以及社会的角度进行思考,从项目(主题)及应用性的问题出发,根据需要合理选择实验内容。例如:在原子吸收分光光度法中就可以选择头发中微量元素含量的测定,双波长紫外分光光度法测定复方磺胺甲恶唑片中磺胺甲恶唑含量,循环伏安法可以选择各种饮料中葡萄糖含量的测定,既保证了实用性,又增加了前处理的内容。对于社会上出现的一些热点问题将其有选择性地融入仪器分析实验教学中,如假药的检测、苏丹红及三聚氰胺的分析等此类探索研究性实验,作为开放性实验,对一些有浓厚兴趣且基础较好的学生单独开放。学生通过实验可以体会到仪器分析实验在社会生产和生活中的巨大作用,以及给社会生活带来的便利,并且认识到,如果不合理地利用科学技术,它会给人类带来危害,甚至是灾难,让学生关注与科学有关的社会问题,增强社会责任感。

删除陈旧的内容,增加新技术新方法

传统的仪器分析实验内容多是一些验证性和低层次的常规实验,与现代实验方法技术和现实应用等相差较远,无法调动学生学习实验课的兴趣和积极性。在实验课的教学过程中,必须结合科学发展前沿介绍本学科的新理论、新方法,以及本学科与其他相关学科的关系。以基础理论为主线,以典型的实验为重点,以实际操作为核心,在集中讲授研究成熟、应用性广泛的仪器方法的同时,要让学生通过查阅文献,掌握现代仪器理论的最新动态,了解本学科涌现的新知识、新技术、新方法,使学生受到现代科学技术的熏陶。基于这一想法,我们增加了有关新仪器、新方法、新技术的实验,如“吹扫捕集-气相色谱/质谱法测定水中苯系物的组成”、“松果菊中组分的LC/MS分析”、“流动注射化学发光法检测DNA”、“基于纳米金比色分析法测定中药材中的汞离子”等。

提高综合性实验和创新性实验的比例

不少学生希望老师把更多的思维空间留给他们,让他们有独立思考的机会。为此我们尝试把学生的一些基础实验设计成研究型实验,把科学前沿领域的知识引入学生实验中来,增加创新性实验,旨在调动学生的积极性,培养学生的综合能力。例如“HPLC法测定中药材提取物和克林霉素磷酸酯注射液中抑菌剂含量”、“叶绿素的提取分离及叶绿素金属络合物的合成与鉴定”、“固相萃取-HPLC检测土壤中的三嗪类除草剂”等。通过实验,学生很好的掌握了样本的提取与预处理,以及气相色谱、液相色谱、紫外-可见分光光度计、原子吸收分光光度计等仪器的使用和注意事项,初步具备了实验方案制定的能力,并对现代仪器的原理、结构和操作有了更深一步的了解。

及时将教师的科研成果转化为实验内容

课程组教师坚持以教学为中心,教学与科研相互促进,积极开展科研工作,形成了几个较为稳定的研究方向:生命化学分析、纳米改性与传感、环境分析、天然产物分离与分析。课程组充分利用科研优势推动教学改革和实验内容的更新,部分教师的研究成果已经成为仪器分析实验的重要组成部分。例如,“流动注射化学发光法检测DNA”来源于生命化学分析研究方向,“毛细管电泳法测定阿司匹林中水杨酸的含量”、“松果菊中组分的LC/MS分析”等实验项目来源于天然产物分离与分析方向,“基于纳米金比色分析法测定水中的汞离子”、“稀土掺杂TiO2光催化剂制备及光催化活性的研究”来源于纳米改性与传感方向,“土壤中砷的形态分析”,“金属离子印迹聚合物的制备及水中镉离子的测定”等实验项目来源于环境分析化学方向。这些实验项目的实施,既完善了实验教学体系,又充实了实验内容,有助于学生了解科学研究的过程,激发参与教师科研课题的热情。

3结语

经过近几年的建设,我们制定了明确的课程建设目标和规划,建立了较为完善、科学的课程体系,做到了理论联系实际,课内课外结合,既传授知识和技能,又培养学生的应用能力和综合素质。紧跟学科发展前沿,力求教学内容科学先进,及时把新型的仪器手段、分析方法和教师的教学科研成果引入教学。教学过程中灵活运用多种教学方法,调动学生学习的积极性和主动性,学生的学习兴趣明显增强,动手能力和解决问题的综合能力显著提高,在各种大赛和科技活动中取得了优异的成绩。在山东省大学生化学实验技能大赛中获一等奖4人、二等奖7人、三等奖1人;在“挑战杯”山东省大学生课外学术科技作品竞赛中获二等奖5人、三等奖6人;6名学生获山东省优秀学士学位论文;27人在省级以上期刊发表学术论文;2012年,14人获国家级大学生创新训练计划项目,16人获校级大学生创新训练计划项目。

参考文献

1、浅谈应用化学专业实验教学改革与实践李凡修; 孙首臣; 邓仕英; 李克华实验室研究与探索2014-04-15

原子吸收分析法在中药研究论文

原子吸收光谱分析的特点介绍如下:

检出限低,灵敏度高

火焰原子吸收分光光度法测定大多数金属元素的相对灵敏度为×10-8~×10-10g·mL-1,非火焰原子吸收分光光度法的绝对灵敏度为×10-12~×10-14g。这是由于原子吸收分光光度法测定的是占原子总数99%以上的基态原子,而原子发射光谱测定的是占原子总数不到1%的激发态原子,所以前者的灵敏度和准确度比后者高的多。

精密度好

由于温度的变化对测定影响较小,该法具有良好的稳定性和重现性,精密度好。一般仪器的相对标准偏差为1%~2%,性能好的仪器可达~.

选择性好,方法简便

由光源发出特征性入射光很简单,且基态原子是窄频吸收,元素之间的干扰较小,可不经分离在同一溶液中直接测定多种元素,操作简便。

准确度高,分析速度快

测定微、痕量元素的相对误差可达~,分析一个元素只需数十秒至数分钟。

应用广泛

可直接测定岩矿、土壤、大气飘尘、水、植物、食品、生物组织等试样中70多种微量金属元素,还能用间接法测度硫、氮、卤素等非金属元素及其化合物。该法已广泛应用于环境保护、化工、生物技术、食品科学、食品质量与安全、地质、国防、卫生检测和农林科学等各部门。

对原子吸收分析法基本理论的讨论,主要是解决两个方面的问题:①基态原子的产生以及它的浓度与试样中该元素含量之间的定量关系;②基态原子吸收光谱的特性及基态原子的浓度与吸光度之间的关系。

局限性

1、不能进行多元素分析:原子吸收法测定一个元素得换一个空心阴极灯作为锐线光源,虽然,已研制成新的光源——多元素灯,但多元素灯的稳定性、光源强度受到一定的限制,应用不是很广。

2、不能做结构分析:和原子发射一样它只能作组份分析,不能做结构分析。

3、难熔元素、非金属元素测定困难。

转载:《分析测试百科网》 这是我写的“原子吸收光谱分析的定量分析方法”帖出来与大家共享,希望各位批评指正,在这先谢谢了~~ 原子吸收光谱分析的定量方法 原子吸收光谱分析是一种动态分析方法,用校正曲线进行定量.常用的定量方法有标准曲线法、标准加入法和浓度直读法,如为多通道仪器,可用内标法定量.在这些方法中,标准曲线法是最基本的定量方法,是其他定量方法的基础. 标准曲线法 标准曲线法(standard curve method),又称校正曲线法(calibration curve method),是用标准物质配制标准系列,在标准条件下,测定各种标准样品的吸光度值Ai(i=1,2,3,…)对被测元素的含量 ci(i=1,2,3,…)建立校正曲线A=f(c),在同样条件下,测定样品的吸光度值Ax,根据被测元素的吸光度值Ax从校正曲线求得其含量cx.校正曲线如图2—4所示. (对不起,图我现在都还没有画出来)图2—4 校正曲线及其置信范围(阴影部分表示置信范围) 校正曲线的质量对获得准确测定结果有着直接的影响,因此,我们在建立校正曲线过程中,应遵循以下的原则: (1)选择精度好的分析方法在严格控制分析条件的情况下建立校正曲线; (2)在保证校正曲线为线性的条件下,应尽可能扩大被测组分含量的取值范围; (3)在实验工作量一定的情况下,适当增加实验点的数目、减少每一实验点的重复测定次数,比增加每一实验点的重复测定次数、减少实验点的数目能更有效地提高校正曲线的精度.但随着实验点数目的增加,校正曲线精度的提高速率越来越慢,实验点数目n大于6以后,精度提高速率很慢.从置信系数tα,f考虑,在 n6时,tα,f值减小的速率也很慢,校正曲线的置信范围变小的速率很慢,再靠进一步增加实验点数目提高标准曲线的精度是不合算的.因此,5~6个实验点建立校正曲线是合理的; (4)被测组分的含量应尽可能位于校正曲线的中央部分.位于校正曲线高、低含量(浓度)两端的实验点的测定精度较位于曲线中央部分的实验点的测定精度差,因此,对校正曲线两端的实验点的测定次数要多一些; (5)鉴于校正曲线低含量(浓度)区的测定精度较差,而空白溶液正位于这一测定精度差的区域,因此,以空白溶液校正仪器(即用空白溶液调零)是不合适的.合理的做法应是对空白溶液多进行几次测定,取其测定平均值,将它作为含量(浓度)为零的实验点参与校正曲线的拟合; (6)由于“空白值”的测定误差较大,且为随机变量,不同的取样会得到不同的空白值,因此,在扣除空白值时,直接扣除用空白溶液测定的空白值不是一个好方法.用校正曲线拟合得到的截距值作为实际空白值扣除会得到更好的结果.这是因为截距值是统计平均值,它比由空白溶液直接测定的值更稳定,精度更好; (7)测定未知样品时,重复测定可以提高估计值cx的精度,因此,在条件允许的情况下,多进行几次测定是有利的; (8)检验校正曲线是否发生变化,最好用不同浓度的标准溶液进行检验.比如建立校正曲线时用浓度为c1、c3、c5、c7、c9的五个实验点,检验校正曲线是否发生变化时,最好用浓度为c2、c4、c6、c8、c10的五个实验点.这是因为当两条标准曲线无显著性差异时,可以用一条共同的标准曲线来拟合这10个实验点,实验点数目增加能有效提高标准曲线的精度.若用相同浓度的标准溶液进行检验,当用一条共同的标准曲线来拟合这两组实验点时,实验点数目并没有增加,仍然是5个实验点,只是增加了每一个实验点的精度,这样并不能有效地提高校正曲线的精度. 如读者有兴趣想进一步详细了解校正曲线的建立、如何进行校正曲线的显著性(相关性)检验、线性范围的确定、精度与置信区间的确定和利用校正曲线进行预报和控制以及两条校正曲线如何进行比较等问题,可参阅邓勃编写的《分析测试数据的统计处理方法》,北京清华大学出版社1995年版第5章. 标准加入法 对标准曲线法的定义中,可以看出分析结果的准确性直接依赖于标准系列与被分析样品的组成的精确匹配.但在实际分析工作中,样品的基体、组成和浓度千变万化,要找到完全与样品组成相匹配的标准物质是很困难的. 标准加入法(standard addition method)是在若干份等量的被分析样品中,分别加入0、c1、c2、c3、c4、c5等不同量的被测定元素标准溶液,依次在标准条件下测定它们的吸光度Ai(i=1,2,3,4,5,…),建立吸光度Ai对加入量ci的校正曲线(见图2—5).因为基体组成是相同的,可以自动补偿样品基体的物理和化学干扰,提高测定的准确度.校正曲线不通过原点,其截距的大小相当于被分析试样中所含被测元素所产生的响应,因此,将校正曲线外延与横坐标相交,原点至交点的距离,即为试样中被测元素的含量cx. 标准加入法所依据的原理是吸光度的加和性.我们在应用标准加入法时应注意以下几点: (1)标准加入法只能用于校正曲线线性范围内才能得到正确结果,对非线性校正曲线,吸光度会导致测定结果偏高.因此,所有的测量都应在线性范围内; (2)最低浓度的样品溶液最适宜的吸光度测量值在~范围内;最适宜的待测元素加入量是使测量值增加约2,3和4倍,一般至少测定4个点(包括样品溶液点),但各点必须仍在校正曲线的线性范围内; (3)当伴生物对测定影响不太严重时,标准加入法可以消除物理干扰和与浓度无关的轻微的化学干扰,但不能消除有浓度有关的干扰如电离化学干扰,同时也不能消除光谱干扰和背景吸收的干扰.应采用相应的消除和减小以上干扰的措施后,再用标准加入法; (4)应用标准加入法时扣除标准空白是必要的.空白和样品应该分别作标准加入法,然后作浓度扣除.因为两者基体不同、干扰不同,空白加标和样品加标的曲线的斜率是不同的,因此不能直接用扣除吸光度来计算. 浓度直读法 浓度直读法(concentration direct reading)的基础是标准曲线法.将标准曲线预先存于仪器内,只要测定了试样的吸光度,仪器自动根据内置的校正曲线算出试样中被测元素的浓度和含量,并显示杂仪器上.其测定的准确度直接依赖于:a、校正曲线的线性、稳定性;b、测得的试样吸光度值必须落在校正曲线动态范围内.前面已经提到,吸光度测量是一种动态测量,实验条件的变化,不可避免地引起吸光度值的变化,条件a不能保证.根据最小二乘线性回归的原理,平均值所在的实验点( , )一定落在校正曲线上.试样中被测元素含量偏离校正曲线线性范围的平均值 越远,测定结果的误差越大,而仪器通常没有明确浓度直读范围,不便控制.由此可见,浓度直读法定量的准确度要逊于标准曲线法和标准加入法.浓度直读法的优点是快速. 内标法 内标法(internal standard method)是相对强度法,是在标准试样和被分析试样中分别加入一定量的内标元素,在标准条件下测定分析元素和内标元素的吸光度比Ai/An,以Ai /An对ci(i=1,2,3,4,…)建立校正曲线,在同样条件下,测定试样中被测元素和内标元素的吸光度比Ax/An,根据所测得的吸光度比值从校正曲线求得试样中被测元素含量cx.内标法最大的优点是可以减少实验条件变动所引起的随机误差,提高了测定的精密度. 因为要同时测定被测元素与内标元素的吸光度,必须使用双通道原子吸收光谱仪器,而现在广泛使用的仪器是单通道原子吸收光谱仪器,因此,内标法在原子吸收光谱分析中很少应用. 内标元素与分析线对(被测元素的谱线为分析线,内标元素的谱线为内标线,两者组成分析线对)的选择: (1)内标元素与被测元素在光源作用下应有相近的蒸发性质; (2)内标元素若是外加的,必须是试样中不含有或含量极少可以忽略的; (3)分析线对选择要匹配:或两条都是原子线,或两条都是离子线.尽量避免一条是原子线一条是离子线; (4)分析线对两条谱线的激发电位应有相近.若内标元素与被测元素的电离电位相近,分析线对激发电位也相近,这样的分析线对称为“均匀线对”; (5)分析线对波长应尽量接近.分析线对两条谱线应没有自吸或自吸很小,并不受其他谱对的干扰. 说明:文章内容引用了一些论坛中一些不知名的朋友的论述,在这里谢谢了啊~~~~ 参考文献没有列出来: 邓勃主编.应用原子吸收与原子荧光光谱分析.北京:北京化工出版社,2003年; 邓勃.原子吸收分光光度法.北京:清华大学出版社,1981年; 邓勃.分析测试数据的统计处理方法.北京:清华大学出版社,1995年; 邓勃,何华 .原子吸收光谱分析.:化学工业出版社,2004年 朋友可以到行业内专业的网站进行交流学习! 分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析.这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有.

关于原子吸收论文题目

想办法有机溶解

先打个红外色谱,再做个元素分析,有条件的做个核磁吧,这样容易判断结构

确认并联系邮箱:,我把如图文件发到你的邮箱。

汤姆生的"葡萄干布丁"模型,他认为原子是一个均匀的球体,质子均匀分布其中,而电子就象葡萄干一样镶嵌在其中.他好象通过测定电子的质荷比来提出这个模型的~.( 这个是汤姆生的方法的介绍)卢瑟福,他的模型是"太阳系轨道"模型,他认为原子象太阳系,原子核集中大部分质量和正电荷,而电子象行星一样在外围转动,他是通过阿尔法散射实验来提出这个模型的,这个实验高中的原子物理有介绍.玻尔,是卢瑟福的学生,他的模型和卢瑟福大体相仿,不同的是电子运动的轨道是有限的,电子只能在这些轨道上"跃迁",而跃迁就是吸收和放出能量的过程.他是通过研究氢原子的光谱(巴尔末公式),而这个研究过程在高中原子物理学中也有介绍,可以参看相关的书籍.道尔顿的原子模型就非常简单了,他认为原子是不可再分的实心球体.下面还有相关介绍,看亦可,不看亦可.原子研究发展史 BC400年希腊哲学家德谟克列特提出原子的概念。 1803年道尔顿提出原子说。 1833年法拉第提出电解定律,此暗示原子带电,且电可能以不连续的粒子存在。 1874年司通内建议电解过程被交换的粒子叫做「电子」。 1879年克鲁克斯从放电管(高电压低气压的真空管)中发现阴极射线。 1886年哥德斯坦从放电管中发现阳极射线。 1897年汤姆生证实阴极射线即阴极材料上释放出的高速电子流,并测量出电子的荷质比。e/m= × 108 库仑 / 克 1909年米立坎的油滴实验测出电子之带电量,并强化了「电子是粒子」的概念。 1911年拉塞福的α粒子散射实验,发现原子有核,且原子核带正电、质量极大、体积很小。其条利用(粒子(即氦核)来撞击金箔,发现大部分(%)粒子直穿金箔,其中少数成大角度偏折,甚至极少数被反向折回(十万分之一)。 1913年莫士勒从 X 一射线光谱波长的关系,建立原子序概念。 1913年汤姆生之质谱仪测量质量数 , 并发现同位素。 1919年拉塞褔发现质子。其利用α粒子撞击氮原子核与发现质子 接著又用α粒子撞击棚 (B) 、氟 (F) 、铝 (A1) 、磷 (P) 核等也都能产生质子,故推论「质子」为元素之原子核共有成分。 1932年查兑克发现中子。其利用α粒子撞击铍原子核 1935年汤川秀树发现介子理论,这种介子使原子核稳定。 1897年,.汤姆逊在研究阴极射线的时候,发现了原子中电子的存在。这打破了从古希腊人那里流传下来的“原子不可分割”的理念,明确地向人们展示:原子是可以继续分割的,它有着自己的内部结构。那么,这个结构是怎么样的呢?汤姆逊那时完全缺乏实验证据,他于是展开自己的想象,勾勒出这样的图景:原子呈球状,带正电荷。而带负电荷的电子则一粒粒地“镶嵌”在这个圆球上。这样的一幅画面,也就是史称的“葡萄干布丁”模型,电子就像布丁上的葡萄干一样。 但是,1910年,卢瑟福和学生们在他的实验室里进行了一次名留青史的实验。他们用α粒子(带正电的氦核)来轰击一张极薄的金箔,想通过散射来确认那个“葡萄干布丁”的大小和性质。但是,极为不可思议的情况出现了:有少数α粒子的散射角度是如此之大,以致超过90度。对于这个情况,卢瑟福自己描述得非常形象:“这就像你用十五英寸的炮弹向一张纸轰击,结果这炮弹却被反弹了回来,反而击中了你自己一样”。 卢瑟福发扬了亚里士多德前辈“吾爱吾师,但吾更爱真理”的优良品格,决定修改汤姆逊的葡萄干布丁模型。他认识到,α粒子被反弹回来,必定是因为它们和金箔原子中某种极为坚硬密实的核心发生了碰撞。这个核心应该是带正电,而且集中了原子的大部分质量。但是,从α粒子只有很少一部分出现大角度散射这一情况来看,那核心占据的地方是很小的,不到原子半径的万分之一。 于是,卢瑟福在次年(1911)发表了他的这个新模型。在他描述的原子图象中,有一个占据了绝大部分质量的“原子核”在原子的中心。而在这原子核的四周,带负电的电子则沿着特定的轨道绕着它运行。这很像一个行星系统(比如太阳系),所以这个模型被理所当然地称为“行星系统”模型。在这里,原子核就像是我们的太阳,而电子则是围绕太阳运行的行星们。 但是,这个看来完美的模型却有着自身难以克服的严重困难。因为物理学家们很快就指出,带负电的电子绕着带正电的原子核运转,这个体系是不稳定的。两者之间会放射出强烈的电磁辐射,从而导致电子一点点地失去自己的能量。作为代价,它便不得不逐渐缩小运行半径,直到最终“坠毁”在原子核上为止,整个过程用时不过一眨眼的工夫。换句话说,就算世界如同卢瑟福描述的那样,也会在转瞬之间因为原子自身的坍缩而毁于一旦。原子核和电子将不可避免地放出辐射并互相中和,然后把卢瑟福和他的实验室,乃至整个英格兰,整个地球,整个宇宙都变成一团混沌。 不过,当然了,虽然理论家们发出如此阴森恐怖的预言,太阳仍然每天按时升起,大家都活得好好的。电子依然快乐地围绕原子打转,没有一点失去能量的预兆。而丹麦的年轻人尼尔斯.玻尔照样安安全全地抵达了曼彻斯特,并开始谱写物理史上属于他的华彩篇章。 玻尔没有因为卢瑟福模型的困难而放弃这一理论,毕竟它有着α粒子散射实验的强力支持。相反,玻尔对电磁理论能否作用于原子这一人们从未涉足过的层面,倒是抱有相当的怀疑成分。曼彻斯特的生活显然要比剑桥令玻尔舒心许多,虽然他和卢瑟福两个人的性格是如此不同,后者是个急性子,永远精力旺盛,而他玻尔则像个害羞的大男孩,说一句话都显得口齿不清。但他们显然是绝妙的一个团队,玻尔的天才在卢瑟福这个老板的领导下被充分地激发出来,很快就在历史上激起壮观的波澜。 1912年7月,玻尔完成了他在原子结构方面的第一篇论文,历史学家们后来常常把它称作“曼彻斯特备忘录”。玻尔在其中已经开始试图把量子的概念结合到卢瑟福模型中去,以解决经典电磁力学所无法解释的难题。但是,一切都只不过是刚刚开始而已,在那片还没有前人涉足的处女地上,玻尔只能一步步地摸索前进。没有人告诉他方向应该在哪里,而他的动力也不过是对于卢瑟福模型的坚信和年轻人特有的巨大热情。玻尔当时对原子光谱的问题一无所知,当然也看不到它后来对于原子研究的决定性意义,不过,革命的方向已经确定,已经没有什么能够改变量子论即将崭露头角这个事实了。 在浓云密布的天空中,出现了一线微光。虽然后来证明,那只是一颗流星,但是这光芒无疑给已经僵硬而老化的物理世界注入了一种新的生机,一种有着新鲜气息和希望的活力。这光芒点燃了人们手中的火炬,引导他们去寻找真正的永恒的光明。 终于,7月24日,玻尔完成了他在英国的学习,动身返回祖国丹麦。在那里,他可爱的未婚妻玛格丽特正在焦急地等待着他,而物理学的未来也即将要向他敞开心扉。在临走前,玻尔把他的论文交给卢瑟福过目,并得到了热切的鼓励。只是,卢瑟福有没有想到,这个青年将在怎样的一个程度上,改变人们对世界的终极看法呢? 是的,是的,时机已到。伟大的三部曲即将问世,而真正属于量子的时代,也终于到来。 ********* 饭后闲话:诺贝尔奖得主的幼儿园 卢瑟福本人是一位伟大的物理学家,这是无需置疑的。但他同时更是一位伟大的物理导师,他以敏锐的眼光去发现人们的天才,又以伟大的人格去关怀他们,把他们的潜力挖掘出来。在卢瑟福身边的那些助手和学生们,后来绝大多数都出落得非常出色,其中更包括了为数众多的科学大师们。 我们熟悉的尼尔斯.玻尔,20世纪最伟大的物理学家之一,1922年诺贝尔物理奖得主,量子论的奠基人和象征。在曼彻斯特跟随过卢瑟福。 保罗.狄拉克(Paul Dirac),量子论的创始人之一,同样伟大的科学家,1933年诺贝尔物理奖得主。他的主要成就都是在剑桥卡文迪许实验室做出的(那时卢瑟福接替了.汤姆逊成为这个实验室的主任)。狄拉克获奖的时候才31岁,他对卢瑟福说他不想领这个奖,因为他讨厌在公众中的名声。卢瑟福劝道,如果不领奖的话,那么这个名声可就更响了。 中子的发现者,詹姆斯.查德威克(James Chadwick)在曼彻斯特花了两年时间在卢瑟福的实验室里。他于1935年获得诺贝尔物理奖。 布莱克特(Patrick M. S. Blackett)在一次大战后辞去了海军上尉的职务,进入剑桥跟随卢瑟福学习物理。他后来改进了威尔逊云室,并在宇宙线和核物理方面作出了巨大的贡献,为此获得了1948年的诺贝尔物理奖。 1932年,沃尔顿( Walton)和考克劳夫特(John Cockcroft)在卢瑟福的卡文迪许实验室里建造了强大的加速器,并以此来研究原子核的内部结构。这两位卢瑟福的弟子在1951年分享了诺贝尔物理奖金。 这个名单可以继续开下去,一直到长得令人无法忍受为止:英国人索迪(Frederick Soddy),1921年诺贝尔化学奖。瑞典人赫维西(Georg von Hevesy),1943年诺贝尔化学奖。德国人哈恩(Otto Hahn),1944年诺贝尔化学奖。英国人鲍威尔(Cecil Frank Powell),1950年诺贝尔物理奖。美国人贝特(Hans Bethe),1967年诺贝尔物理奖。苏联人卡皮查(),1978年诺贝尔化学奖。 除去一些稍微疏远一点的case,卢瑟福一生至少培养了10位诺贝尔奖得主(还不算他自己本人)。当然,在他的学生中还有一些没有得到诺奖,但同样出色的名字,比如汉斯.盖革(Hans Geiger,他后来以发明了盖革计数器而著名)、亨利.莫斯里(Henry Mosley,一个被誉为有着无限天才的年轻人,可惜死在了一战的战场上)、恩内斯特.马斯登(Ernest Marsden,他和盖革一起做了α粒子散射实验,后来被封为爵士)……等等,等等。 卢瑟福的实验室被后人称为“诺贝尔奖得主的幼儿园”。他的头像出现在新西兰货币的最大面值——100元上面,作为国家对他最崇高的敬意和纪念。 五 1912年8月1日,玻尔和玛格丽特在离哥本哈根不远的一个小镇上结婚,随后他们前往英国展开蜜月。当然,有一个人是万万不能忘记拜访的,那就是玻尔家最好的朋友之一,卢瑟福教授。 虽然是在蜜月期,原子和量子的图景仍然没有从玻尔的脑海中消失。他和卢瑟福就此再一次认真地交换了看法,并加深了自己的信念。回到丹麦后,他便以百分之二百的热情投入到这一工作中去。揭开原子内部的奥秘,这一梦想具有太大的诱惑力,令玻尔完全无法抗拒。 为了能使大家跟得上我们史话的步伐,我们还是再次描述一下当时玻尔面临的处境。卢瑟福的实验展示了一个全新的原子面貌:有一个致密的核心处在原子的中央,而电子则绕着这个中心运行,像是围绕着太阳的行星。然而,这个模型面临着严重的理论困难,因为经典电磁理论预言,这样的体系将会无可避免地释放出辐射能量,并最终导致体系的崩溃。换句话说,卢瑟福的原子是不可能稳定存在超过1秒钟的。 玻尔面临着选择,要么放弃卢瑟福模型,要么放弃麦克斯韦和他的伟大理论。玻尔勇气十足地选择了放弃后者。他以一种深刻的洞察力预见到,在原子这样小的层次上,经典理论将不再成立,新的革命性思想必须被引入,这个思想就是普朗克的量子以及他的h常数。 应当说这是一个相当困难的任务。如何推翻麦氏理论还在其次,关键是新理论要能够完美地解释原子的一切行为。玻尔在哥本哈根埋头苦干的那个年头,门捷列夫的元素周期律已经被发现了很久,化学键理论也已经被牢固地建立。种种迹象都表明在原子内部,有一种潜在的规律支配着它们的行为,并形成某种特定的模式。原子世界像一座蕴藏了无穷财宝的金字塔,但如何找到进入其内部的通道,却是一个让人挠头不已的难题。 然而,像当年的贝尔佐尼一样,玻尔也有着一个探险家所具备的最宝贵的素质:洞察力和直觉,这使得他能够抓住那个不起眼,但却是唯一的,稍纵即逝的线索,从而打开那扇通往全新世界的大门。1913年初,年轻的丹麦人汉森(Hans Marius Hansen)请教玻尔,在他那量子化的原子模型里如何解释原子的光谱线问题。对于这个问题,玻尔之前并没有太多地考虑过,原子光谱对他来说是陌生和复杂的,成千条谱线和种种奇怪的效应在他看来太杂乱无章,似乎不能从中得出什么有用的信息。然而汉森告诉玻尔,这里面其实是有规律的,比如巴尔末公式就是。他敦促玻尔关心一下巴尔末的工作。 突然间,就像伊翁(Ion)发现了藏在箱子里的绘着戈耳工的麻布,一切都豁然开朗。山重水复疑无路,柳暗花明又一村。在谁也没有想到的地方,量子得到了决定性的突破。1954年,玻尔回忆道:当我一看见巴尔末的公式,一切就都清楚不过了。 要从头回顾光谱学的发展,又得从伟大的本生和基尔霍夫说起,而那势必又是一篇规模宏大的文字。鉴于篇幅,我们只需要简单地了解一下这方面的背景知识,因为本史话原来也没有打算把方方面面都事无巨细地描述完全。概括来说,当时的人们已经知道,任何元素在被加热时都会释放出含有特定波长的光线,比如我们从中学的焰色实验中知道,钠盐放射出明亮的黄光,钾盐则呈紫色,锂是红色,铜是绿色……等等。将这些光线通过分光镜投射到屏幕上,便得到光谱线。各种元素在光谱里一览无余:钠总是表现为一对黄线,锂产生一条明亮的红线和一条较暗的橙线,钾则是一条紫线。总而言之,任何元素都产生特定的唯一谱线。 但是,这些谱线呈现什么规律以及为什么会有这些规律,却是一个大难题。拿氢原子的谱线来说吧,这是最简单的原子谱线了。它就呈现为一组线段,每一条线都代表了一个特定的波长。比如在可见光区间内,氢原子的光谱线依次为:656,484,434,410,397,388,383,380……纳米。这些数据无疑不是杂乱无章的,1885年,瑞士的一位数学教师巴尔末(Johann Balmer)发现了其中的规律,并总结了一个公式来表示这些波长之间的关系,这就是著名的巴尔末公式。将它的原始形式稍微变换一下,用波长的倒数来表示,则显得更加简单明了: ν=R(1/2^2 - 1/n^2) 其中的R是一个常数,称为里德伯(Rydberg)常数,n是大于2的正整数(3,4,5……等等)。 在很长一段时间里,这是一个十分有用的经验公式。但没有人可以说明,这个公式背后的意义是什么,以及如何从基本理论将它推导出来。但是在玻尔眼里,这无疑是一个晴天霹雳,它像一个火花,瞬间点燃了玻尔的灵感,所有的疑惑在那一刻变得顺理成章了,玻尔知道,隐藏在原子里的秘密,终于向他嫣然展开笑颜。 我们来看一下巴耳末公式,这里面用到了一个变量n,那是大于2的任何正整数。n可以等于3,可以等于4,但不能等于,这无疑是一种量子化的表述。玻尔深呼了一口气,他的大脑在急速地运转,原子只能放射出波长符合某种量子规律的辐射,这说明了什么呢?我们回忆一下从普朗克引出的那个经典量子公式:E = hν。频率(波长)是能量的量度,原子只释放特定波长的辐射,说明在原子内部,它只能以特定的量吸收或发射能量。而原子怎么会吸收或者释放能量的呢?这在当时已经有了一定的认识,比如斯塔克()就提出,光谱的谱线是由电子在不同势能的位置之间移动而放射出来的,英国人尼科尔森()也有着类似的想法。玻尔对这些工作无疑都是了解的。 一个大胆的想法在玻尔的脑中浮现出来:原子内部只能释放特定量的能量,说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来。 我们可以这样来打比方。如果你在中学里好好地听讲过物理课,你应该知道势能的转化。一个体重100公斤的人从1米高的台阶上跳下来,他/她会获得1000焦耳的能量,当然,这些能量会转化为落下时的动能。但如果情况是这样的,我们通过某种方法得知,一个体重100公斤的人跳下了若干级高度相同的台阶后,总共释放出了1000焦耳的能量,那么我们关于每一级台阶的高度可以说些什么呢? 明显而直接的计算就是,这个人总共下落了1米,这就为我们台阶的高度加上了一个严格的限制。如果在平时,我们会承认,一个台阶可以有任意的高度,完全看建造者的兴趣而已。但如果加上了我们的这个条件,每一级台阶的高度就不再是任意的了。我们可以假设,总共只有一级台阶,那么它的高度就是1米。或者这个人总共跳了两级台阶,那么每级台阶的高度是米。如果跳了3次,那么每级就是1/3米。如果你是间谍片的爱好者,那么大概你会推测每级台阶高1/39米。但是无论如何,我们不可能得到这样的结论,即每级台阶高米。道理是明显的:高米的台阶不符合我们的观测(总共释放了1000焦耳能量)。如果只有一级这样的台阶,那么它带来的能量就不够,如果有两级,那么总高度就达到了米,导致释放的能量超过了观测值。如果要符合我们的观测,那么必须假定总共有一又三分之二级台阶,而这无疑是荒谬的,因为小孩子都知道,台阶只能有整数级。 在这里,台阶数“必须”是整数,就是我们的量子化条件。这个条件就限制了每级台阶的高度只能是1米,或者1/2米,而不能是这其间的任何一个数字。 原子和电子的故事在道理上基本和这个差不多。我们还记得,在卢瑟福模型里,电子像行星一样绕着原子核打转。当电子离核最近的时候,它的能量最低,可以看成是在“平地”上的状态。但是,一旦电子获得了特定的能量,它就获得了动力,向上“攀登”一个或几个台阶,到达一个新的轨道。当然,如果没有了能量的补充,它又将从那个高处的轨道上掉落下来,一直回到“平地”状态为止,同时把当初的能量再次以辐射的形式释放出来。 关键是,我们现在知道,在这一过程中,电子只能释放或吸收特定的能量(由光谱的巴尔末公式给出),而不是连续不断的。玻尔做出了合理的推断:这说明电子所攀登的“台阶”,它们必须符合一定的高度条件,而不能像经典理论所假设的那样,是连续而任意的。连续性被破坏,量子化条件必须成为原子理论的主宰。 我们不得不再一次用到量子公式E = hν,还请各位多多包涵。史蒂芬.霍金在他那畅销书《时间简史》的Acknowledgements里面说,插入任何一个数学公式都会使作品的销量减半,所以他考虑再三,只用了一个公式E = mc2。我们的史话本是戏作,也不考虑那么多,但就算列出公式,也不强求各位看客理解其数学意义。唯有这个E = hν,笔者觉得还是有必要清楚它的含义,这对于整部史话的理解也是有好处的,从科学意义上来说,它也决不亚于爱因斯坦的那个E = mc2。所以还是不厌其烦地重复一下这个方程的描述:E代表能量,h是普朗克常数,ν是频率。 回到正题,玻尔现在清楚了,氢原子的光谱线代表了电子从一个特定的台阶跳跃到另外一个台阶所释放的能量。因为观测到的光谱线是量子化的,所以电子的“台阶”(或者轨道)必定也是量子化的,它不能连续而取任意值,而必须分成“底楼”,“一楼”,“二楼”等,在两层“楼”之间,是电子的禁区,它不可能出现在那里。正如一个人不能悬在两级台阶之间漂浮一样。如果现在电子在“三楼”,它的能量用W3表示,那么当这个电子突发奇想,决定跳到“一楼”(能量W1)的期间,它便释放出了W3-W1的能量。我们要求大家记住的那个公式再一次发挥作用,W3-W1 = hν。所以这一举动的直接结果就是,一条频率为ν的谱线出现在该原子的光谱上。 玻尔所有的这些思想,转化成理论推导和数学表达,并以三篇论文的形式最终发表。这三篇论文(或者也可以说,一篇大论文的三个部分),分别题名为《论原子和分子的构造》(On the Constitution of Atoms and Molecules),《单原子核体系》(Systems Containing Only a Single Nucleus)和《多原子核体系》(Systems Containing Several Nuclei),于1913年3月到9月陆续寄给了远在曼彻斯特的卢瑟福,并由后者推荐发表在《哲学杂志》(Philosophical Magazine)上。这就是在量子物理历史上划时代的文献,亦即伟大的“三部曲”。

火焰原子吸收毕业论文

其实俗一点,有点象分光光度计. 火焰部分就是吸收池,也要选波长,检测用的也是灯(可能会有氘灯、钨灯的区分), 想了解原理,先了解结构:光源系统——原子化系统——分光系统——检测系统 1、光源发出能被待测元素吸收的特定波长的辐射 2、被测物质在原子化系统被加热使其变成原子态(原子态可以吸收上面说的辐射) 3、分光系统筛选上面的特定波长的辐射 4、到检测器测出来未吸收前的辐射量减去剩余的就是最后的(专业点叫吸光度) 5、外标法 根据吸光度对比 结果出来了

楼主可以先在各在数据库上搜索一下,对自己需要的,把文献名称等相关信息发到文献求助版去。for more answers about analytics and testing or chemistry questions, you may go to antpedia dot com, good luck.楼主的题目也太大了..上知网万方维普找吧,有很多.

火焰:优点:1、稳定2、重现性好3、背景发射噪声低4、应用较广5、基体效应及记忆效应小缺点:1、原子化效率低(一般低于30%)2、灵敏度低3、液体进行石墨炉:优点:1、灵敏度高(检测限低)2、用量少样品利用率高3、可直接分析固体样品(不常用)和液体样品4、减少化学干扰5、原子化效率高6、设备复杂成本高但安全性能高缺点:1、试样组成不均匀性较大2、有强的背景吸收3、测定精密度不如火焰原子化法

转载:《分析测试百科网》我国火焰原子吸收光谱分析技术的发展摘 要:论述了我国火焰原子吸收光谱分析技术1963年以来的发展状况,引用参考文献163篇。关键词:火焰原子吸收光谱 发展 分析技术Development of flame atomic absorption spectrometry in ChinaDeng Bo(Department of Chemistry,Qinghua University,Beihing)Abstrac:The development of analytical techniques of flame atomic absorption spectrometry in China sice 1963 is reviwed with 163 references.▲1 引 言1955年澳大利亚的〔1〕以及荷兰的和〔2〕开创了火焰原子吸收光谱法,1959年前苏联学者Б.В.Львов〔3〕发展了石墨炉电热原子化法,为表彰和Б.В.Львов对发展原子吸收光谱分析技术的杰出贡献,1991年在挪威卑尔根召开的第27届国际光谱学大会和1997年在澳大利亚墨尔本召开的第30届国际光谱学大会(CSI)上分别授予他们第一届和第二届CSI奖。自1961年美国Perkin-Elmer公司推出了世界上首台原子吸收光谱商品仪器后,原子吸收光谱分析,作为测定痕量和超痕量元素的最有效方法之一,在世界范围内获得了十分广泛的应用。1963年黄本立〔4〕和张展霞〔5〕分别著文向国内同行介绍了原子吸收光谱法。1964年黄本立等〔6,7〕用火焰光度计改装了一台简易原子吸收光谱装置,并开展了早期的研究工作。1965年吴廷照等〔8〕组装成功了实验室型原子吸收光谱仪器。1970年我国第一台单光束火焰原子吸收分光光度计在北京科学仪器厂(北京瑞利仪器公司的前身)问世。接着马诒载等将石墨原子化器及其控制电源等研究成果应用于WFD-Y3型原子吸收分光光度计商品仪器上,获得了1978年全国科技大会奖。这些早期的研究工作对我国原子吸收光谱分析的发展起了先导作用。30年来,我国在原子吸收光谱仪器的设计、生产、基础理论研究、分析技术以及应用领域开拓等方面,都取得了令世人瞩目的进展。本文仅就30年来我国在火焰原子吸收光谱技术方面的进展做一简要的回顾。2 进样技术进样方法直接影响原子化效率,一种好的进样方法应能高效率、可重复地将有代表性的样品引入原子化器。气动雾化进样是火焰原子吸收光谱分析(FAAS)最广泛使用的进样方法,超声雾化是正在发展中的进样方法〔9,10〕。对于贵重和来源稀少的样品来说,气动或超声雾化进样的共同缺点是消耗试样量大。因此,微量进样技术受到了人们的重视。微量进样法是等〔11〕在1973年首先提出来的。其特点是用样量少,减少了高含盐量样品堵塞喷雾系统的现象。卢志昌等〔12〕研制了一种简便的微量进样器,不注样时,有机溶剂连续进入火焰,打开磨口塞注样时,有机溶剂自动停止进入火焰,既保持了火焰的稳定性,又提高了灵敏度。郭小伟等〔13〕设计了一种简便的双脉冲微量进样器,重现性达到。孙汉文等〔14〕使毛细管在一定长度处曲折,造成节流,采用节流脉冲进样测定了人发中的Mg、Cu、Fe、Mn、Ca、Zn等,方法简便,不需要专门的微量进样器。阎正等〔15,16〕使用微量注射器,以间断的小体积喷雾取代连续喷雾,测定了30例健康儿童耳血和全血中的锌和铜。尚素芬等〔17〕进样10μL同时测定了耳血中Cu、Zn、Ca、Mg、Fe等5种元素,方法快速。郝爱国等〔18〕测定了血浆和红细胞中的Cu、Fe和Zn。李绍南等〔19〕用微量注样直接测定了金基和银基合金硝酸消解液中的Cu和Mn。肖绪华〔20〕测定了铝合金中的Cu、Mg、Mn和Zn。近年来,流动注射技术的发展,使微量进样技术进入了一个更高的发展阶段。在载流速度恒定与注样前后保持一致的条件下,可以获得稳定可重复的信号。方肇伦等〔21-23〕在在线富集方面开展了系统的研究,取得了显著的成就,其出色的研究成果和高水平的专著〔24〕,受到了国内外同行专家的重视。张素纯等〔25〕用FI-AAS测定土壤和植物中的Cu、Zn、Fe、Mn、K、Na、Ca、Mg,测定速度最高可达514次/h,RSD为1%。侯贤灯等〔26〕用FIA-FAAS单标准连续稀释校正法,测定了水样中的镁,免除了标准系列的配制,提高了分析速度。魏继中等〔27〕在FIA-AAS中,用十二烷基硫酸钠乙醇溶剂作载流,比水溶剂载流增敏倍,测定了钢样中的铬,分析速度为100次/h。3 火焰原子化技术原子化方法直接影响测定的检出限、灵敏度和准确度。在火焰原子化技术方面,特别值得一提的是,翁永和等〔28〕提出了采用富氧空气-乙炔火焰,操作简便,耗气量小,火焰稳定,且不易回火;测定铝的特征浓度达到μg/mL,加入苯环上含有铝分析功能团的有机试剂,如铝试剂和铬天青S等对铝有增感效应,特征浓度可达到μg/mL。富氧空气-乙炔火焰,温度在2300~2950℃范围内可调,可用于高温元素测定,1997 年北京瑞利仪器公司在WFX-110/120型仪器上采用了这一技术。冯秀文等〔29〕设计了一种高灵敏的气-样分进双通道燃烧器,测定Zn、Cu、Co、Pb、Mg、Fe、Cd、K的灵敏度比常规气-样混进单通道燃烧器有较大提高。4 原子捕集技术原子捕集通过在火焰中浓集被测原子和延长自由原子在石英管测量光路中的停留时间,增大了管内原子密度,是提高火焰原子吸收光谱分析灵敏度的有效途径。黄淦泉等〔30-32〕采用贫焰捕集、富焰释放测定锌,特征浓度达到×10-5μg/mL/1%,用10mg/mL铝溶液喷涂石英管,灵敏度提高5倍,用此法成功地测定了高纯铝,血清和水中的锌、铅,人发、超纯铝和水中的镉。李银玉等〔33〕用此法测定银,灵敏度比常规法提高1090倍。刘立行等〔34〕通过在石英管壁表面喷涂铝盐和重铬酸钾溶液形成薄膜,使原子捕集效率分别提高了26和208倍。魏继中等〔35〕用原子捕集法测定铅,比常规法提高148倍。用X-衍射分析证实,PbO和SiO2结合为硅酸铅富集于石英管外壁,富集作用有一定的饱和性,喷入NH4HF2,可使铅的释放速度加快。张明英等〔36〕测定了蒜头、茶叶和大米中的硒,灵敏度提高4倍。郭明等〔37〕用双缝式原子捕获石英管-FAAS测定了火药烟晕中的微量锑和铅,灵敏度分别提高了和倍。钱沙华等〔38〕用石英缝管捕集技术FAAS测定了地表水、茶水和人发中的Pb、Cu和Cd等,灵敏度比常规FAAS分别高110、39和150倍。孙书菊等〔39〕用不锈钢缝管原子捕集法测定了血清中的Cu和Zn,灵敏度分别提高了3倍和2倍。赵进沛等〔40〕测定镉,灵敏度比常规火焰法提高了116倍,特征浓度达到×10-4μg/mL/1%。刘永铭等〔41〕考察了缝式原子捕集管的性能,比较了14个元素的测定灵敏度,各元素灵敏度均有提高,铋和铁提高倍,铅和镉提高倍,精密度亦有改善。其他富集技术与原子捕集技术相结合,可以使测定灵敏度进一步提高。刘志民等〔42〕将黄原酯棉富集与石英缝管技术结合起来,测定了环境水中的铅,灵敏度提高35倍,该法可用于野外作业。刘立行等〔43-45〕联合使用离子交换和原子捕集技术测定水中的镉和镍,离子交换富集倍数为40,原子捕集灵敏度提高近81倍。使用离子交换和喷涂铝盐的石英捕集管(管壁上形成Al2O3层)测定水中的铜,捕集效率提高192倍,总灵敏度提高7463倍。徐子刚等〔46〕在pH=9和pH=1条件下用APDC-MIBK分别萃取Sb(Ⅲ)和总锑,加入氯化铜反萃取之后,缝管捕集测定Sb(Ⅲ)和Sb(Ⅴ),灵敏度比常规火焰法提高倍,富集系数达到100。检出限为。熊远福等〔47,48〕用DDTC-CCl4和DDTC-CHCl3分别萃取Te(Ⅳ)和As(Ⅲ),结合缝管捕集技术成功地分析了Te(Ⅳ)和Te(Ⅵ)及As(Ⅲ)和As(Ⅴ)。燕庆元等〔49〕研究了Zeeman效应石英缝管捕集技术,采用外径4mm、内径2~、缝宽和缝长各为和 9mm的单缝微捕集管,测定了Ag、Au、Cd、Cu、Ga、Ni、Pb、Zn等,灵敏度比常规火焰原子吸收法高(Ga)到倍(Au),与非塞曼单缝微捕集法的文献值相比,Au、Cd、Zn的灵敏度均有提高,但其他几个元素的灵敏度低。用正交设计优化水冷石英管捕集条件,测定矿石中的金,检出限达到μg/mL,测定Ga,灵敏度提高倍。谢凤宏等〔50〕用电热T型开缝石英管捕集氢化物,火焰原子吸收法测定铜镍渣中的锗,检出限为(S/N=2)。杨海燕等〔51〕用X-衍射分析详细研究了缝管原子捕集和释放机理,Ag和Bi以金属形式捕集,直接从熔融物蒸发原子化;镉、铜、铟、镍、锑、锌以CdO、Cu2O、In2O3、NiO、Sb6O11、ZnO形式捕集,钴和镓以Co2SiO4和GaSiO4形式捕集,铅以Pb12O19或Pb2SiO4形式捕集,捕集物在乙炔流量突然增大的瞬间在高温气体撞击下溅射原子化,或在高温升温的瞬间化学键断裂原子化。使用5%乙醇或丙酮及Al2O3涂层管,能使大多数元素的灵敏度提高。使用Al2O3涂层管检出限和精密度得到改善。元素在捕集管延迟时间tA与捕集物溶点(锌除外)或元素熔点之间(铟除外)具有良好的线性关系。作者认为,高效捕集和瞬间释放是缝管原子捕集法获得高灵敏度的关键。解离能大于的氧化物,难于在捕集温度下解离,因此不适合用缝管原子捕集法测定。5 增感效应和增感技术在火焰原子吸收光谱分析中,应用表面活性剂增感受到普遍重视。范健等〔52〕在十二烷基硫酸钠(SDS)存在下测定三氧化钼和金属铬中的锰,灵敏度提高50%,特征浓度分别达到μg/mL/1%和μg/mL/1%。张展霞等〔53〕详细探讨了表面活性剂对Cr(Ⅵ)的增感效应,认为表面张力降低导致气溶胶粒子细化虽然也是增感的一个原因,但不是主要原因,除此之外,荷正电的胶束与Cr2O2-7生成离子对化合物,引起气溶胶粒子的再分配(类似于金属离子的富集作用)和向外扩散速度减慢,火焰中心待测元素浓度增大,以及离子对化合物利于铬的原子化均产生增感效应。因此,增感效应是多种因素综合作用的结果。汪福意等〔54,55〕研究了表面活性剂对锰的增感效应,发现只有阴离子表面活性剂对Mn2+有增感效应,在阴离子表面活性剂的cmc之前,表面活性剂的单体分子与Mn2+电荷引力将Mn2+吸引富集到气溶胶的表面产生增感,在cmc之后,表面活性剂胶团与Mn2+形成胶团化合物,保护Mn2+,使之不能形成难解离或难熔化合物,在表面活性剂燃烧产生的强还原性气氛中直接还原,提高了原子化效率而增感。阳离子和中性表面活性剂没有增感效应,增感效应与表面活性剂电荷类型有关。表面活性剂的效应表现在三方面:再分配富集作用;提供强还原性气氛;改变试液的提升效率。张悟铭等〔56〕认为,在雾化过程中,表面活性剂分子的疏水端积聚在空气-水界面,分析离子由于电荷作用,靠近表面活性剂分子的亲水端,当气溶胶细化时,表面活性剂在分析离子周围形成微环境,进入火焰时,产生还原性气氛,提高了原子化效率,产生增感效应。魏继中等〔57〕研究了42种有机试剂对测定镱的增感效应,发现三苯甲烷类、变色酸偶氮类、羟基羧酸类和氨羧络合剂均具有增感效应,增感十几倍到二十几倍,铬天菁S增感最高达到倍。增感的原因是形成络合物,改变了化合物的热分解方式,此外有机试剂燃烧提高了火焰温度,增强了火焰的还原性。周志瑞等〔58〕考察了几种螯合剂对FAAS测定铜的增感效应,用离子交换洗脱实验证实,增感效应是由于形成了螯合物,其电子对配位键比一般的化学键热稳定性低,铜螯合物比铜氧化物释放铜原子的解离能小,提高了原子化效率。周执明等〔59,60〕研究了有机络合剂对Yb的增感效应。有机络合剂的作用在于改变了金属元素在溶液中存在状态,从而改变了热分解和原子化过程,这种增感效应称为络合增感。根据双络合剂增感效应的不同,可分为三类:竞争增感效应(增感大小只取决于其中一种络合剂,而与另一种络合剂存在与否无关);加合增感效应(增感效应等于两络合剂单独存在时增感效应之和);协同增感效应(总的增感效应大于两络合剂单独存在时增感效应之和)。此外,有机络合剂燃烧能提高火焰温度,有利于原子化,增强火焰的还原性,保护自由原子不再被氧化。吴德怀等〔61〕考察了37种有机络合剂对FAAS测定Yb的增感效应,增感最显著的是酚类和芳香羟基羧酸类化合物,抑制分析信号最严重的是胺类和多元醇。在络合剂的结构因素中,键合原子的种类起着重要的作用,但不是唯一的因素,增感效应实际上是各种因素共同影响的结果。吴德怀等〔62〕研究了20多种芳香族对Yb吸光度的影响,有机试剂的磺酸基增感的原因在于增加了有机试剂及其相应络合物的溶解度,以及磺酸基中的氧为键合原子的有机试剂与Yb形成络合物提供了条件,改变了原子化历程,有利于原子化。孙汉文等〔63〕以氯化铜为增感剂,导数火焰原子吸收法测定了铜中的微量铅,检出限为μg/mL,比常规法检出限μg/mL低得多,灵敏度提高17倍。6 氢化物发生技术自从1969年〔64〕提出氢化物-火焰原子吸收光谱法以来,该方法获得了广泛的应用。宣维康等〔65〕用磷酸钠为增敏剂,提高了氢化物发生法测定锗的灵敏度,并比较了5种原子化方法,电热石英管原子化灵敏度最低,氩氢火焰测定锗获得的灵敏度最高,为μg/mL/1%。韩恒斌等〔66〕用自行设计的带预原子化的电热石英炉,氢化物发生法测定了环境标准参考物质中的砷和硒。张佩瑜等〔67〕研究了多种氧化物体系对氢化物发生的影响,K3〔Fe(CN)6〕和亚硝基R盐并非强氧化剂,难于将Pb2+氧化为Pb4+,而K2Cr2O7是强氧化剂,能将Pb2+氧化为Pb4+,然而在HCl-K3〔Fe(CN)6〕和HCl-亚硝基R盐体系中测定铅的灵敏度最高。作者推测在酸性条件下,K3〔Fe(CN)6〕和亚硝基R盐使Pb2+氧化为Pb4+后形成了络合物,有利于形成PbH4,并用这种方法测定了地球化学样品中的铅。王秀等〔68〕用HGAAS-FIA测定了大米、土壤、污水和五味子酒中的砷,检出限为×10-11g。张佩瑜〔69〕用氢化物发生石英炉AAS测定了地球化学样品中的As、Sb和Bi,特征浓度分别为、和μg/mL/1%。张素纯等〔70〕用气体扩散流动注射冷原子吸收光谱法测定土壤和粮食中的痕量汞,改进了Andrade的方法,让Hg0渗透过衬有100目尼龙网的聚四氟乙烯微孔气体扩散膜,进入吸收池进行测定,检出限由μg/L降低到μg/L,分析速度由110样次/h提高到200样次/h。陈恒武〔71〕发现,半胱氨酸对砷有三种作用:还原作用、提高信号强度和减少干扰。在低酸度和室温下,半胱氨酸将As(V)还原为As(Ⅲ)的速度很慢,可以在As(Ⅴ)存在下测定As(Ⅲ),如果预先将As(Ⅴ)还原为As(Ⅲ),可以提高信号强度。过去一般认为氢化物发生法只适用于周期表第四、五和六族的副族元素Ge、Sn、Pb、As、Sb、Bi、Se、Te等8个元素。1982年等〔72〕发现用硼氢化物还原可以测定In,但灵敏度低,仅为μg。严杜等〔73〕作了改进,将灵敏度提高到μg,并将硼氢化物还原法扩展到用于测定T1,灵敏度达到μg。他们还发现,加入适量的元素Te,可以加速铊氢化物的生成。郭小伟等〔74〕用硼氢化钾(钠)在水溶液中还原镉,生成挥发性化合物,用冷蒸气原子吸收光谱法测定了Cd,特征质量为16pg,检出限达到20pg/ml(3s),并将该法成功地用于环境和生物标准物质的分析。丘德仁等〔75〕提出了氢化物发生的碱性模式,证实所有氢化物发生元素在碱性介质中均可发生氢化物。因为铁分族、铂分族和铜分族元素不能以可溶性盐类存在于碱性介质中,因此不会干扰在碱性介质中氢化物发生元素的测定,这是一个突出的优点。Te(Ⅳ)在酸性和碱性介质中,与硼氢化物反应都能形成氢化物,而Te(Ⅵ)在酸性介质中,不与硼氢化物反应生成氢化物,郭小伟等〔76〕发现在碱性介质中Te(Ⅵ)能形成氢化物,利用这一差异,使用断续流动氢化物发生器建立了氢化物发生法分析Te(Ⅵ)和Te(Ⅳ)形态的方法。陈恒武等〔77〕试验了22种螯合剂对产生铅氢化物的影响,PAN-S(1-(2吡啶基偶氮)-2-萘酚)是能提高分析信号最有效的螯合剂之一,其原因可能是螯合的Pb(Ⅱ)比自由的Pb(Ⅱ)更易还原,测定铅的特征浓度为,并发现PbH4能直接从螯合的Pb(Ⅱ)产生,而不是从亚稳态的Pb(Ⅳ)产生,这为探索高效发生氢化物体系开辟了一条新途径。金泽祥等〔78〕将MIBK萃取锑的APDC络合物转入氢化物发生器,加入乙醇溶液,在非水介质中发生氢化物,测定锑的检出限为×10-10g。刘永铭等〔79〕设计了一套氯化物发生器,优化了测定Cd、Pb、Ni的条件,测定灵敏度分别达到了7×10-10、7×10-9、2×10-9g/1%。利用氯化物发生法可以测定的元素达数十种。郭小伟等〔80〕提出了断续流动氢化物发生法,这是一种介于连续流动和流动注射之间的技术,其主要特点是采样量灵活可变,能使用单一标样和不同的采样时间建立校正曲线,反应条件稳定,效率高,此外它还具有设备简单,节省试剂和样品,便于实现自动化等优点。陈甫华等〔81〕建立了氢化物发生-冷阱捕集-色谱分离-原子吸收测定天然水中四种主要砷形态的方法,检出限分别为:As(Ⅴ) ,As(Ⅲ) ,MMA ,DMA 。用此法分析了天津港海水、海河水等,结果表明,表层河水、湖水和海水中以As(Ⅴ)为主,地下水中As(Ⅲ)含量增高,有机砷含量降低。对于氢化物原子化机理,文献中有两种观点:热解原子化和自由基碰撞原子化。赵一兵等〔82,83〕考察了砷、硒、锡和铅氢化物原子化的机理,认为在石英炉内是一个表面过程,而在石墨炉内,原子化主要是热解作用。在不同的实验条件下,氢化物的形成和原子化是不同的,经常是以某种作用为主,两种作用同时存在。有时存在更复杂的表面和气相反应。郑衍生等〔84〕研究了石英管中AsH3和SeH2的原子化过程,证实AsH3的原子化是H基碰撞所致,而SeH2的原子化是以热分解为主。7 联用技术元素不同形态的生物效应差别很大,决定了它们在生态环境中和生物体内的行为和归宿。色谱-原子吸收光谱联用综合了色谱高分离效率和原子吸收光谱检测专一性的优点,是分析元素化学形态的有效手段。1966年等〔85〕提出用气相色谱-火焰原子吸收光谱联用技术分析汽油中的烷基铅,此后我国学者在联用技术方面进行了许多研究工作,发展了多种联用技术。蒋守规和国外同行〔86,87〕用超低温捕获阱采集大气样品,首次在生态环境中追踪到了硒的甲基化合物,从而发现在生态环境中存在硒的甲基化过程。蒋守规〔88〕还测定了大气中的烷基硒,使用在氩气流中加氢的方法克服了远紫外区基体和杂质的严重干扰,检出限为。作者还研究了二甲基二硒的热稳定性。白文敏等〔89-93〕建立了多种联用系统测定大气和汽油中的烷基铅,分析了烷基铅,(CH3)4Pb、(C2H5)4Pb、(CH3)2(C2H5)2Pb、(CH3)3(C2H5)Pb、(C2H5)3(CH3)Pb五种化学形态,得到了很好的分离,最小检出量达到30pg,测定大蒜油中(CH3)2Se和(CH3)2Se2,最小检出量分别为和。吴奇藩等〔94〕将平流泵压力提高,实现了离子色谱柱与火焰原子吸收光谱仪的联用,利用双重网离子交换树脂,pH=~,以硫酸铵为洗脱液,实现了Cr(Ⅲ)与Cr(Ⅳ)的分离和电镀液中Cr(Ⅲ)与Cr(Ⅳ)的同时测定。何滨等〔95〕用石英毛细管色谱柱-不锈钢原子化器联用技术,测定了水貂皮和毛发中的有机汞,氯化甲基汞、氯化乙基汞和氯化苯基汞的检出限分别为、和。8 分离富集技术化学分离和富集虽然烦琐,有时也容易引起污染和损失,但却是减少和消除干扰,提高测定灵敏度的有效方法。在化学分析中最常采用的分离富集方法,如沉淀、萃取和离子交换等,同样能有效地用于火焰原子吸收。陈友�等〔96〕用N-正辛基苯胺-间二甲苯萃取,有机相直接进样,测定了矿物中的痕量金、钯和铂,检出限分别为、和。沈振天等〔97〕在六次甲基四胺存在下,pH=,用1-苯基-3-甲基-4-苯甲酰基吡唑啉酮(PMBP)-MIBK同时萃取Ca和Mg,用含钠和镧的盐酸溶液反萃取后,测定了Ca和Mg。候永根等〔98〕通过控制pH和加入KSCN配位剂,生成Cr(Ⅵ)-TBP-Cl-和Cr(Ⅲ)-TBP-SCN-溶剂化合物,分别进行萃取和测定Cr(Ⅵ)和Cr(Ⅲ),检出限为μg/mL。张勇〔99〕等用邻菲罗啉为金属螯合剂,高氯酸钠为配体,用1, 2-二氯乙烷萃取富集,测定了动物骨骼中的微量Cu、Zn、Cd和Fe。陈中兰〔100〕用2-巯基苯并咪唑螯合纤维素同时富集水样中的铅、镉、铜、镍,用1mol/L HNO3洗脱,FAAS测定,富集倍数达到50,富集和洗脱速度快。林大泉等〔101〕使水通过D301大孔阴离子交换树脂,吸附Cr(Ⅵ),分离Cr(Ⅲ),再用还原性反洗液将柱上的Cr(Ⅵ)还原为Cr(Ⅲ)溶出,加以富集,用FAAS分别测定Cr(Ⅲ)和Cr(Ⅵ)。洪正隆等〔102〕用国产001号强酸性阳离子交换树脂和201×7号强碱性阴离子交换树脂分别交换吸附水中的Cr(Ⅲ)和Cr(Ⅵ),过滤后,在滤液中加入硫酸钠,分析Cr(Ⅲ)和Cr(Ⅵ),灵敏度达到μg/mL/1%,方法简便。朋友可以到行业内专业的网站进行交流学习!分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

原子吸收在食品检测中的应用论文

原子吸收光谱法在环境常规监测中的应用 西南科技大学分析测试中心 张伟〔摘要〕原子吸收光谱分析法(AAS)在环境分析化学中广泛使用。本文简述了近年来AAS在环境常规监测中的应用进展。〔关键词〕原子吸收光谱法环境监测应用原子吸收光谱法(AAS),因其灵敏度高、干扰小、精密度高、准确性好及分析速度快、测试范围广等诸多优点,在环境分析化学中广泛使用。20世纪80年代末,国家环保局在《环境监测技术规范》中的地表水和废水、大气和废气、生物测定部分,就将原子吸收光谱法列为《环境监测技术规范》中有关金属元素的标准分析方法。1.水环境监测适时地对地表水质量现状及发展趋势进行评价,对生产和生活设施所排废水进行监视性监测是常规环境监测的两项基本任务。原子吸收光谱分析主要应用于水环境中重金属的监测。龙先鹏[1]采用火焰原子吸收光谱法直接测定水中微量铜、铅、锌、镉元素的含量,在范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于;最低检出限分别为、、、,相对标准偏差分别为、、、;该方法对标准样品的测试结果与国家标准方法基本一致,相对偏差均不大于。张美月等[2]以二乙胺基二硫代甲酸钠为配位剂、Triton X-114为表面活性剂,采用浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉,检测限为μg/L,富集倍数为55,加标回收率为98%-102%;分离富集方法简单、安全、快捷,结果令人满意。陆九韶等[3]利用Al3+与Cu(Ⅱ)-EDTA发生定量交换反应,通过测定水相残余铜,从而间接测定水和废水中的铝。在线富集是原子吸收光谱检测分析发展的热点之一。高甲友[4]用含黄原脂棉的微型柱对试样中的Cd2+在线富集、盐酸洗脱后,采用火焰原子吸收光谱法在线测定水中的镉离子。富集50 mL溶液时此方法灵敏度可提高68倍。陈明丽等[5]用溴化十六烷基三甲胺(HDTMAB)改性的天然斜发沸石微填充柱,建立了顺序注射在线分离富集电热原子吸收法测定水中Cr(Ⅵ)及铬形态分布的方法;测定铬的检出限达到μg/L,精密度。用本法测定标准水样GBW08608中的铬,所得结果与标准值相符。冷家峰等[6]对螯合树脂富集-火焰原子吸收光谱法测定天然水体中痕量铜和锌的在线富集条件、干扰因素等进行研究,在线富集倍数达到两个数量级,在灵敏度与石墨炉原子吸收光谱法相当情况下,提高了测定准确度。痕量金属元素化学形态的分析比单纯元素的分析要复杂、困难得多,除要求测定方法灵敏度高、选择性好外,还要求分离效能高。联用技术,特别是色谱-原子吸收光谱联用,综合了色谱的高分离效率与原子吸收光谱检测的专一性的优点,是解决这一问题的有效手段。刘华琳等[7]自行设计了一种紫外在线消解氢化物发生接口,并将高效液相色谱-紫外在线消解-氢化物发生原子吸收联用仪器(HPLC-UV-HGAAS)用于砷的形态分析,以砷甜菜碱、砷胆碱、亚砷酸盐(As(Ⅲ))及砷酸盐(As(V))等进行了分离测定,实现了将分离后不能直接用于氢化物发生的大分子,通过紫外“在线”消解成小分子砷化合物的目的。李勋等[8]采用电化学氢化物发生与原子吸收光谱联用技术有效地实现了无机砷的形态分析。在电流为 A和1A条件下,As(III)和As(V)在0-40μg/L浓度范围内均呈良好的线性关系。As(III)和As(V)检出限分别为μg/L和μg/L;该方法成功应用于食用鲜牛奶中无机砷的形态分析。2.土壤、底泥和固体物分析景丽洁等[9]采用微波消解法预处理待测土壤,火焰原子吸收分光光度法测定污染土壤消解液中的锌、铜、铅、镉、铬5种重金属。土壤中锌、铜、铅、镉、铬的相对标准偏差分别为、、、和。方法简便、灵敏、准确,适用于污染土壤中重金属含量的测定。卢卫[10]采用悬浮液进样平台石墨炉原子吸收法测定土壤的痕量汞,精密度为,检出限达到×10-12g。宫青宇[11]采用直接固体进样、添加基体改进剂技术测定土壤中重金属铅含量,避免了土壤中复杂基体的影响,实现了土壤样品中铅的快速分析。王北洪等[12]采用了“硝酸-氢氟酸-过氧化氢”三酸消化体系和密封高压消解罐法对土壤样品进行消化,以原子吸收光谱法测定其中的铜、锌、铅、铬、镉。结果表明:采用该法测定土壤中的重金属时,测定结果准确可靠,实验条件易于控制,能够满足环境监测分析的要求,可以作为一种可行的土壤重金属元素分析方法。程滢等[13]把河流底泥经过氢氟酸和高氯酸消化,用火焰原子吸收法测定其中的铜,获得较好的结果。王畅等[14]利用流动注射系统中串联的阴、阳离子交换微型柱分离、NH4NO3+抗坏血酸和H2SO4两种洗脱液同时逆向洗脱,实现了对底泥可利用态铬中Cr(Ⅵ)和Cr(Ⅲ)同时在线分离和原子吸收光谱法测定。在交换时间2 min,洗脱50 s,Cr(Ⅵ)和Cr(Ⅲ)回收率分别为和。此法对实际样品中不同价态铬进行测定,铬回收率可达95%。Cr(Ⅵ)和Cr(Ⅲ)的检出限和最大相对标准偏差分别为μg/L、和μg/L、。王霞等[15]用冷原子吸收光谱法测定固体废物浸出液中的汞含量,检出限为μg/L,回收率在91%-101%之间。方法简便快速,线性范围宽。3.大气环境质量监测邹晓春等[16]以微孔滤膜采样、钯或镍作改进剂,用石墨炉原子吸收光谱法测定居住区大气中硒,检出限为,线性范围为0-50ng/mL,回收率;其中砷对测定硒有一定干扰,其它金属元素对测定无干扰。邹晓春在此基础上又对居住区大气中的镍进行了测定,检出限为 ng/mL,线性范围为0-35 ng/mL,回收率为,其他金属元素对测定镍未见明显干扰[17]。冯新斌等[18]对原有的光谱仪器进行简单改装,建立了两次金汞齐-冷原子吸收光谱法测定大气中的微量气态总汞的方法,检出限达到;100μL饱和汞蒸气连续测定结果表明其相对标准偏差<。在汞量范围内标准工作曲线线性关系良好。并且运用该法,对贵州省万山汞矿、丹寨汞矿、清镇汞污染农田、省农科院和中国科学院地球化学研究所等地大气气态总汞进行了测定。综上所述,原子吸收光谱法在环境监测分析中应用取得了不少成果,但在应用范围上还有待扩大,如在污染物的化学形态研究上尚待深入等。总之,随着环境监测事业的发展,原子吸收光谱法因具有其它方法所不能比拟的优势,必将在环境化学分析中展现广阔的应用前景。参考文献〔1〕龙先鹏.火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉〔J〕.化学分析计量,2008,17(1):53-54.〔2〕张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉〔J〕.河北大学学报(自然科学版),2009,29(4):407-411.〔3〕陆九韶,覃东立,孙大江等.间接火焰原子吸收光谱法测定水和废水中铝〔J〕.环境保护科学,2008,34(3):111-113.〔4〕高甲友.流动注射在线富集-火焰原子吸收光谱法测定水中痕量镉〔J〕.冶金分析,2007,27(1):61-63.〔5〕陈明丽,邹爱美,仲崇慧等.改性沸石填充柱在线分离富集电热原子吸收法测定水中铬(Ⅵ)及铬的形态分布〔J〕.分析科学学报,2007,23(6):627-630.〔6〕冷家峰,高焰,张怀成等.在线鳌合树脂富集火焰原子吸收光谱法测定天然水体中铜和锌〔J〕.理化检验-化学分册,2005,41(8):556-560.〔7〕刘华琳,赵蕊,韦超等.高效液相色谱-在线消解-氢化物发生原子吸收光谱联用技术〔J〕.分析化学,2005,33(11):1522-1526.〔8〕李勋,戚琦,薛珺等.电化学氢化物发生与原子吸收光谱联用对鲜牛奶中无机砷的形态分析〔J〕.食品研究与开发,2007,28(11):121-123.〔9〕景丽洁,马甲.火焰原子吸收分光光度法测定污染土壤中5种重金属〔J〕.中国土壤与肥料,2009,(1):74-77.〔10〕卢卫.悬浮液进样平台石墨炉原子吸收法测定土壤中痕量汞〔J〕.化学工程与装备,2009,(3):100-101.〔11〕宫青宇.直接固体进样-石墨炉原子吸收法测定土壤中铅含量〔J〕.内蒙古科技与经济,2009,6:69.〔12〕王北洪,马智宏,付伟利.密封高压消解罐消解-原子吸收光谱法测定土壤重金属〔J〕.农业工程学报,2008,24():255-259.〔13〕程滢,张莘民.火焰原子吸收分光光度法测定鱼内脏及河流底泥中的铜〔J〕.环境监测管理与技术,2003,15(2):28-30.〔14〕王畅,谢文兵,刘杰等.流动注射分离-原子吸收光谱法测定底泥中生物可利用态Cr(Ⅵ)和Cr(Ⅲ〔)J〕.分析化学,2007,35(3):451-454.〔15〕王霞,张祥志,陈素兰等.冷原子吸收光谱法测定固体废物浸出液中汞〔J〕.光谱实验室,2008,25(5):981-984.〔16〕邹晓春,李红华,徐小作.居住区大气中硒的原子吸收光谱法研究〔J〕.现代预防医学,2004,31(6):879-880.〔17〕邹晓春.石墨炉原子吸收光谱法测定居住区大气中镍〔J〕.职业与健康,2000,16(6):36-37.〔18〕冯新斌,鸿业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定大气中的微量气态总汞〔J〕.中国环境监测,1997,13(3):9-11.

原子吸收在食品中主要用来测定金属元素,比如铅、镉、铬、锌等。

原子吸收分光光度计的发展史和概述:一、原子吸收分光光度计(Atomic Absorption Spectrometry , AAS)是在20世纪50年代中期出现并逐渐发展起来的一种新型仪器分析方法,是基于蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素含量的一种方法。 早在1802年,在研究太阳连续光谱时,就发现太阳连续光谱中出现暗线。1817年在研究太阳连续光谱时,再次发现这些暗线,由于当时尚不了解产生这些暗线的原因,于是就将这些暗线称为Fraunhofer线。1859年, 与在研究碱金属和碱土金属的火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,回引起钠光的吸收,并根据钠发射线和暗线在光谱中位置相同这一事实,断定太阳连续光谱的暗线,这是太阳外围的钠原子对太阳光谱的钠辐射吸收的结果。 但是,原子吸收光谱作为一种实用的分析方法在20世纪50年代中期开始的,在1953年,由澳大利亚的瓦尔西(A. Walsh)博士发明锐性光源(空心阴极灯),1954年全球第一台原子吸收在澳大利亚由Walsh的指导下诞生,在1955年瓦尔西(A. Walsh)博士的著名论文“原子吸收光谱在化学中的应用”奠定了原子吸收光谱法的基础。20世纪50年代末期一些公司先后推出原子吸收光谱商品仪器,发展了Walsh的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。 原子吸收光谱由许多优点:检出限低,火焰原子吸收可达级,石墨炉原子吸收法可达到10-10-10-14g;准确度高,火焰原子吸收的相对误差<1%,石墨炉原子吸收法的约为3%-5%;选择性好,大多数情况下共存元素对被测元素不产生干扰;分析速度快,应用范围广,能够测定的元素多达70多个。二、 原子吸收光谱分析的特点1.选择性强由于原子吸收谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小选择性强,而且光谱干扰容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。由于选择性强,使得分析准确快速。2.灵敏度高原子吸收光谱分析是目前最灵敏的方法 之一。火焰原子吸收的相对灵敏度为ug/ ml - ng / ml;无火焰原子吸收的绝对灵敏度在10-10-10-14之间。如果采取预富集,可进一步提高分析灵敏度。由于该方法的灵敏度高,使分析手续简化可直接测定,则缩短分析周期加快测量进程 。由于灵敏度高,则需样量少。微量进样热核的引入,可使火乐趣的需样量少至20-300ul。无火焰原子吸收分析的需样量仅5 – 100ul。固体直接进样石墨炉原子吸收法仅需 - 30mg,这对于试样来源困难的分析是极为有利的。3.分析范围广4.精密度好火焰原子吸收法的精密度较好。在日常的微量分析中,精密度为1-3%。如果仪器性能好,采用精密测量精密度可达x%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。若采用自动进样技术,则可改善测定的精密度。缺点:原子吸收光谱分析的缺点在于每测验一种元素就要使用一种元素灯而使得操作麻烦。对于某些基体复杂的样品分析,尚存某些干扰问题需要解决。如何进一步提高灵敏度和降低干扰,仍是当前和今后原子吸收分析工作者研究的重要课题。三、 原子吸收光谱分析的应用原子吸收光谱分析现巳广泛用于各个分析领域,主要有四个方面:理论研究;元素分析;有机物分析;金属化学形态分析1. 在理论研究中的应用:原子吸收可作为物理和物理化学的一种实验手段,对物质的一些基本性能进行测定和研究。电热原子化器容易做到控制蒸发过程和原子化过程,所以用它测定一些基本参数有很多优点。用电热原子化器所测定的一些有元素离开机体的活化能、气态原子扩散系数、解离能、振子强度、光谱线轮廓的变宽、溶解度、蒸气压等。2. 在元素分析中应用原子吸收光谱分析,由于其灵敏度高、干扰少、分析复合快速,现巳广泛地应用于工业、农业、生化、地质、冶金、食品、环保等各个领域,目前原子吸收巳成为金属元素分析的最有力工具之一,而且在许多领域巳作为标准分析方法。原子吸收光谱分析的特点决定了它在地质和冶金分析中的重要地位,它不仅取代了许多一般的湿法化学分析,而且还与X- 射线荧光分析,甚至与中子活化分析有着同等的地位。目前原子吸收法巳用来测定地质样品中40多种元素,并且大部分能够达到足够的灵敏度和很好的精密度。钢铁、合金和高纯金属中多种痕量元素的分析现在也多用原子吸收法。原子吸收在食品分析中越来越广泛。食品和饮料中的20多种元素巳有满意的原子吸收分析方法。生化和临床样品中必需元素和有害元素的分析现巳采用原子吸收法。有关石油产品、陶瓷、农业样品、药物和涂料中金属元素的原子吸收分析的文献报道近些年来越来越多。水体和大气等环境样品的微量金属元素分析巳成为原子吸收分析的重要领域之一。利用间接原子吸收法尚可测定某些非金属元素。3. 在有机物分析中的应用利用间接法可以测定多种有机物。8- 羟基喹啉(Cu)、醇类(Cr)、醛类(Ag)、酯类(Fe)、酚类(Fe)、联乙酰(Ni)、酞酸(Cu)、脂肪胺(co)、氨基酸(Cu)、维生素C(Ni)、氨茴酸(Co)、雷米封(Cu)、甲酸奎宁(Zn)、有机酸酐(Fe)、苯甲基青霉素(Cu)、葡萄糖(Ca)、环氧化物水解酶(PbO、含卤素的有机化合物(Ag)等多种有机物,均通过与相应的金属元素之间的化学计量反应而间接测定。4. 在金属化学形态分析中的应用通过气相色谱和液体色谱分离然后以原子吸收光谱加以测定,可以分析同种金属元素的不同有机化合物。例如汽油中5种烷基铅,大气中的5种烷基铅、烷基硒、烷基胂、烷基锡,水体中的烷基胂、烷基铅、烷基揭、烷基汞、有机铬,生物中的烷基铅、烷基汞、有机锌、有机铜等多种金属有机化合物,均可通过不同类型的光谱原子吸收联用方式加以鉴别和测定。

近年来,食品安全问题得到了全社会的关注,食品生物技术得到了更多的重视,下面是我整理的关于食品生物技术论文,希望你能从中得到感悟!

食品分析中的生物技术应用分析

摘要:随着人们对食品安全问题重视程度的与日俱增,食品检测领域的快速检测的技术越来越受到重视,而在该技术领域,生物检测技术作为一种新兴技术,其应用范围越来越广泛。现在,生物技术的发展更是突飞猛进,这必将促成生物检测方法的不断补充和完善。

关键词:食品分析 生物技术 应用分析

食品分析是食物营养评价和食品加工过程中质量保证体系的一个重要组成部分,它始终贯穿于食物资源的开发、食品加工与销售的全过程。随着人们生活水平的提高,特别是我国加入WTO后,我国食品走向世界的关税壁垒将逐渐被技术壁垒所取代,一方面,食品的功能性和安全性将越来越受到重视,对其分析精度和检测限的要求越来越高;另一方面,作为食品生产企业和政府监管机构,对食品品质的控制则要求能实现现场无损检测和快速检测,而对分析精度和检测限的要求则相对较低。因此,食品分析技术正向着省时、省力、廉价、减少溶剂、减少环境污染、微型化和自动化方向发展。

1 生物检测技术种类

生物酶技术。基于生物酶的食品安全生物检测技术具有较强的特异性,该技术是非常常用的生物检测技术,能够从代建样本中成功检测出残留农药和毒性微生物的准确含量。不仅如此,该技术还可跟其他技术相结合产生先进的检测技术,如,将该技术跟免检测技术,由于其优异的特性,已在食品安全领域检测的各个领域广泛使用。酶联免疫分析(ELISA)检测技术的最大优点就是准确度和敏感度都非常高,实验结果表明,采用该检测技术对蔬菜和瓜果类食品样本中的农药残留的检测限为0,对奶制品中各种除草剂残留的检测限为0。所以,世界粮农组织(FAO)已经向许多国家的食品安全检测部门大力推广该技术,美国的食品安全部门也将基于酶联免疫分析的食品安全检测技术作为检测农药残留的主要技术。

PCR技术。PCR(Polymemse Chain Reaction)的中文意思是聚合酶链式反应,是一种在体外快速扩增特定基因或DNA序列的方法。该技术最初的应用领域为基因克隆领域和转基因检测领域。但是,由于该技术具有众多优点,比如具有微量性、精确性等,使得该技术成功应用于其他领域。特别是随着对食品中微生物性质的了解,该技术在主要食品安全检测中显现出了广阔的应用前景。该技术最早应用于生物检测领域是在1992年,而应用于对食品安全的检测则要更晚,也就是最近几年才出现的,直到2002年国内才见相关技术应用干食品检测的文献报道。通过建立基于聚合酶链式反应技术的检测体系,对日常生活中人们常用的肉类、奶类和水产类食品中容易感染的致病性小肠耶尔森氏菌进行了检测试验,取得了较好的检测结果。研究人员进行不断改进,希望通过将基于PCR技术的生物检测技术跟其他方法相结合,找到一种全新的更加有效地食品检测方法。

生物芯片。随着全球经济一体化的迅速发展,世界主要经济大国对食品安全的重视,对进出口食品的卫生检疫已经成为各主要经济体的贸易壁垒。目前,世界上许多国家和地区,也都相继开展了基于生物芯片技术的食品检测技术的研制和开发工作。基于生物芯片的检测技术采用光导原位等方法,能够将检测样本中的生物大分子有序地固化于支持物表面,进而构成密集的分子排列,然后与已经过标记的待测样品中的靶分子进行杂交,最后通过对杂交信号的强度进行分析,能够非常快速、高效、准确地对待测样品中的中靶分子数量进行判断,因此可说,基于生物芯片的食品检测技术是现有检验、检疫领域中速度最快、适用范围最广的高新技术。所以,基于该技术的生物检测技术可以对食品的安全状态有一个科学、快速的了解。

生物传感器。基于生物传感器的检测技术是通过具有较高选择性的生物材料对各种有毒分子进行识别,当待检测样品中的毒性物质分子与识别材料结合后,把所产生的复合物通过信号转换器转变为光电信号后输出,进而得到对检测样品的检验结果。该项检测技术具有快速、准确、可靠的的优点,能够最大限度的满足食品安全检测领域的各种要求。因此,该项检测技术已经成功地应用于农产品的药物残留检测和病原菌检测等众多领域。当然,基于该项技术的食品检测体系还存在一定的缺陷,如该技术的使用寿命和检测稳定性还不尽如人意,使得该技术的商业化进程受到一定的制约。

2 具体应用实例的分析

食品中的药物残留检测。对于食品中残留的药物成分对人体的危害问题,已经引起了人们的广泛重视,因而对农产品中残留药物成分的分析技术也得到了快速发展。现在,在农产品中成功应用的药物残留检测技术是生物酶技术和生物传感器技术。用生物技术对药物残留进行检测的方式出现的更早,早在1989年,人们就开始用电流式生物传感器来测定检测样本中的有机磷杀虫剂,其中使用的就是人造酶,该技术可以对样本中的硝基酚和二乙基酚进行有效检测,且时间较短。

有害微生物的检测。食品中的有害微生物对人类健康的危害性也不容忽视,所以,采用快速有效地检测方法是限制有害微生物扩大传播的有效途径。生物检测技术在领域已经取得了大量的研究成果。我国一些学者应用酶联免疫分析方法对奶制品样本中的沙门氏菌进行了成功检测,证明了该检测方法的敏感性和特异性。

转基因食品检测。随着转基因食品的出现和普及,以及各种转基因产品对人类健康和环境影响的不确定性,能对各类转墓因产品进行有效检测技术也随之出现,现在,应用于该检测领域的生物检测技术主要包括:酸检测方法、酶活性检测方法以及蛋白质检测方法等。

样本成分和品质的检测。最早应用于食品样本成分和品质检测的生物检测方法,是基于生物传感器的食品检测技术,只不过开始的检测种类较少,如最早的生物传感器检测技术主要是葡萄糖传感器,只针对食品样本中的含糖量进行检测。随着生物技术的发展,用于对样本成分和品质检测的技术也越来越多。

3 结束语

随着生物技术的发展,人们已逐步认识到生物技术在食品分析中的重要作用。生物技术检测方法以其自身独特的优势在食品分析中显示出巨大的应用潜能,其应用几乎涉及到食品分析的各个方面,包括食品的品质评价、食品的质量监督、生产过程的质量监控及食品科学研究等,尤其是它能够对许多过去难于检测的成分进行分析。目前由于各种条件的限制,生物技术在食品分析中的应用还不普及,随着科学技术的不断发展,在不久的将来,生物技术在食品分析中将占有越来越重要的地位。

参考文献

[1] 孙秀兰.生物芯片技术与食品分析[J].生物技术通报,:22-25

[2] 刘荣.生物传感器在食品分析检测中的应用[J].乳业科学与技术,2009

点击下页还有更多>>>关于食品生物技术论文

  • 索引序列
  • 原子吸收分析论文范文
  • 原子吸收分析法在中药研究论文
  • 关于原子吸收论文题目
  • 火焰原子吸收毕业论文
  • 原子吸收在食品检测中的应用论文
  • 返回顶部