首页 > 学术期刊知识库 > 半导体论文课题研究

半导体论文课题研究

发布时间:

半导体论文课题研究

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

这个你算问对人了,我是在橡树论文网找到王老师的,他每天都会为我指导。

半导体物理迅速发展及随晶体管发明使科家早50代设想发明半导体激光器60代早期组竞相进行面研究理论析面莫斯科列别捷夫物理研究所尼古拉·巴索夫工作杰19627月召固体器件研究际议美麻省理工院林肯实验室两名者克耶斯(Keyes)奎斯特(Quist)报告砷化镓材料光发射现象引起通用电气研究实验室工程师哈尔(Hall)极兴趣家火车写关数据家哈尔立即制定研制半导体激光器计划并与其研究员道经数周奋斗计划获功像晶体二极管半导体激光器材料p-n结特性敞弗搬煌植号邦铜鲍扩基础且外观亦与前者类似半导体激光器称二极管激光器或激光二极管早期激光二极管实际限制例能77K低温微秒脉冲工作8间才由贝尔实验室列宁格勒(现圣彼堡)约飞(Ioffe)物理研究所制造能室温工作连续器件足够靠半导体激光器则直70代期才现半导体激光器体积非米粒工作波依赖于激光材料般~微米由于种应用需要更短波器件发展据报导Ⅱ~Ⅳ价元素化合物ZnSe工作物质激光器低温已微米输波~微米室温连续器件输功率已达10毫瓦迄今尚未实现商品化光纤通信半导体激光预见重要应用领域面世界范围远距离海底光纤通信另面则各种区网者包括高速计算机网、航空电系统、卫通讯网、高清晰度闭路电视网等目前言激光唱机类器件市场其应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示及各种医疗应用等晶体管利用种称半导体材料特殊性能电流由运电承载普通金属铜电导体电没紧密原核相连容易电荷吸引其物体例橡胶绝缘体 --电良导体--电能自由运半导体名字暗示处于两者间通情况象绝缘体某种条件导电

半导体结课论文

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

七天完成,全部原创,保证通过。

“计算机组成原理”课程论文摘要:《计算机组成原理》是计算机科学与技术专业的一门核心的专业必修课程。本门课程采用从计算机的整体知识框架入手,逐步展开说明。详细讲述了计算机组成原理,计算机是一台由许多独立部件构成的机器,它的功能可由其各个独立部件的功能来描述,而每个独立部件又可以由其内部更精细的结构和功能来描述。根据计算机组成原理的结构,本门课程把课程内容分为四大模块:(1)计算机的概论;(2)计算机系统的硬件结构;(3)中央处理器;(4)控制单元;四个模块一次递进,逐步进入计算机的内核部分。计算机系统由“硬件”和“软件”两大部分组成。计算机的软件由可以分为“系统软件”和“应用软件”两种。系统软件用来管理计算机;应用软件用来实现各项用户功能。计算机软件实现这些功能的基础是硬件的支持。在一定程度上硬件的功能和软件的功能可以相互替代,硬件的功能是速度快,但实现起来难度大,电路复杂,可移植性查;软件更加灵活,但是运行的素的并硬件慢很多。一、本书主要知识点第一篇 概论1、第一章 计算机系统概论(1)主要知识点本章重点突出计算机组成的概貌和框架,由此简洁明了地了解计算机内部的工作过程实际上是指令流和数据流在此框架内由I/O→存储器→CPU→存储器→I/O 的过程,是通过逐条取指令、分析指令和执行指令来运行程序的。同时要了解到当今计算机尽管发展到千变万化的程度,但其最根本的组成原理还是基于冯诺依曼的结构。(2)内容掌握情况本章介绍了计算机硬件的基本组成、计算机体系结构、以及计算机系统层次结构。通过本章的学习对于计算机的宏观结构有了一个总体的概念,明白了计算机是由运算器、存储器、控制器、输入设备和输出设备五大部件组成计算机系统,并规定了这五部分的基本功能。通过没个基本部件实现相关的功能,从而形成一个完整的计算机框架结构。图1 计算机的结构冯诺依曼计算机的特点是本章学习的重点内容,事先将程序(包含指令和数据)存入主存储器中,计算机在运行程序时就能自动地、连续地从存储器中依次取出指令且执行。这是计算机能高速自动运行的基础。计算机的工作体现为执行程序,计算机功能。如果程序现在是顺序执行的,每取出一条指令后PC内容加l,指示下一条指令该从何处取得.如果程序将转移到某处,就将转移的目标地址送入PC,以便按新地址读取后继指令。所以,PC就像一个指针,一直指示着程序的执行进程,也就是指示控制流的形成。虽然程序与数据都采用二进制代码,仍可按照PC的内容作为地址读取指令,再按照指令给出的操作数地址去读取数据。 通过第一章的学习,从宏观上引入了计算机的组成原理和工作原理,本书就是围绕计算机的这种结构,展开说明计算的组成以及如何工作的。2、第二章 计算机的发展及应用第二章作为自学内容,讲述了计算机的发展史,通过历史来展示现在计算机所处的发展阶段。从1946 年ENIAC 诞生到二十世纪五、六十年代,由于构成计算机的元器件发展变化(由电子管→晶体管→集成电路),使计算机的性能有了很大提高,每隔6 至7 年,计算机便更新换代一次,运算速度约提高一个数量级。而到了二十世纪七十年代,自从Intel 公司生产了第一个微处理器芯片后,随着集成度成倍的提高,以每隔18 个月表1 计算机的发展历程芯片上的晶体管数就翻一番的速度使计算机得到极为广泛的应用,以至整个社会从制造时代进入到信息时代,出现了知识大爆炸。第二篇 计算机系统的硬件结构3、第三章 系统总线图2 总线实现结构示意图总线是计算机中一个非常重要的部件,在计算机中,各个部件之间是相对独立工作的。但是各个部件之间的联系又是非常紧密的,彼此之间需要大量的数据交换。为此引出了总线这个部件。计算机系统的五大部件之间互联方式有两种,一种是各个部件之间使用单独的连线,称为分散链接;另一种是将各部件连到一组公共信息传输线上,称为总线连接。本章重点研究总线的连接方式。总线是连接多个部件的信息传输线,是各个部件共享的传输介质。总线按照传输方式可以分为并行传输总线和串行传输总线;总线按照连接部件的不同可以分为片内总线、系统总线和通信总线。总线的特性和性能指标,根据总线的不同分别研究了总线的特性、性能标准和总线的行业标准。总线的用处不同则有单总线结构和多总线结构。由于总线是多个部件同时使用,因此存在总线的判优逻辑。4、第四章 存储器存储器是计算机系统中的记忆设备,用来存放程序和数据。随着计算机发展,存储器在系统中的地步越来越重要。图3 存储器的分类存储器在计算机中可实现如下功能:输入设备输入程序和数据,存储器写操作;CPU读取指令,存储器读操作;CPU执行指令时需读取操作数,存储器读操作;CPU将处理的结果存入存储器 ,存储器写操作;输出设备输出结果, 存储器读操作;对于一个存储器来说需要明白以下概念:存储元:存储器的最小组成单位,用以存储1位二进制代码。存储单元:是CPU访问存储器基本单位,由若干个具有相同操作属性的存储元组成。单元地址:在存储器中用以标识存储单元的唯一编号,CPU通过该编号访问相应的存储单元。字存储单元:存放一个字的存储单元,相应的单元地址叫字地址。字节存储单元:存放一个字节的存储单元,相应的单元地址叫字节地址按字寻址计算机:可编址的最小单位是字存储单元的计算机。按字节寻址计算机:可编址的最小单位是字节的计算机。存储体:存储单元的集合,是存放二进制信息的地方。本章运用以前学过的电路知识和本章所学的半导体存储芯片,设计存储器和CPU 的连接电路。注意要合理选用芯片,以及CPU 和存储器芯片之间的地址线、数据线和控制线的连接。5、第五章 输入输出系统输入输出系统是计算机中一个非常重要的逻辑部件。随着计算机系统的不断发展,应用范围不断扩大,I/O设备的数量和种类也越来越多,它们与主机的联络方式及信息的交换方式也不相同。由于输入输出设备工作速度与计算机主机的工作速度极不匹配.为此,既要考虑到输入输出设备工作的准确可靠,又要充分挖掘主机的工作效率。本章重点分析I/O设备与主机交换信息的三种控制方式(程序查询、中断和DMA)及其相应的接口功能和组成,对记住几种常用的I/O设备也进行简单介绍。(1)程序中断方式 中断:计算机在执行正常程序的过程中,出现某些异常事件或某种请求时,处理器暂停执行当前程序,转而执行更紧急的程序,并在执行结束后,自动恢复执行原先程序的过程。 特点: 硬件结构较查询方式复杂些、服务开销时间较大、主程序与设备并行运行,CPU效率较高,具有实时响应的能力。 (2)中断处理过程。中断处理过程为:中断请求→中断源识别判优→中断响应→中断处理→中断返回中断源: 引起中断事件的来源。判优: 找出优先级最高的中断源给予响应。中断源识别:采用的方法有: 软件查询法;硬件排队法; 矢量中断。CPU响应中断的条件:至少有一个中断源请求中断; CPU允许中断;当前指令执行完。中断响应的工作--由硬件自动完成:关中断;保留断点信息;转到中断处理程序入口。中断处理--由软件(中断处理程序)完成。 (3)DMA传送方式特点:解决与CPU共享主存的矛盾;停止CPU访问内存CPU效率低;周期挪用,适用于外设读取周期大于内存存取周期;DMA与CPU交替访问。 适用于CPU工作周期比内存存取周期长得多的情况。第三篇 中央处理器6、第六章 计算机的运算方法计算机的应用领域极其广泛,但不论其应用在什么地方,信息在机器内部的形式都是一致的,即为0和1组成的各种编码。本章主要介绍参与运算的各类数据,以及它们在计算机中的算术运算方法。计算机中有符号数、无符号数、定点数和浮点数的各种表示,以及移位、定点补码加减运算、定点原码一位乘和两位乘及补码Booth 算法、定点原码和补码加减交替除法,以及浮点补码加减运算。本章的知识难度较大,首先研究数据的表示方法,有无符号数和有符号数。数的表示存在顶点表示和浮点表示。本章的难点在于计算机中数据的运算,定点运算、浮点四则运算。本章还研究了计算机的计算部件——算术逻辑单元。图4 ALU电路7、第七章 指令系统本章主要介绍及其指令系统的分类、常见的寻址方式、指令格式以及设计指令系统时应考虑的问题。了解机器的指令系统决定了一台计算机的功能,而一旦计算机的指令系统确定以后,计算机的硬件必须给予支持。指令系统主要体现在它的操作类型、数据类型、地址格式和寻址方法等方面。要求掌握不同的寻址方式对操作数寻址范围以及对编程的影响,掌握不同的寻址方式所要求的硬件和信息的加工过程。用计算机解题时,一般都要编制程序,程序既可用高级语言编写,亦可用机器语言编写;但计算机只能够识别和执行用机器语言编写的程序;各种高级语言编写的应用程序,最终都要翻译成机器语言来执行。机器语言是由一系列的指令(语句)组成的;指令的格式就是机器语言的语法;每条指令规定机器完成一定的功能。一台计算机的所有的指令集合称为该机的指令系统或指令集。它是程序工作者编制程序的基本依据,也是进行计算机逻辑设计的基本依据。本章中提出了对于机器指令的格式要求以及操作数和操作类型。通过本章的学习认识了指令的寻址方式,并初步了解RISC技术的产生和发展。本章的难点在于指令的寻址方式、操作数寻址方式;形成指令地址的方式,称为 指令寻址方式 。有顺序寻址和跳跃寻址两种,由指令计数器来跟踪。形成操作数地址的方式,称为 数据寻址方式 。操作数可放在专用寄存器、通用寄存器、内存和指令中。数据寻址方式有隐含寻址、立即寻址、直接寻址、间接寻址、寄存器寻址、寄存器间接寻址、相对寻址、基址寻址、变址寻址、块寻址、段寻址等多种。 8、第八章 CPU的结构和功能通过本章的学习CPU的功能和基本组成, CPU的基本部分由 运算器、cache 和 控制器 三大部分组成。 CPU需具有四方面的基本功能: 指令控制 、操作控制 、 时间控制 、数据加工。 数据通路 是许多寄存器之间传送信息的通路。图5 CPU的内部结构指令的周期和指令的流水式本章研究的又一个重点内容。CPU从存储器取出一条指令并执行这条指令的时间和称为指令周期。由于各种指令的操作功能不同,各种指令的指令周期是不尽相同的。划分指令周期,是设计操作控制器的重要依据 。第四篇 控制单元9、第九章 控制单元的设计根据指令周期的4个阶段,控制单元为完成不同指令所发出的各种操作命令控制计算机的所有部件有次序地完成相应的操作,以达到执行程序的目的。计算机的功能就是执行程序。在执行程序的过程中,控制单元要发出各种微操作命令,而且不同的指令对应不同的命令。完成不同指令的过程中,有些操作时相同或相似的,如取指令、取操作数地址以及中断周期。10、第十章 控制单元的设计本章介绍控制单元的两种设计方法,要求初步掌握控制单元的两种设计方法,从而进一步理解组合逻辑控制器和微程序控制器在设计思想、硬件组成及其工作原理方面的不同。结合时序系统的概念,学会按不同指令要求,写出其相应的微操作命令及节拍安排。操作控制器设计方法硬布线控制器:组合逻辑型,采用组合逻辑技术实现;微程序控制器 存储逻辑型,以微程序解释执行机器指令,采用存储逻辑技术实现;门阵列控制器 组合逻辑与存储逻辑结合型,采用可编程逻辑器件实现。微命令是指控制部件通过控制线向执行部件发出的各种控制命令,是构成控制信号序列的最小单位。微操作是执行部件接受微命令后所进行的操作,是计算机硬件结构中最基本的操作。微周期是从控存中读取一条微指令并执行相应的一步操作所需的时间。微指令是由每个微周期的操作所需的控制命令构成一条微指令。微指令包含了若干微命令信息。微程序即一系列微指令的有序集合,可以控制实现一条机器指令。二、学习体会“计算机组成原理”是本学期的一门重点课程,通过本学期的学习发现该课程的学习难度较大,知识点很多,而且各个知识点之间的联系并不多。因此对于该课程的学习显得十分吃力。通过一个学期的学习使我逐渐理解计算机系统的层次结构。本门课程主要是学习计算机的组成结构,例如计算机是由哪些部件组成的,各个部件之间存在什么样的关系,这些关系是如何联系的,以及这些部件内部是如何工作的。在指令系统中体现了机器的属性,但指令的实现,即如何取指令、分析指令、取操作数、运算、送结果等,这些都是计算机组成原理所研究的范围。该课程向我们展示了一台计算机从宏观上是如何工作的,同时又对计算机的组成部件分开进行演示。我们从大一开始学习了程序设计课程(C语言和C++程序程序设计语言),通过这两门的课的学习,使我们初步了解了软件的工作方式,但是对于计算机在机器层面上的功过模式感到很陌生,之前学习的程序设计课程是基于高级程序设计语言,更加接近自然语言,而计算机只能处理有0和1组成的二进制代码。高级程序所描绘的语言如何通过计算机硬件转换成为计算机能够识别的二进制代买。由二进制代码组成的指令在机器中是如何运行的。本课程在“数字逻辑”的基础之上展开对计算机的描述。本门课程的学习所要把握的一个重点关键词是“数据通路”,计算机处理的始终是数字信号,计算机中的所有功能都是通过数字所表示的信息来是实现的。在计算机中,数据是如何从外部进入计算中的,这就引入了输入输出系统(I/O),I/O系统将外界的物理信号或者模拟信号转换成计算机能够识别的数字信号,通过总线系统输入计算机中,并将计算机处理后的数字信号转换成相应的模拟信号在某些外设中输出。计算机需要处理大量数据,因此需要在计算机中设立相应的存储设备用来存储信号。计算机中的存储设备分为主存和外村,它们之间可以通过总线相互交换数据。CPU是计算机汇总的核心部件,CPU包含运算器和控制器两大部分,根据冯诺依曼结构,计算机可自动完成取指令和执行指令的过程,控制器就是完成此项工作的,它负责协调并控制计算机各部件执行程序的指令序列,其基本功能是取指令、分析指令和执行指令。由于计算机中存在着五大部件,并通过这些部件的协调配合工作,使计算机能够完成各种各样的功能。

这个你算问对人了,我是在橡树论文网找到王老师的,他每天都会为我指导。

导体与半导体的论文研究

超导体与半导体的相似之处如下:

当某些条件满足时,可以充当导体。

超导体与半导体的区别如下:

一丶物理性质

1.半导体的电阻比超导体的电阻大。

2.超导体是在一定条件下电阻为0的材料。半导体是一种导体和绝缘体在室温下导电的材料。

二、关于使用

3.半导体需要在室温下使用,超导体一般需要在超低温下使用。

4.不同的功能在实际应用中。

半导体已经使用了很长时间,但是超导体仍然处于发展阶段。

超导体和半导体的作用是:

半导体:电子元件,芯片,晶体管

超导体:远距离传输高压、全超导托卡马克聚变发电机

扩展资料:

超导体的三个基本特性:

1.完全导电性:完全导电性又称零电阻效应,是指温度下降到一定温度以下,电阻突然消失。

2.完全反磁性:完全反磁性也被称为梅斯纳效应。“抗磁性”是指当磁场强度低于临界值时,磁力线不能通过超导体的现象。

完全反磁性的原因是超导体的表面产生一种无损的抗磁超导电流,这种电流产生的磁场抵消了超导体内部的磁场。

3.通量化:量化通量,也称为约瑟夫逊效应,指的是现象,当两层超导体之间的绝缘层薄原子大小,电子对产生隧道电流通过隔热层,也就是说,超导电流可以superconductor-insulator-superconductor结构生成。

参考资料来源:百度百科-半导体

参考资料来源:百度百科-超导体

自己的话导体,一般指金属,其在常温下的金属晶体结构与晶体硅等半导体是大不相同的,虽然名义上金属在非化合态的时候电子轨道最外层也有1-4个电子在围绕原子核高速旋转,看起来是受原子核严密控制的,但实际上金属晶体的结构却十分松散,金属原子之间可以滑动,这就是为什么金属有或多或少的延展性,而电子们的活动就更为自由,当有外电压的作用时,他们就会发生定向移动,形成电流.半导体晶体的内部结构相比之下就牢固得多,特别是体现在原子核对其外层电子的作用力较强,当电子离开原子核的时候,原子核对电子原来的作用力就在原先电子存在处形成了"力量真空",就是我们所说的空穴.而金属的力量相比之下小得多,当失去电子之后就不能认为出现了"力量真空”。所以,只有在描述半导体导电原理是才引入“空穴”这个概念(清华资源)

顾名思义,其区别在于导电能力上:半导体是导电能力在所有物质中处于中等水平的,如硅;导体是导电能力很强的,如金属;超导体就是导电能力比金属还强的,需要在温度极低的情况下才能获得。半导体因为导电能力居中,可以通过其他方法随意的调整其导电能力,所以广泛应用在电子领域,身边的一切电器、手机、电脑等等,都有无数大小半导体芯片组成。

超导体与半导体的相同点为:

在达到特定条件的时候都能作为导体。

超导体与半导体的不同点有:

一、物理性质上

1、半导体的电阻大于超导体的电阻。

2、超导体是在特定条件下电阻为0的材料,半导体是常温下导电性能介于导体与绝缘体之间的材料。

二、使用上

3、半导体需要在常温条件下使用,超导体一般需要在超低温条件下使用。

4、在实际运用中作用不同。

5、半导体已经投入使用很长时间,但超导体仍在研发阶段。

超导体和半导体的作用分别是:

半导体:电子元件,芯片,晶体管

超导体:远距离传输高压电,全超导托卡马克核聚变发生器

扩展资料

超导体的三个基本特性:

1、完全电导性:完全导电性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。

2、完全抗磁性:完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。

完全抗磁性的原因是,超导体表面能够产生一个无损耗的抗磁超导电流,这一电流产生的磁场,抵消了超导体内部的磁场。

3、通量量子化:通量量子化又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体—绝缘体—超导体)结构可以产生超导电流。

参考资料来源:百度百科-半导体

参考资料来源:百度百科-超导体

最新半导体研究论文

研究硅和锗的电子结构。研究硅和锗的电子结构:可以揭示半导体材料的性质,为硅和锗的应用提供理论指导,研究硅和锗的局域密度泛函理论:通过对硅和锗的局域密度泛函理论的研究,可以提出更加准确的性质模型。硅和锗是一种半导体材料,具有重要的应用价值,第一性原理计算是研究半导体材料性质的基础理论,因此,硅和锗的第一性原理论文具有重要的研究价值。

第一作者:Pin-Chun Shen, Cong Su, Yuxuan Lin, Ang-Sheng Chou

通讯作者:Pin-Chun Shen, Lain-Jong Li,Jing Kong

通讯单位: 麻省理工学院(MIT),台湾积体电路制造公司(TSMC)

先进的超越硅电子技术既需要通道材料,也需要发现超低电阻接触。原子薄的二维半导体具有实现高性能电子器件的巨大潜力。但是,到目前为止,由于金属引起的间隙态(MIGS),金属-半导体界面处的能垒(从根本上导致高接触电阻和较差的电流传输能力)限制了二维半导体晶体管。最近, 麻省理工学院(MIT)Pin-Chun Shen和Jing Kong,台湾积体电路制造公司(TSMC)Lain-Jong Li 等人 在国际知名期刊 “Nature” 发表题为 “Ultralow contact resistance between semimetal and monolayer semiconductors” 的研究论文。他们报道了半金属铋与半导体单层过渡金属硫化合物(TMDs)之间的欧姆接触,其中MIGS被充分抑制,TMD中的简并态与铋接触形成。通过这种方法,他们在单层MoS2上实现了零肖特基势垒高度,接触电阻为123欧姆微米,通态电流密度为1135微安/微米。就他们所知,这两个值分别是尚未记录的最低和最高值。他们还证明了可以在包括MoS2、WS2和WSe2在内的各种单层半导体上形成出色的欧姆接触。他们报道的接触电阻是对二维半导体的实质性改进,并接近量子极限。这项技术揭示了与最新的三维半导体相媲美的高性能单层晶体管的潜力,从而可以进一步缩小器件尺寸并扩展摩尔定律。

图1:半金属-半导体接触的间隙态饱和的概念

原文链接:

半导体的研究与进展论文

AAU3D打印很高兴为您解答本科的时候接触过一段时间微生物燃料电池,给一点个人建议,仅供参考,可能很多表述不够专业,请见谅关键词:半导体、微生物、光催化意思大概是微生物燃料电池中,将光催化与微生物催化耦合在一起,促使微生物光电系统产生电子转移并产氢。针对微生物燃料电池处理废水产电的优点,以及光催化技术在制氢过程中效率低和需要添加牺牲剂的缺点,提出一种新的低成本、无污染的微生物光电化学系统产电制氢技术,阴极光生电子与阳极生物氧化产生的电子在还原制氢中的协同作用机制。

返回英国房价高

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

  • 索引序列
  • 半导体论文课题研究
  • 半导体结课论文
  • 导体与半导体的论文研究
  • 最新半导体研究论文
  • 半导体的研究与进展论文
  • 返回顶部