首页 > 学术期刊知识库 > 依托咪酯合成制备研究论文

依托咪酯合成制备研究论文

发布时间:

依托咪酯合成制备研究论文

1、将大豆油、卵磷脂投入到容器中加热、搅拌均匀制成油相,再将依托咪酯加入到油相中制成混合液。2、将注射用水置于另一容器中,加入甘油,搅拌均匀并过滤制成水相。3、混合液在高速搅拌下倒入水相中制成初乳,调节pH弱碱性,经高压均质机匀化、过滤,灌装于安瓿中和电子烟中。

1. 心血管系统依托咪酯对心血管功能影响轻微。在临床常规剂量下,心脏病患者和普通患者的心率、平均动脉压、平均肺动脉压、肺毛细血管楔压、中心静脉压、心脏每搏量、心脏指数、肺血管阻力及外周血管阻力几乎无变化。依托咪酯的血液动力学稳定性与其不影响压力感受器功能、不影响外周血管舒缩功能和不抑制心肌收缩力有关。2. 中枢神经系统依托咪酯具有中枢镇静催眠和遗忘作用,无镇痛和肌松作用。依托咪酯的药理作用主要与GABAA受体有关,催眠作用与GABAA受体的β2、β3亚基的关系大于α1亚基,GABAA受体拮抗剂可拮抗其作用。依托咪酯麻醉维持所需血浆药物浓度约为300~500,镇静时为150~300,血浆药物浓度降至约150~250时即可苏醒。单次静脉注射依托咪酯在不影响平均动脉压的情况下,脑血流减少34%,但脑氧代谢率(CMRO2)降低45%,因此,脑氧供需比明显增加。此外,依托咪酯可使颅内压随剂量的增加而显著下降,因而依托咪酯对保持脑灌注压有益。由于依托咪酯能降低脑氧代谢率和颅内压,因而具有一定的脑保护作用。3. 呼吸系统依托咪酯对呼吸系统影响较小,包括自主呼吸、通气量和气道反应性。因此,欲保持自主呼吸时应用依托咪酯具有较明显的优越性,即使给气道高反应性的患者应用依托咪酯也未观察到组胺释放现象。4.其他依托咪酯的治疗指数(LD50/ED50)为,安全剂量范围宽。指导意见:依托咪酯的药理学特点是临床应用的重要依据与基础:依托咪酯具有镇静、催眠和遗忘作用,但无镇痛与肌松作用,是全身麻醉药物组合中一个重要的镇静药;依托咪酯起效迅速,体内代谢与清除均较快,CSHT研究提示持续输注后体内无明显蓄积;依托咪酯对循环抑制轻微是其突出的优点,依托咪酯对呼吸影响较小,在降低脑代谢率的同时可降低颅内压,不影响脑灌注压,依托咪酯乳剂可显著减少注射痛和血管损伤等不良反应,均为临床应用提供了良好的背景。

硝酸酯合成工艺研究论文

硝酸和硫酸。在分子内或分子间脱水,生成环状乙二醇缩乙醛,它与硝酸反应生成乙二醇二硝酸酯,因此是硝酸和硫酸。乙二醇是最简单的脂肪族二元醇,无色粘性透明液体,有甜味,易吸水,相对分子质量,相对密度,熔点负℃。

在5~15℃酯化可得季戊四醇四硝酸酯。查询化工百科得知工业上使用季戊四醇与浓硝酸在5~15℃酯化可得季戊四醇四硝酸酯。浓硝酸是无色有刺激性气味的液体,分子式为HNO3。

论文水性聚氨酯的制备与研究

水性聚氨酯的制备方法通常可分为外乳化法和内乳化法两种。外乳化法是指采用外加乳化剂,在强剪切力作用下强制性地将聚氨酯粒子分散于水中的方法,但因该法存在乳化剂用量大、反应时间长以及乳液颗粒粗、最终得到的产品质量差、胶层物理机械性能不好等缺点,因而目前生产基本不用该法。内乳化法又称自乳化法,是指在聚氨酯分子结构中引人亲水基团无需乳化剂即可使自身分散成乳液的方法,因此成为目前水性聚氨酯生产和研究采用的主要方法.内乳化法又可分为丙酮法、预聚体混合法、熔融分散法、酮亚胺/酮联氮法、保护端基乳化法。(1)丙酮法首先合成含-NCO端基的高粘度聚氨酯预聚体,加丙酮溶解,使其粘度降低,然后用含离子基团扩链剂进行扩链,在高速搅拌下通过强剪切力使之分散于水中,乳化后减压蒸馏脱除溶剂丙酮,得到水性聚氨酯分散液。丙酮法易于操作,重复性好,制得的水性聚氨酯分子量可变范围宽,粒径的大小可控,产品质量好,是目前生产水性聚氨酯的主要方法。但该法需使用低沸点丙酮,易造成环境污染,工艺复杂,成本高,安全性低,不利于工业生产。(2)预聚体混合法首先合成含亲水基团及端-NCO的预聚体,当预聚体的相对分子量不太高且粘度较小时,可不加或加少量溶剂,高速搅拌下分散于水中,再用亲水性单体(二胺或三胺)将其部分扩链,生成相对分子量高的水性聚氨酯一脲。最终得到水性聚氨酯分散液。为合成低粘度预聚体,通常选择脂肪族或脂环族多异氰酸酯,因为这两种多异氰酸酯的反应活性低,预聚体分散于水中后用二胺扩链时受水的影响小。但预聚体混合分散过程必须在低温下进行,以降低-NCO与水的反应活性;必须严格控制预聚体粘度,否则预聚体在水中分散将非常困难,预聚体混合法避免了有机溶剂的大量使用,工艺简单,便于工业化连续生产。缺点是扩链反应在多相体系中发生,反应不能按定量的方式进行。(3)熔融分散缩聚法熔融分散缩聚法又称熔体分散法,是一种无溶剂制备水性聚氨酯的方法。该法把异氰酸酯的加聚反应和氨基的缩聚反应紧密地结合起来。先合成带有亲水性离子基团和-NCO端基的聚氨酯预聚物,预聚物与尿素进行加聚反应得到含离子基团的端脲基聚氨酯双缩二脲低聚物。此低聚物在熔融状态下与甲醛水溶液发生缩聚反应和羟甲基化应,形成含羟甲基的聚氨酯双缩二脲,用水稀释后,得到稳定的水性聚氨酯分散液。该方法的特点:反应过程中不需要有机溶剂,工艺简单,易于控制,配方可变性较大,不需要特殊设备,因具广阔的发展前景。但该法反应温度高,生成的水性聚氨酯分散体为支链结构,分子量较低。(4)酮亚胺/酮联氮法在预聚体混合法中,采用水溶性二元伯胺作扩链剂时,由于氨基与-NCO基团反应速率过快,难以获得粒径均匀而微细的分散体。扩链阶段若用酮亚胺或酮联氮代替二元伯胺进行水相扩链则能解决此问题。酮亚胺由酮与二胺反应生成,酮联氮由酮与肼反应生成。酮亚胺/酮联氮与含离子基团的端-NCO聚氨酯预聚体混合时不会过早发生扩链反应,但遇水时,酮亚胺/酮联氮与水反应则释放出二胺/肼,对预聚体进行扩链,由于受释放反应的制约,扩链反应能够平稳地进行,得到性能良好的水性聚氨酯一脲分散液。酮亚胺/酮联氮法适用于由芳香族异氰酸酯制备水性聚氨酯分散液,该法融合了丙酮法、预聚体混合法的优点,是制备高质量水性聚氨酯的重要方法。(5)保护端基乳化法使用酚类、甲乙酮亚胺、吡咯烷酮、亚硫酸氢钠等封闭剂,将带有亲水性离子基团和-NCO封端的聚氨酯预聚物的端-NCO基团保护起来,使-NCO基团失去活性,制成一种封闭式的聚氨酯预聚体,加入扩链剂和交联剂共同乳化后,制成水性聚氨酯分散液。应用时,加热可使预聚物端-NCO基团解封,-NCO基团与扩链剂、交联剂反应,形成网络结构的聚氨酯胶膜。此法对工艺要求颇高,乳液稳定性差,关键在于选择解封温度低的高效封闭剂。

(1) 初聚体的制备: 在装有搅拌、温度计、冷凝管的三口瓶中,加入TDI 和脱水的聚醚二元醇,逐渐升温到60 "C .保持在60 "C -65C 下反应小时左右,取样测定反应物中NCO 基团的含量,当达到规定值后,停止反应。(2) 初聚体的扩链: 加入亲水扩链剂DMPA. 升温到80'C 左右反应到NCO达到的规定值,继续加入小分子扩链剂在70'C 进行扩链反应,进一步提高预聚物的分子量.(3) 预聚物的中和 对预聚物进行降温,当温度达到40'C 左右时,加入计算好的中和剂,快速搅拌,得到中间休。((4) 乳化: 一定的去离子水缓慢加入中间体中,同时高速搅拌乳化,得到水性聚氨酯分散体.(5) 脱溶剂z 将乳化好的水性聚氨酶转移到带有真空冷凝装置的三口烧瓶中,在. 60 'C下脱溶剂(丙酮) 2-3h 。

反正我做过很多红外都没没做过,也没见过,听都没听过.redfoxwenfan(站内联系TA)红外能进行定量分析,需要一些标准样品来编制宏,塑料里面的成分分析经常用到红外光谱来定性和定量,扫描样品谱图后,运行宏即可得到各种成分的含量,另外提醒你,红外定量并不是一个非常准确的结果,如果你的要求不是很搞,才可以考虑jack2070(站内联系TA)貌似用IR 做定量比较稀奇alumnium(站内联系TA)红外可以定量,定量的依据是郎博-比尔定律.pinguo(站内联系TA)可以做定量,但是条件比较的苛刻.MENG_ML(站内联系TA)很麻烦 做定量lcazzapple(站内联系TA)IR当然能做定量,很稀奇么?ypf13(站内联系TA)红外定量,关键的问题是仪器! 用普通的红外光谱,做透射,定量当然不准 但是用在线红外光谱仪,根据衰减全反射的原理,是可以定量的 现在都有正规的仪器出来了,梅特勒就卖,别的厂家也有,自己在网上查查吧 当然了,用普通的光谱仪做全反射,定量同样也不准yanjin_jia(站内联系TA)我见过浙大做PU的定量 第60 卷第2 期 化工学报 Vol160 No12 2009 年2 月 CIESC Journal February 2009 研究论文水性聚氨酯的原位细乳液聚合规律( Ⅰ) 加聚/ 水解反应的竞争 詹晓力,石莹,张庆华,陈丰秋 (浙江大学联合化学反应工程研究所,浙江杭州310027) 摘要:采用异佛尔酮二异氰酸酯( IPDI) 与憎水性二醇进行原位细乳液聚合制备水性聚氨酯,根据已建立的 FTIR 定量分析方法来表征聚合产物结构,通过产物中氨酯键/ 脲键的浓度比来研究主反应(加聚) 与副反应 (水解) 的竞争.考察了憎水性二醇、乙烯基单体、反应温度、催化剂和乳化剂等因素对主副反应竞争情况的影 响,并建立细乳液中加聚与水解反应竞争的物理模型.研究发现,二醇的反应活性越高越有利于加聚反应; 乙 烯基单体的引入能够抑制水解反应,促进加聚反应,而且其水溶性越小,加聚反应更容易在竞争中占优势; 降 低反应温度和增加催化剂浓度可促进加聚反应,抑制水解反应. 关键词:聚氨酯; 细乳液; 异佛尔酮二异氰酸酯; 水解反应 Shi Ying ,Zhan Xiaoli ,Luo Zhenhuan ,Zhang Qinghua , Chen Fengqiu1 Quantitative IR characterization of urea 你能说IR能想UV一样常规地用来定量?真是搞笑.特别是固体压片的,进行定量可行么?hubin306(站内联系TA)恩.有道理啊 .红外基本就是拿来看看成分的.

蔗糖酯的合成研究毕业论文

蔗糖酯的合成常用的有溶剂法、无溶剂法和微生物法。目前合成蔗糖酯的溶剂除DMF(二甲基甲酰胺)外,常用的溶剂还有DMSO(二甲亚砜)、二甲苯、丙二醇和水等。无溶剂法即不使用任何溶剂,直接用蔗糖、脂肪酸甲酯和钠皂进行酯交换反应。无溶剂法又分为熔融法、相溶法和非均相法。随着生物工程技术的发展,人们发现微生物如根霉、肠杆菌、曲霉、假单胞菌、色杆菌、念珠菌、粘液菌和青霉属的脂肪酶,可以催化蔗糖和脂肪酸反应生成蔗糖酯 。

用于蔬菜保鲜蔗糖酯(蔗糖酯肪酸酯sucrose esters,SE)是引人注目的一种表面活性剂,其良好的表面性能和广泛的适用范围受到了人们的欢迎,日本、美国、欧洲共同体各国、联合国粮农组织(FAO)及世界卫生组织(WHO)等均已批准蔗糖酯为一种食品添加剂。国际上为了适应工业化生产的低成本、无毒性产品的需要,蔗糖酯的合成方法和工艺路线在不断改进和发展。在合成中要解决蔗糖和脂肪酸酯在反应体系中的溶解度、熔点及比重等的差异问题,运用DMF等溶剂法虽能解决这一问题,但DMF有毒,最终产物免不了残留有毒溶剂。后国外运用的无溶剂法,由于反应温度高,使蔗糖极易结块焦化,使反应不易进行,得率低,且产品质量不能得到保证。后有人进行改进,在反应中加入皂体,虽然提高了原料的相溶性,但体系仍处于非均相体系中,使反应仍不能进行完全。用于糖果生物表面活性剂是用生物工程手段来研制的一种新型无毒、高效的表面活性剂,它具有良好的乳化、增溶、润湿、保鲜等功能,在许多化学反应中加入少量的生物表面活性剂,能使反应物增溶、乳化,使反应体系成为均相。中国研究组从20世纪80年代起就合成了各种性能表面活性剂,如生物表面活性剂:槐糖酯、鼠李糖脂及海藻糖酯等,中国研究组根据以往合成表面活性剂的经验,在蔗糖酯合成中加入生物表面活性剂,使反应体系达到均相,并对反应中的诸因素,如压力、温度、时间、催化剂种类及加入量等作了系统研究。通过控制不同的反应条件,使反应体系成为均相,在不高的温度下使蔗糖与脂肪酸酯能完全进行反应,使产品的转化率及质量得到保证。在工业化生产中,反应产物中蔗糖酯的含量达到55%-60%,在分离纯化工艺中采用了混合溶剂分离法使蔗糖酯合成达到国际先进水平。中国研究组选用从食用油脂制备脂肪酸乙酯或甲酯,再由脂肪酸酯、催化剂包括生物表面活性剂与蔗糖等在减压条件下进行酯交换反应合成蔗糖酯。本项目的关键是添加了生物表面活性剂作为无溶剂法合成蔗糖酯的均相催化剂,使亲水性的蔗糖与亲油性的脂肪酸酯在反应体系中达到均相,使反应能够顺利进行,提高了蔗糖酯的得率并使原料蔗糖不易焦化,保证了产品质量。

酒石酸制备乙醛酸乙酯研究论文

有机化学的发展简史“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。不稳定自由基的存在也于1929年得到了证实。在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。现代有机化学时期 在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原了转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子共用的一对电子。1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。

乙醇氧化酯化法是乙醇Cu或Ag催化剂的条件下加热氧化成乙酸,再和原来的乙醇酯化成乙酸乙酯。 乙烯和氧合成法是乙烯氧化成乙醛,然后两个分子的乙醛自动氧化和缩合,重排形成一分子的乙酸乙酯。

乙醛酸,为醛酸之一。由乙醇酸在肝脏或叶的乙醇酸氧化酶作用下,或在叶中在乙醇酸氧化酶(依赖NAD+)作用下而产生。在肝脏或肾脏中甘氨酸及甲氨基(代)乙酸,在甘氨酸氧化酶作用下氧化也可产生。另外,瞟呤代谢的中间产物的尿囊酸在尿囊酸酶的作用下分解,产生尿素和乙醛酸。乙醛酸循环的中间产物异柠檬酸在裂解酶的作用下产生琥珀酸和乙醛酸,后者与乙酰CoA合成苹果酸。在微球菌属(Micrococcus)作为乙醛酸代谢的中间产物,与甘氨酸结合,经羟基天门冬氨酸而成草酰乙酸。在假单胞菌属(Pseudomonas)或大肠杆菌中,二分子缩合经酒石酸半醛而转变成甘油。在乙醛酸脱羧酶作用下脱羧则转变成蚁酸,在丝状菌中乙醛酸氧化可产生草酸。化工上一般有两种制备方法:一、草酸电解法,草酸水溶液经电解还原,生成乙醛酸稀溶液,然后经蒸发、浓缩、冷冻、过滤逐渐提浓,最后得合格品包装。二、乙二醛氧化法乙二醛在催化剂作用下经空气或氧气氧化,生成乙醛酸,然后经精制提纯得成品。另外,二氯乙酸与甲醇钠缩合得到二甲氧基乙酸钠,再用盐酸水解就生成乙醛酸。

  • 索引序列
  • 依托咪酯合成制备研究论文
  • 硝酸酯合成工艺研究论文
  • 论文水性聚氨酯的制备与研究
  • 蔗糖酯的合成研究毕业论文
  • 酒石酸制备乙醛酸乙酯研究论文
  • 返回顶部