首页 > 学术期刊知识库 > 关于的数学的论文参考文献

关于的数学的论文参考文献

发布时间:

关于的数学的论文参考文献

这是一个学生的毕业论文后的参考文献[1] 裴礼文.数学分析中的典型问题与方法究(第二版)[M].北京:高等教育出版社,2006[2] 陈纪修等.数学分析第二版[M].北京:高等教育出版社,[3] 翟连林,姚正安.数学分析方法论[M].北京:北京农业大学出版社,1992[4] 龚冬保.高等数学典型题解法、技巧、注释[M].西安:西安交通大学出版社,2000[5] 郭乔.如何作辅助函数解题[J].高等数学研究, (5),48- 49[6] Patrick M.Fitzpatrick.AdvancedCalculus: A Course in Mathematical Analysis [M].北京:中国工业出版社,2003[7] 林远华.浅谈辅助函数在数学分析中的作用[J].河池师范高等专科学校学报,[8] 肖平.辅助函数的构造方法探寻.西昌师范高等专科学校学报[J],供参考。

小学数学论文参考文献汇总

在日常学习和工作中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是描述学术研究成果进行学术交流的一种工具。那要怎么写好论文呢?下面是我精心整理的小学数学论文参考文献,仅供参考,大家一起来看看吧。

参考文献一

[1]王吉庆.信息素养论[M].上海:上海教育出版社.1998.

[2]张静波等主编.信息素养能力与教育[M].北京:科学出版社,2007.

[3]中华人民共和国教育部.义务教育品德与社会课程标准(2011)[M].北京:北京师范大学出版社,2012.

[4]中华人民共和国教育部.义务教育音乐课程标准(2011)[M].北京:北京师范大学出版社,2012.

[5]中华人民共和国教育部.义务教育英语课程标准(2011)[M].北京:北京师范大学出版社,2012.

[6]中华人民共和国教育部.义务教育体育与健康课程标准(2011)[M].北京:北京师范大学出版社,2012.

[7]义务教育数学课程标准研制组.数学教师教学用书(五年级上册)[M].北京:北京师范大学出版社,2007:3.

[8](英)苏·考利.教会学生思考[M].北京:教育科学出版社,2010.

[9]尹少淳,段鹏.新版课程标准解析与教学指导[M].北京:北京师范大学出版社,2012:15.

[10]陈铁梅.美术教育的`真谛[M]?江苏:江苏教育出版社,2011:3-4

[11]刘淼.作文心理学[M].高等教育出版社,2001.

[12]中华人民共和国教育部制定.义务教育数学课程标准(2011)[M].北京:北京师范大学出版社,2012.

[13]中华人民共和国教育部.义务教育英语课程标准(2011)[M].北京:北京师范大学出版社,2012.

[14]义务教育数学课程标准研制组.数学教师教学用书(五年级上册)[M].北京:北京师范大学出版社,2007:3.

参考文献二

[1]叶澜,白益民.教师角色与教师发展新探[M].北京:教育科学出版社,

[2]毛杰,杨明春着.成长的阶梯:贫困山区教师专业发展的研究与实践[M].四川:四川大学出版社

[3]叶澜.教师角色与教师发展新探[M]北京:教育科学出版社,2001

[4]陈永明.教师教育研究[M]广东:广东高等教育出版社,2003

[5]余文森,刘冬岩.有效教学的基本策略[M],福建教育出版社.2013

[6]陶行知:中国教育改造[J],北京,东方出版社,1996

[7]黄婧.当代教师人格浅析[J].剑南文学:经典阅读.2012(8):313

[8]叶澜.让课堂焕发出生命活力一论中小学教学改革的深化[J].教育研究.1997(7) :3-7

[9]肖秀萍.国外教师专业发展研究评述[J].中国教育期刊,2002,(5) :57-60

[10]陈向明.质的研究方法与社会科学研究[M].北京:教育科学出版社,

[11]俞英.特级教师专业发展路径,一个本土的案例[D].万方数据:华东师范大学,2007

参考文献那么多,也要看你是写哪一方面的。

关于数学电影的数学论文参考文献

点我用户名,空间博文有介绍详细各种论文检测系统软件介绍见我空间各种有效论文修改秘籍 111

参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找

参考文献是毕业论文中的一个重要构成部分,它的引用是对论文进行引文统计和分析的重要信息来源。下文是我为大家搜集整理的关于数学论文参考文献的内容,欢迎大家阅读参考!数学论文参考文献(一) [1]李秉德,李定仁,《教学论》,人民教育出版社,1991。 [2]吴文侃,《比较教学论》,人民教育出版社,1999 [3]罗增儒,李文铭,《数学教学论》,陕西师范大学出版社,2003。 [4]张奠宙,李士 ,《数学教育学导论》高等教育出版社,2003。 [5]罗小伟,《中学数学教学论》,广西民族出版社,2000。 [6]徐斌艳,《数学教育展望》,华东师范大学出版社,2001。 [7]唐瑞芬,朱成杰,《数学教学理论选讲》,华东师范大学出版社,2001。 [8]李玉琪,《中学数学教学与实践研究》,高等教育出版社,2001。 [9]中华人民共和国教育部制订,《全日制义务教育数学课程标准(实验稿)》,北京:北京师范大出版社,2001. [10] 高中数学课程标准研制组编,《普通高中数学课程标准》,北京:北京师范大出版社,2003. [11]教育部基础教育司,数学课程标准研制组编,《全日制义务教育数学课程标准解读(实验稿)》,北京:北京师范大出版社,2002. [12]教育部基础教育司组织编写,《走进新课程——与课程实施者对话》,北京:北京师范大出版社,2002. [13]新课程实施过程中培训问题研究课题组编,《新课程与学生发展》,北京:北京师范大出版社,2001. 数学论文参考文献(二) [1]新课程实施过程中培训问题研究课题组编,《新课程理念与创新》,北京:北京师范大出版社,2001. [2][苏]AA斯托利亚尔,《数学教育学》,北京:人民教育出版社,1985年。 [3][苏]斯涅普坎,《数学教学心理学》,时勘译,重庆:重庆出版社,1987年。 [4]张奠宙,《数学教育研究导引》,南京:江苏教育出版社,1998年。 [5]丁尔升,《中学数学教材教法总论》,北京:高等教育出版社,1990年。 [6]马忠林,等,《数学教育史简编》,南宁:广西教育出版社,1991年。 [7]魏群,等,《中国中学数学教学课程教材演变史料》,北京:人民教育出版 社,1996年。 [8]张奠宙,等,《数学教育学》,南昌:江西教育出版社,1991年。 [9]严士健,《面向21世纪的中国数学教育》,南京:江苏教育出版社,1994年。 [10]傅海伦,《数学教育发展概论》,北京:科学出版社,2001年。 [11]李求来,等,《中学数学教学论》,长沙:湖南师范大学出版社,1992年。 [12]章士藻,《中学数学教育学》,南京:江苏教育出版社,1996年。 [13]十三院校协编组,《中学数学教材教法》,北京:高等教育出版社,1988年。 [14][美]美国国家研究委员会,方企勤等译,《人人关心数学教育的未来》,北 京:世界图书出版公司,1993年。 [15]潘菽,《教育心理学》,北京:人民教育出版社,1980年。 数学论文参考文献(三) [1]孙艳蕊,张祥德.利用极小割计算随机流网络可靠度的一种算法[J],系统工程学报,2010,25(2),284-288. [2]孔繁甲,王光兴.基于容斥原理与不交和公式的一个计算网络可靠性方法,电子学报,1998,26(11),117-119. [3]王芳,侯朝侦.一种计算随机流网络可靠性的新算法[J],通信学报,2004,25(1),70-77. [4][J],Networks,1987,17(2):227-240. [5]],(1):46-49. [6][J],(4):325-334. [7](3):389-395. [8]. [9]封国林,鸿兴,魏凤英.区域气候自忆预测模式的计算方案及其结果m.应ni气象学报,1999,10:470. [10]达朝究.一个可能提高GRAPES模式业务预报能力的方案[D].兰州:兰州人学,2011 [11]符综斌,干强.气候突变的定义和检测方法[j].大气科学,1992,16(4):482-492. [12]顾震潮.天数值预报屮过去资料的使用问题[J].气象学报,1958,29:176. [13]顾震潮.作为初但问题的天气形势数值预报由地而天气历史演变作预报的等值性[J].气象学报,1958,29:93. [14]黄建平,H纪范.海气锅合系统相似韵现象的研究[J].中NI科学(B),1989,9:1001. [15]黄建平,王绍武.相似-动力模式的季节预报试验[J].国科学(B)1991,21:216. 猜你喜欢: 1. 统计学论文参考文献 2. 关于数学文化的论文免费参考 3. 关于数学文化的论文优秀范文 4. 13年到15年参考文献论文格式 5. 浅谈大学数学论文范文

数学教学论文参考文献

教学论文就是“讨论”和“研究”有关教学问题的文章,属于议论文,具有议论文的一般特点。下面是我收集整理的数学教学论文参考文献范文,希望对您有所帮助!

参考文献一

[1]杜威着,许崇清译:《哲学的改造》[M],商务印书馆.1958 年,P46

[2]阮忠英.初中几何教学策略浅谈[J].理科爱好者,2009(2)

[3]胡蓉.利用信息技术优化几何教学[J].信息技术与应用,2008(4).

[4]吕月霞.杜威的“从做中学”之我见[J] .教育新论,

[5]陈琦,刘儒德.当代教育心理学[M].北京师范大学出版社,2007,P185

[6]袁振国.当代教育学[M].教育科学出版社,2004,P184

[7]尚晓青.DGS 技术与初中几何教学整合研究[D].重庆:西南大学博士学位论文,2008.

[8]周军.教学策略[M].北京:教育科学出版社,2007,P11

[9]中华人民共和国教育部.义务教育数学课程标准 [S].北京:北京师范大学出版社,2011

[10]左晓明等.基于 GeoGebra 的数学教学全过程优化研究[J],2010,P101

[11]杨庆余.小学数学课程与教学[M].北京:高等教育出版社.2004,P102

[12]李伯黍,燕国材.教育心理学[M].上海:华东师范大学出版社.

参考文献二

[1]王汉澜.教育评价学 [M].开封:河南大学出版社,1995.

[2]吴钢.现代教育评价基础[M].上海:学林出版社,2004.

[3] 黎世法.异步教育学[M].北京:当代中国出版社,1994.

[4]虞应连.采用复合评分法 注重个体内差异评价[J].中小学管理,2001(1).

[5](美) Carol Ann Tomlinson,刘颂译.多元能力课堂中的差异教学[M].北京:中国轻工业出版社, 2003.

[6]茹建文.关于构建小学数学发展性评价体系的'思考[J].现代教育科学,2005(2).

[7]曾继耘.差异发展教学研究[M].北京:首都师范大学出版社,2006.

[8]顾泠沅等.寻找中间地带--国际数学教育改革的大趋势[M].上海:上海教育出版社, 2003.

[9]马艳云.评价应注意学生的心理需求[J].人民教育,2005(17).

[10]陈小菊.给自己一个支点超越自己-“个体内差异评价策略”探微[J].福建教育,2005(7).

[11](美)Diane Heacox ,杨希洁译.差异教学-帮助每个学生获得成功[M]. 北京:中国轻工业出版社,2004.

[12]陈泳超.差异评价“ 实施因材施教”[J].福建教育,2001(7、8).

[13]安艳.差异性学生评价研究--以济南市三所初中为例[D],济南.山东师范大学,2007.

[14]王俭.教育评价发展历史的哲学考察[J].教师教育研究,2008(3).

关于欧拉的数学论文的参考文献

数学家欧拉的故事:

18世纪中叶,欧拉和其他数学家在解决物理问题过程中,创立了微分方程这门学科。值得提出的是,偏微分方程的纯数学研究的第一篇论文是欧拉写的《方程的积分法研究》 。欧拉还研究了函数用三角级数表示的方法和解微分方程的级数法等等。

欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达式。1766年他出版了《关于曲面上曲线的研究》,建立了曲面理论。这篇著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的一个里程碑。欧拉在分析学上的贡献不胜枚举。

如他引入了Γ函数和B函数,证明了椭圆积分的加法定理,最早引入了二重积分等等。数论作为数学中一个独立分支的基础是由欧拉的一系列成果所奠定的。他还解决了著名的组合问题:柯尼斯堡七桥问题。在数学的许多分支中都常常见到以他的名字命名的重要常数、公式和定理。

欧拉是18世纪数学界的中心人物。他是继牛顿(Newton)之后最重要的数学家之一。在他的数学研究成果中,首推第一的是分析学。欧拉把由伯努利家族继承下来的莱布尼茨学派的分析学内容进行整理,为19世纪数学的发展打下了基础。

他还把微积分法在形式上进一步发展到复数范围,并对偏微分方程,椭圆函数论,变分法的创立和发展留下先驱的业绩。在《欧拉全集》中,有17卷属于分析学领域。他被同时代的人誉为“分析的化身”。

欧拉将数学分析方法用于力学,在力学各个领域中都有突出贡献;他是刚体动力学和流体力学的奠基者,弹性系统销定性理论的开创人。

在1736年出版的两卷集《力学或运动科学的分析解说》中,他考虑了自由质点和受约束质点的运动微分方程及其解。欧拉在书中把力学解释为“运动的科学”,不包括“平衡的科学”即静力学。

参考资料来源:百度百科-莱昂哈德·欧拉

1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。

中英文对照太难了英文的维基百科Leonhard Euler Leonhard Euler (pronounced Oiler; IPA [ˈɔʏlɐ]) (April 15, 1707 – September 18 [. September 7] 1783) was a pioneering Swiss mathematician and physicist, who spent most of his life in Russia and Germany. He published more papers than any other mathematician in history.[1]Euler made important discoveries in fields as diverse as calculus and topology. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, optics, and is considered to be the preeminent mathematician of the 18th century and one of the greatest of all time. He is also one of the most prolific; his collected works fill 60–80 quarto volumes.[3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is a master for us all".[4]Euler was featured on the sixth series of the Swiss 10-franc banknote[5] and on numerous Swiss, German, and Russian postage stamps. The asteroid 2002 Euler was named in his honor. He is also commemorated by the Lutheran Church on their Calendar of Saints on May [hide]1 Biography Childhood St. Petersburg Berlin Eyesight deterioration Last stage of life 2 Contributions to mathematics Mathematical notation Analysis Number theory Graph theory Applied mathematics Physics and astronomy Logic 3 Philosophy and religious beliefs 4 Selected bibliography 5 See also 6 Notes 7 Further reading 8 External links [edit] Biography[edit] Childhood Swiss 10 Franc banknote honoring Euler, the most successful Swiss mathematician in was born in Basel to Paul Euler, a pastor of the Reformed Church, and Marguerite Brucker, a pastor's daughter. He had two younger sisters named Anna Maria and Maria Magdalena. Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, where Euler spent most of his childhood. Paul Euler was a family friend of the Bernoullis, and Johann Bernoulli, who was then regarded as Europe's foremost mathematician, would eventually be an important influence on the young Leonhard. His early formal education started in Basel, where he was sent to live with his maternal grandmother. At the age of thirteen he matriculated at the University of Basel, and in 1723, received a masters of philosophy degree with a dissertation that compared the philosophies of Descartes and Newton. At this time, he was receiving Saturday afternoon lessons from Johann Bernoulli, who quickly discovered his new pupil's incredible talent for mathematics.[6]Euler was at this point studying theology, Greek, and Hebrew at his father's urging, in order to become a pastor. Johann Bernoulli intervened, and convinced Paul Euler that Leonhard was destined to become a great mathematician. In 1726, Euler completed his . dissertation on the propagation of sound with the title De Sono[7] and in 1727, he entered the Paris Academy Prize Problem competition, where the problem that year was to find the best way to place the masts on a ship. He won second place, losing only to Pierre Bouguer—a man now known as "the father of naval architecture". Euler, however, would eventually win the coveted annual prize twelve times in his career.[8][edit] St. PetersburgAround this time Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg. In July 1726, Nicolas died of appendicitis after spending a year in Russia, and when Daniel assumed his brother's position in the mathematics/physics division, he recommended that the post in physiology that he had vacated be filled by his friend Euler. In November 1726 Euler eagerly accepted the offer, but delayed making the trip to St Petersburg. In the interim he unsuccessfully applied for a physics professorship at the University of Basel.[9]1957 stamp of the former Soviet Union commemorating the 250th birthday of Euler. The text says: 250 years from the birth of the great mathematician and academician, Leonhard arrived in the Russian capital on May 17, 1727. He was promoted from his junior post in the medical department of the academy to a position in the mathematics department. He lodged with Daniel Bernoulli with whom he often worked in close collaboration. Euler mastered Russian and settled into life in St Petersburg. He also took on an additional job as a medic in the Russian Navy.[10]The Academy at St. Petersburg, established by Peter the Great, was intended to improve education in Russia and to close the scientific gap with Western Europe. As a result, it was made especially attractive to foreign scholars like Euler: the academy possessed ample financial resources and a comprehensive library drawn from the private libraries of Peter himself and of the nobility. Very few students were enrolled in the academy so as to lessen the faculty's teaching burden, and the academy emphasized research and offered to its faculty both the time and the freedom to pursue scientific questions.[8]However, the Academy's benefactress, Catherine I, who had attempted to continue the progressive policies of her late husband, died the day of Euler's arrival. The Russian nobility then gained power upon the ascension of the twelve-year-old Peter II. The nobility were suspicious of the academy's foreign scientists, and thus cut funding and caused numerous other difficulties for Euler and his improved slightly upon the death of Peter II, and Euler swiftly rose through the ranks in the academy and was made professor of physics in 1731. Two years later, Daniel Bernoulli, who was fed up with the censorship and hostility he faced at St. Petersburg, left for Basel. Euler succeeded him as the head of the mathematics department.[11]On January 7, 1734, he married Katharina Gsell, daughter of a painter from the Academy Gymnasium. The young couple bought a house by the Neva River, and had thirteen children, of whom only five survived childhood.[12][edit] Berlin Stamp of the former German Democratic Republic honoring Euler on the 200th anniversary of his death. In the middle, it is showing his polyhedral about continuing turmoil in Russia, Euler debated whether to stay in St. Petersburg or not. Frederick the Great of Prussia offered him a post at the Berlin Academy, which he accepted. He left St. Petersburg on June 19, 1741 and lived twenty-five years in Berlin, where he wrote over 380 articles. In Berlin, he published the two works which he would be most renowned for: the Introductio in analysin infinitorum, a text on functions published in 1748 and the Institutiones calculi differentialis, a work on differential calculus.[13]In addition, Euler was asked to tutor the Princess of Anhalt-Dessau, Frederick's niece. He wrote over 200 letters to her, which were later compiled into a best-selling volume, titled the Letters of Euler on different Subjects in Natural Philosophy Addressed to a German Princess. This work contained Euler's exposition on various subjects pertaining to physics and mathematics, as well as offering valuable insight on Euler's personality and religious beliefs. This book ended up being more widely read than any of his mathematical works, and was published all across Europe and in the United States. The popularity of the Letters testifies to Euler's ability to communicate scientific matters effectively to a lay audience, a rare ability for a dedicated research scientist.[13]Despite Euler's immense contribution to the Academy's prestige, he was eventually forced to leave Berlin. This was caused in part by a personality conflict with Frederick. Frederick came to regard him as unsophisticated especially in comparison to the circle of philosophers the German king brought to the Academy. Voltaire was among those in Frederick's employ, and the Frenchman enjoyed a favored position in the king's social circle. Euler, a simple religious man and a hard worker, was very conventional in his beliefs and tastes. He was in many ways the direct opposite of Voltaire. Euler had very limited training in rhetoric and tended to debate matters that he knew little about, making him a frequent target of Voltaire's wit.[13] Frederick also expressed disappointment with Euler's practical engineering abilities:I wanted to have a water jet in my garden: Euler calculated the force of the wheels necessary to raise the water to a reservoir, from where it should fall back through channels, finally spurting out in Sanssouci. My mill was carried out geometrically and could not raise a mouthful of water closer than fifty paces to the reservoir. Vanity of vanities! Vanity of geometry![14][edit] Eyesight deterioration A 1753 portrait by Emanuel Handmann. This portrayal suggests problems of the right eyelid and that Euler is perhaps suffering from strabismus. The left eye appears healthy, as it was a later cataract that destroyed it.[15]Euler's eyesight worsened throughout his mathematical career. Three years after suffering a near-fatal fever in 1735 he became nearly blind in his right eye, but Euler rather blamed his condition on the painstaking work on cartography he performed for the St. Petersburg Academy. Euler's sight in that eye worsened throughout his stay in Germany, so much so that Frederick referred to him as "Cyclops". Euler later suffered a cataract in his good left eye, rendering him almost totally blind a few weeks after its discovery. Even so, his condition appeared to have little effect on his productivity, as he compensated for it with his mental calculation skills and photographic memory. For example, Euler could repeat the Aeneid of Virgil from beginning to end without hesitation, and for every page in the edition he could indicate which line was the first and which the last.[3][edit] Last stage of life Euler's grave at the Alexander Nevsky situation in Russia had improved greatly since the ascension of Catherine the Great, and in 1766 Euler accepted an invitation to return to the St. Petersburg Academy and spent the rest of his life in Russia. His second stay in the country was marred by tragedy. A 1771 fire in St. Petersburg cost him his home and almost his life. In 1773, he lost his wife of 40 years. Euler would remarry three years September 18, 1783, Euler passed away in St. Petersburg after suffering a brain hemorrhage and was buried in the Alexander Nevsky Laura. His eulogy was written for the French Academy by the French mathematician and philosopher Marquis de Condorcet, and an account of his life, with a list of his works, by Nikolaus von Fuss, Euler's son-in-law and the secretary of the Imperial Academy of St. Petersburg. Condorcet commented,"...il cessa de calculer et de vivre," (he ceased to calculate and to live).[16] [edit] Contributions to mathematicsEuler worked in almost all areas of mathematics: geometry, calculus, trigonometry, algebra, and number theory, not to mention continuum physics, lunar theory and other areas of physics. His importance in the history of mathematics cannot be overstated: if printed, his works, many of which are of fundamental interest, would occupy between 60 and 80 quarto volumes[3] and Euler's name is associated with an impressive number of topics. The 20th century Hungarian mathematician Paul Erdős is perhaps the only other mathematician who could be considered to be as prolific.[edit] Mathematical notationEuler introduced and popularized several notational conventions through his numerous and widely circulated textbooks. Most notably, he introduced the concept of a function[2] and was the first to write f(x) to denote the function f applied to the argument x. He also introduced the modern notation for the trigonometric functions, the letter e for the base of the natural logarithm (now also known as Euler's number), the Greek letter ∑ for summations and the letter i to denote the imaginary unit.[17] The use of the Greek letter π to denote the ratio of a circle's circumference to its diameter was also popularized by Euler, although it did not originate with him.[18] Euler also contributed to the development of the the history of complex numbers system (the notation system of defining negative roots with a + bi).[19][edit] AnalysisThe development of calculus was at the forefront of 18th century mathematical research, and the Bernoullis—family friends of Euler—were responsible for much of the early progress in the field. Thanks to their influence, studying calculus naturally became the major focus of Euler's work. While some of Euler's proofs may not have been acceptable under modern standards of rigour,[20] his ideas led to many great is well known in analysis for his frequent use and development of power series: that is, the expression of functions as sums of infinitely many terms, such asNotably, Euler discovered the power series expansions for e and the inverse tangent function. His daring (and, by modern standards, technically incorrect) use of power series enabled him to solve the famous Basel problem in 1735:[20]A geometric interpretation of Euler's formulaEuler introduced the use of the exponential function and logarithms in analytic proofs. He discovered ways to express various logarithmic functions in terms of power series, and successfully defined logarithms for negative and complex numbers, thus greatly expanding the scope where logarithms could be applied in mathematics.[17] He also defined the exponential function for complex numbers and discovered its relation to the trigonometric functions. For any real number φ, Euler's formula states that the complex exponential function satisfiesA special case of the above formula is known as Euler's identity,called "the most remarkable formula in mathematics" by Richard Feynman, for its single uses of the notions of addition, multiplication, exponentiation, and equality, and the single uses of the important constants 0, 1, e, i, and π.[21]In addition, Euler elaborated the theory of higher transcendental functions by introducing the gamma function and introduced a new method for solving quartic equations. He also found a way to calculate integrals with complex limits, foreshadowing the development of modern complex analysis, and invented the calculus of variations including its most well-known result, the Euler-Lagrange also pioneered the use of analytic methods to solve number theory problems. In doing so, he united two disparate branches of mathematics and introduced a new field of study, analytic number theory. In breaking ground for this new field, Euler created the theory of hypergeometric series, q-series, hyperbolic trigonometric functions and the analytic theory of continued fractions. For example, he proved the infinitude of primes using the divergence of the harmonic series, and used analytic methods to gain some understanding of the way prime numbers are distributed. Euler's work in this area led to the development of the prime number theorem.[22][edit] Number theoryEuler's great interest in number theory can be traced to the influence of his friend in the St. Petersburg Academy, Christian Goldbach. A lot of his early work on number theory was based on the works of Pierre de Fermat. Euler developed some of Fermat's ideas while disproving some of his more outlandish focus of Euler's work was to link the nature of prime distribution with ideas in analysis. He proved that the sum of the reciprocals of the primes diverges. In doing so, he discovered the connection between Riemann zeta function and prime numbers, known as the Euler product formula for the Riemann zeta proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n. Using properties of this function he was able to generalize Fermat's little theorem to what would become known as Euler's theorem. He further contributed significantly to the understanding of perfect numbers, which had fascinated mathematicians since Euclid. Euler made progress toward the prime number theorem and conjectured the law of quadratic reciprocity. The two concepts are regarded as the fundamental theorems of number theory, and his ideas paved the way for Carl Friedrich Gauss.[23][edit] Graph theorySee also: Seven Bridges of Königsberg Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the 1736, Euler solved a problem known as the Seven Bridges of Königsberg.[24] The city of Königsberg, Prussia (now Kaliningrad, Russia) is set on the Pregel River, and included two large islands which were connected to each other and the mainland by seven bridges. The question is whether it is possible to walk with a route that crosses each bridge exactly once, and return to the starting point. It is not; and therefore not an Eulerian circuit. This solution is considered to be the first theorem of graph theory and planar graph theory.[24] Euler also introduced the notion now known as the Euler characteristic of a space and a formula relating the number of edges, vertices, and faces of a convex polyhedron with this constant. The study and generalization of this formula, specifically by Cauchy[25] and L'Huillier,[26] is at the origin of topology.[edit] Applied mathematicsSome of Euler's greatest successes were in using analytic methods to solve real world problems, describing numerous applications of Bernoulli's numbers, Fourier series, Venn diagrams, Euler numbers, e and π constants, continued fractions and integrals. He integrated Leibniz's differential calculus with Newton's method of fluxions, and developed tools that made it easier to apply calculus to physical problems. He made great strides in improving the numerical approximation of integrals, inventing what are now known as the Euler approximations. The most notable of these approximations are Euler's method and the Euler-Maclaurin formula. He also facilitated the use of differential equations, in particular introducing the Euler-Mascheroni constant:One of Euler's more unusual interests was the application of mathematical ideas in music. In 1739 he wrote the Tentamen novae theoriae musicae, hoping to eventually integrate musical theory as part of mathematics. This part of his work, however, did not receive wide attention and was once described as too mathematical for musicians and too musical for mathematicians.[27][edit] Physics and astronomyEuler helped develop the Euler-Bernoulli beam equation, which became a cornerstone of engineering. Aside from successfully applying his analytic tools to problems in classical mechanics, Euler also applied these techniques to celestial problems. His work in astronomy was recognized by a number of Paris Academy Prizes over the course of his career. His accomplishments include determining with great accuracy the orbits of comets and other celestial bodies, understanding the nature of comets, and calculating the parallax of the sun. His calculations also contributed to the development of accurate longitude tables.[28]In addition, Euler made important contributions in optics. He disagreed with Newton's corpuscular theory of light in the Opticks, which was th

看多点书就OK了

关于生活中的数学的论文参考文献

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找

关于数学与哲学的论文参考文献

在数学的哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。数学与哲学的关系一是人们谈论的问题。以下是我整理的数学与哲学的论文的相关资料,欢迎阅读!

摘要:在数学哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。虽然直觉主义可以追溯到康德,甚至柏拉图。然而,它是近现代的,20世纪前20年,它作为一个独立的数学哲学思潮而闻名。它是逻辑学哲学中的一次风暴逆袭,是经典数学的有力挑战者。直觉主义强调“构造”,出发于“心智”。直觉主义把整个自然数论视为整个数学的基础,直觉主义拒绝排中律和反证律,抵制实无穷而推崇潜无穷。随着计算机的产生和发展,直觉主义在数字构造中起到了积极的应用。同时,直觉主义对数学哲学的创新 教育 等方面都有着不可忽视的影响。

关键词:数学哲学 直觉主义 传统逻辑 布劳威尔

一、 “存在必须是被构造”——直觉主义的产生

直觉(intuition)一词意为未经充分逻辑推理的,直观的,直接领捂事物本质的思考。与H.柏格森、B.克罗齐、E.胡塞尔等人的直觉主义不同,我们这里所研究的“直觉”并不是指主体对于客观事物的一种直接把握能力,而是指思维的本能上的一种心智活动。在这里,直觉主义提倡的直觉,并非辩证唯物主义的“直观的感觉”,其本意是“先验的心智构造”,以此为出发点,形成了对数学对象“存在性”与“可构造性”等同的要求。[1]直觉主义哲学是一种反理性主义的唯心主义哲学思潮。数学研究中的构造主义是一种有关数学基础的观点,它主张自然数及其某些规律和 方法 ,特别是数学归纳法,是可靠的出发点, 其它 一切数学对象和理论都应该从自然数构造出来。[2]“存在必须是被构造”,这是直觉主义派最著名的 口号 。也因此,直觉主义是一种构造逻辑。直觉派认为,数学中的概念和方法都是必须可以被构造的,非构造性的证明不是直觉主义者能接受的。在数学领域中,集合论悖论的问题不可能通过对已有的数学作某种局部的修改和限制加以解决,而必须依靠一些可信的标准对已有的数学进行全面的审视和改造。直觉主义认为逻辑依赖于数学,而非数学依赖逻辑。数学建立在直觉的基础上。同时,直觉主义认为哲学、逻辑甚至计数等概念都比数学复杂得多,不能作为数学的基础,数学的基础需要更简单、更直接的概念,它就是直觉,直觉是心智的一项基本功能。[3]一位直觉主义数学家阿伦特·海廷(Arend Heyting)在他的论文《数学的直觉主义基础》中指出:“立即处理数学的构造也许是符合直觉主义者的积极态度了。这个构造的最重要基石是一(unity)的概念,它是整数序列所依赖的构造原则。整数必须作为单位(units)来看待,这些单位仅仅由于在这个序列中的位置而相互区别。”[4]61

直觉主义者认为,数学的基础在于数学直觉,在他们看来,建立在数学直觉之上的理论能使“概念和推理十分清楚地呈现在我们面前”,即“对于思想来说是如此的直接,而其结果又是如此的清楚,以致不再需要任何铸的什么基础了”(A·黑丁:《直觉主义导论》)。任何数学对象被视为思维构造的产物,所以一个对象的存在性等价于它的构造的可能性。这和经典的方法不同,因为经典方法说一个实体的存在性可以通过否定它的不存在性来证明。对于直觉主义者,这是不正确的;不存在性的否定不表示可能找到存在性的构造证明。正因为如此,直觉主义是数学结构主义的一种;但它不是唯一的一类。直觉主义的基本哲学立场是,数学是人类心智“固有”的一种创造活动,是主体的自身的活动,而不是对外在的描述.数学概念是一种自主的智力活动的结果,智力活动则是研究自明定律所支配的思想构造。[5]

二、颠覆传统逻辑,形式主义的逆袭——直觉主义的特点

直觉主义不承认实无穷,拒绝实际无穷的抽象。也就是说,它不考虑像所有自然数的集合或任意有理数的序列无穷这样的无穷实体作为给定对象。数学上的实无穷思想是指:把无限的整体本身作为一个现成的单位,是已经构造完成了的东西,换言之,即是把无限对象看成为可以自我完成的过程或无穷整体。数学上存在着潜无穷与实无穷之争,就如同哲学上存在着唯物主义与唯心主义之争。而且必将长时间的持续的争论不休。数学上的潜无穷思想是指:把无限看作永远在延伸着的,一种变化着成长着被不断产生出来的东西来解释。举个形象点的例子就是,构成一条直线的点有无穷个,并且这条直线永远延伸着,不会有终结的一天。它永远处在构造中,永远完成不了,是潜在的,而不是实在。按照全称和条件量词的标准直觉主义,一个证明就是这样的潜无穷结构,这可能是合理的。(达米特《直觉主义逻辑的哲学基础》)[4]142按照此观点,所有的自然数可以构成一个集合,因为可以将所有的自然数看做是一个完成了的无穷整体。很显然,直觉主义支持潜无穷的观点,即把无穷集合看成无限延伸着的序列。

直觉主义反对排中律,这意味着直觉主义者可能和经典的数学家对一个数学命题的含义有不同理解。排中律和同一律、矛盾律并称为形式逻辑的三大基本规律。传统逻辑首先把排中律当作事物的规律,意为任一事物在同一时间里具有某属性或不具有某属性,而没有其他可能。排中律同时也是思维的规律,即一个命题是真的或不是真的,此外没有其他可能。例如,说A 或 B, 对于一个直觉主义者,是宣称A或B可以证明。但是,对于排中律, A 或 非 A, 是不被允许的,因为不能假设人们总是能够证明命题A或它的否命题。

直觉主义主要对抗的是形式主义。多个世纪以来,对数学规律的无懈可击的精确性的信念的依据是数学哲学研究的主要对象。直觉主义表示,精确性存在于人类心智之中,形式主义者认为,存在于纸面上。[4]90

直觉主义具有非逻辑性和整体性。数学直觉是作为逻辑的对立面而介定的一种认识方法,因此非逻辑性是数学直觉的最主要特性。可以说数学直觉的其他特性都是由它的非逻辑性所决定的,这是许多哲学家、科学家的共同见解。[6]直觉主义认为,数学是心灵的创造活动,心灵是丰富的,逻辑则是贫乏的。因此,坚决不能用贫乏的逻辑规则来全面准确地规划丰富的心灵活动。直觉主义的另一位代表人物阿伦特?海廷(Arend Heyting)说:“逻辑属于应用数学”。在对于直觉主义整体性上,一个日本数学家有如下精辟的解释:当一个人已经长期而持续地从事了研究并已成为一个完全成熟的研究人员时,他就已经在自己的头脑中形成了一种相对稳定的知识体系。经过他自己的努力,这种知识体系已被综合成为一种特殊的,确定的形式。而且自己综合的工作当然本身就是一种极有价值的 经验 。[7]

彭加勒在《数学中的直觉和逻辑》一文中写道:

哲学家告诉我们,纯逻辑永远也不能使我们得到任何东西;它不能创造任何新东西,任何科学也不能仅仅从它产生出来。在某种惫义上,这些哲学家是对的;要构成算术,像要构成几何学或构成任何科学一样,除了纯逻辑之外,还需要其他东西。为了称呼这种东西,我们只好使用直觉这个词。可是,在这同一谕后,潜藏着多少不同的意思呢?比较一下这四个公理:(1)等于第三个最的两个量相等;(2)若一定理对数1为真,假定它对N为真,如果我们证明它对N+1为真,则它对所有整数均为真;(3)设在一直线上,C点在A与B之间,D点在A与C之间,则D点将在A与B之间;(4)通过一个定点仅有一条直线与已知直线平行。所有这四个公理都归之于直觉,不过第一个阐明了形式逻辑诸法则中的一个法则;第二个是真实的先验综合判断,它是严格的数学归纳法的基础;第三个求助于想象:第四个是伪定义。直觉不必建立在感觉明白之上;感觉不久便会变得无能为力。[8]

值得注意的是,直觉主义不是神秘主义。直觉的“不可解释性”并不等于直觉的“神秘性”,尽管直觉是“不可解释”的,但它却有着确定的本质。我们认为,直觉是认识过程中的一种飞跃,因此它就不是一种经验的认识,而是原来的思想路线的中断,不可能按照通常的 思维方式 ,用结论和推理的环节把它连接起来,所以直觉是“不可解释的”。[9]

三、从Kant到Dummett,直觉主义派的主要人物及其思想

伊曼努尔·康德(Immanuel Kant, 1724-1804),从某种意义上来说,直觉主义是由哲学家康德开始的。1755到1770年,康德在哥尼斯堡大学教物理和数学,他认为我们所有的感觉都来自于一个预先假定的外部世界。虽然这些感觉不能提供任何知识,但是被感知到的物体间相互作用就产生了知识。心智将这些感觉梳理清楚,得到对空间和时间的直觉。康德说,感性直觉有两个纯形式,它们是先天知识的原则,这两个纯形式就是空间和时间。空间是外直觉的纯形式,而时间是内直觉的纯形式,它们都不是从外邻经验得来的,而是必然的、先天的观念。空间和时间不是客观存在的,而是心智的创作。心智理解经验,经验唤醒心智。虽然康德的思想有着直觉主义的影子,但是依旧没有直观地提出直觉主义,就数学基础的方法而言,直觉主义是现代的。[10]

亨利·彭加勒(常译作庞加莱,Henry Poincare,1854-1912),当代语境中的数学直觉主义的先驱。后人评价为数学哲学与当代数学直觉主义之间的一座桥梁。逻辑主义对于数学基础的理解是虚幻的。它使数学失去基础。然而数学的基础是存在的,它就是我们的直觉。它赋予数学以意义,从而给数学以对象。彭加勒指明了一座(本来就)架在人类精神和数学存在之间的桥梁,那便是我们的数学直觉。[11]彭加勒主张自然数是最基本的直觉,认为数学归纳法是一种包含直观的思维方法,是不能简单地归结为逻辑的。他主张使用有限个词能定义的概念,主张数学对象的可构造性。他还在另一种意义上理解和强调数学直觉,将其看做选择和发明的工具。彭加勒认为,我们有多种直觉。然而,最重要的可以归结为两类:一是“纯粹直觉”,即他通常所说的“纯粹数的直觉”、“纯粹逻辑形式的直觉”、“数学次序的直觉”等,这主要是解析家的直觉;二是“可觉察的直觉”,即想象,这主要是几何学家“形”的直觉。对于这两类直觉,他认为都是必要的,各自发挥着不同的作用。他认为,这两类直觉“似乎发挥出我们心灵的两种不同的本能”,它们像“两盏探照灯,引导陌生人相互来往于两个世界”。[12]

布劳威尔(,1881-1966),直觉主义真正的创始人和奠基人是布劳威尔。布劳威尔在数学上的直觉主义立场来源于他的哲学。1907年他在博士论文《数学基础》中提出直觉主义观点,认为数学的基础是先验的初始直觉。数学是起源于和产生于头脑的人类活动,不存在于头脑之外,因此,是独立于真实世界的。布劳威尔认为数学思维是智力构造的一个过程,它建造自己的天地,独立于经验,并且只受到必须建立于基本的数学直觉之上的限制。[10]布劳维尔发表的《数学基础》表明直觉主义的立场是强调“直觉”,这并不是说否认数学的逻辑性和严谨性,而只是突出直觉、灵感和创造力在数学中的地位。直觉主义者认为数学不仅是最讲究严格性的科学,也是最富有创造性的科学。布劳维尔认为数学的基础是先验的初始直觉,他和他的学生说他们所说的直觉正是人心对于它本身所构造的东西的清晰理解。[13]布劳维尔修改了康德的先验时空学说,放弃了“外直觉的纯形式”的先验时空概念,以适应非欧几何的发展;池把数学的基本直觉建立在“内直觉的纯形式”的先验时间概念的基础之上。[14]布劳威尔还提出了“二·一原则”(tow-oneness)。他认为这是数学的基本直觉。即假设N成立,则N+1成立。这个过程可以无限重复,创造了一切有限序数,因为“二·一原则”的元素之一可以被认为是一个新的“二·一原则”。布劳威尔认为,在这个数学的基本直觉中,联通和分离、连续和离散得到统一,并直接引出了线性连续统的直觉,即“介于”(between)的直觉。(布劳威尔《直觉主义和形式主义》)[4]93

阿伦特·海廷(Arend Heyting,1898-1980),他是布劳威尔的学生。继承了布劳威尔有关数学直觉主义的思想。他认为,直觉主义是从一定的、多少有点任意的假设出发的。它的主题是构造性的数学思想。这使得它处于经典数学之外。形式主义和直觉主义的差别在于,直觉主义的进行独立于形式化,形式化只能追随在数学构造的后面。逻辑不是直觉主义的立足点,数学构造在头脑中是很直接的,结论也应该是很清楚的,所以不需要任何基础。海廷主张,在描述直觉主义数学时,应当在日常生活中去理解。比如,在注视那边树木时,我确信我看到树木,而实际上光波达到我眼中,使我构造出树木这一信念需要相当的训练。这种观点是自然的。两个人说话,我向你灌输意见,实际制造了空气的震动。这是理论的构造。(阿伦特·海廷《论辩》)[4]77-88

迈克尔·达米特(又译米歇尔·杜麦特Michael Dummett,1925-2011),当代数学直觉主义学派的代表人物。达米特认为,数学首先是先验的,然后是分析的。达米特曾经从语言学角度和意义理论角度为直觉主义辩护。直觉主义关于数学陈述意义的解释避免了以真概念为核心概念的意义理论的不足,它把说话者关于数学陈述的理解与说话者使用这个陈述的实际能力结合在一起,因此具有很大的优点。从直觉主义关于数学陈述的意义说明出发,达米特提出了以证实为核心概念的新的意义理论的构想。[15]202达米特指出:“对于直觉主义逻辑来说,排中律的双重否定是有效的语义原则,就像二值逻辑认为排中律本身是有效的一样:断言任何陈述既不真也不假是不一致的。”[4]132

四、直觉主义的意义以及合理性

直觉主义对古典逻辑中的排中律和双重否定律等原理中的部分原则以及非构造性的结论持否定态度,也不承认数学中的实无限的对象和方法。数学的历史也表明,数学知识与理论不仅无法脱离对外部世界的永恒的依存关系,而且数学的错误不是通过限制数学,如排斥非构造数学和传统逻辑而得到克服的。数学真理的积累以及对谬误的抛弃是通过数学知识的不断增长和理论的不断完善获得的。一句话、数学的生命在于生生不息的创造过程中。庆幸的是,直觉主义由十其思想体系中某种先天的弱点而末成为数学的统治思想。但也应看到其构造思想的重要价值。[16]123-124可以说,直觉主义学派在本质上是主观和荒谬的,以直觉上的可构造性为由来绝对的肯定直觉派数学是不能真正解决问题的。但是,直觉主义揭示了经典逻辑只具有相对的真理性,在具体的数学工作中具有重要意义。

首先,数学哲学中的直觉主义学派高度认可直觉和个人的创造性思维在科学实践中的作用,推动了现代递归函数论的建立和发展,这无疑对数学的进步起到了很积极的作用。其次,直觉主义者倡导的构造性的能行性的研究方法,促进了人工智能和计算机科学的发展。这种积极探讨可行性方法在计算机数学以及计算机科学中具有重大的现实意义。第三,直觉主义数学哲学的思想方法在素质教育理论研究与实践上,具有宝贵的参考价值。在数学教育中,逻辑的作用很明显,其特征为,从已知知识出发,依据逻辑规则进行推导和演算,一步一步地达到对研究对象的认识。而直觉主义可以跳跃式地认知,虽然能一步得到正确答案,却无法说清楚其中的步骤。直觉主义虽排斥传统逻辑,但与逻辑关系十分密切,对培养良好的数学逻辑观念有着不可忽视的作用。另外,直觉主义有助于培养数学教育中大胆猜测的思维习惯。这种创新和探索精神有利于数学的进步和发展。

参考文献:

[1] 傅敏.直觉主义数学哲学研究及其对数学素质教育的启示[J].西北师范大学学报(自然科学版),1996(1).

[2] 诸葛殷同.对传统逻辑的有力挑战——评《经典逻辑与直觉主义逻辑》[J].哲学动态,1990(4).

[3] 柯华庆.直觉主义数学哲学的两个阶段[J].学术研究,2005(2).

[4] 保罗·贝纳塞拉夫(美),希拉里?普特南(美).数学哲学[M].北京:商务印书馆,2003.

[5] 黄秦安.数学哲学与数学 文化 [M].西安:陕西师范大学出版社,1999.

数学和哲学之间的关系,一直受到人们的探讨,有很多的论文都对数学和哲学作出了深刻的描写。以下是我精心整理的数学和哲学的关系论文的相关资料,希望对你有帮助!

摘要:本文首先介绍柏拉图的数学哲学思想,接着讲述一下数学哲学,再介绍必然性和先天性知识,接着介绍三大主义,以及数学哲学的现代发展,最后简单 总结 数学哲学。 关键词: 柏拉图 数学哲学 先天性 必然性知识 三大主义

正文:

一:柏拉图的数学哲学思想

柏拉图的数学哲学思想主要体现在数学本体论的问题上,而在数学的本体论问题上他采取了实在论的立场,即认为数学的对象是他所说的“理念世界”中的真实存在。柏拉图的这一认识是建立在对数学绝对真理性的信念之上的。他认为数学对象就是一种独立的、不依赖于人类思维的客观存在。

除去实在论的观点外,柏拉图还强调了数学认识活动的先天性。按柏拉图的观点,理念世界是理性认识的对象,而且,这种认识只能通过“对先天的回忆”得到实现;由于对象也是理念世界中的存在,因此,在柏拉图看来,数学就从属于研究理念的科学——“辨证法”,即是一种先天的认识。

另外,除去数学的先天性以外,柏拉图还强调数学认识在一般的理性认识中的作用:由于数学对象被说成是感性事物与理念之间的“中介对象”,因此,数学的认识也就具有一种“桥梁”作用,它能刺激人们,从而引起灵魂对“先天知识”的回忆。柏拉图说:“几何会把灵魂引向真理,产生哲学精神„„。”

二:数学哲学

数学在形式化和抽象化方向上的发展,数理逻辑和数学基础研究的进展,以及悖论的发现,开创了数学哲学的研究的新时期。

数学家们认为,数学是建立在一系列自明原则基础上的。一个数学家的责任是尽可能完全地发现由这些原则所得出的结论。他应该坦率地承认这些原则本身是一些明显的洞察,因而它们形成一个无可懈击的、永恒的基础。与此相反,哲学家会听任数学家去探索由这些原则得出结论;他对这些结论并不感兴趣。然而他必须对下述事实作出解释,即我们具有供我们使用的、此类自明性所适用的一些洞察力,他还需要说明与这些洞察有关的对象。他们同意数学的对象不属于物质世界,数学洞察不可能以 经验 作为依据,因为适合于数学原则的这类自明性决不属于我们的经验知识而是数学原则所特有的。

三:必然性和先天性知识

数学哲学在很大程度上是认识论——在哲学中处理认知和知识的部分——的一个分支。但是,数学至少表面上与其他求知的努力不同。特别是与科学追求的其他方面不同。数学命题,像7+5=12有时被当做必然真理的范例,简直不可能有其他情况。

科学家会乐意承认她的较为基本的论题可能是假的。这种谦恭被科学革命的历史所印证,在革命中,长期存在且深信不疑的信念被推翻了。数学也能严肃地支持这种谦恭吗?能怀疑数学归纳法对自然数成立吗?能怀疑5+7=12吗?有没有数学革命,其结果是推翻长期存在的核心的数学概念?恰恰相反,数学 方法 论似乎并不像科学那样是或必然性的。与科学不同,数学通过证明展开,一个成功的、正确的证明扫除了所有基于理性的怀疑,不仅仅

是所有有理由的怀疑。一个数学证明要表明它的前提逻辑地蕴涵它的结论。前提为真而结论为假是不可能的。

“先天”这个词的意思差不多是“先于经验”或“独立于经验”。它是一个认识论的概念,如果知识不是基于任何“关于现实世界中事件的特殊过程的经验”,那一个命题就定义为先天获知的。

有些哲学家认为不存在先天知识,而对其余的哲学家来说典型的先天知识包括“所有红色物体是有颜色的”和“没有什么东西能在同一时刻既是完全红的又是完全绿的”。数学似乎不像科学一样基于观察之上,而基于证明之上。

因此任何完整的数学哲学有义务说明数学的至少表面看起来的必然性和先天性。 四:三大主义

关于数学的逻辑及认识论的基础问题至今尚未完全解决。这问题无论对数学家或者哲学家都是至关紧要的,因为在“一切科学中最可靠的科学”的基础中,任何一点不确凿都将是令人极度不安的。迄今为解决这个问题而做出的各种努力中。还没有一种能称得上已经解决了所有困难。这些努力主要是沿着三个方向:以罗素为主要倡议者的逻辑主义,布劳威尔所提倡的直觉主义,和希尔伯特的形式主义。

数学基础的最重要问题之一是数学与逻辑的关系。逻辑主义的理论是数学能归约为逻辑,据此,数学无非是逻辑的一部分。逻辑主义的论点可以分为两部分,一是数学概念能通过明确的定义从逻辑概念中导出。另一部分是数学定理能通过纯粹的逻辑演绎从逻辑公理中推导出来。

直觉主义数学家建议把数学工作作为他的智力的一种自然功能,作为思想的一种自由的有生气的活动。在他看来,数学是人类精神的产物。他运用语言,不论是自然的或形式化的,只是为了交流思想,也就是使别人或自己能懂得他自己的数学想法。这个语言伴随物不是数学的代表,更不是数学本身。

立即处理数学的构造也许是最符合直觉主义者的积极态度了。这个构造的最重要基石是一的概念,它是整数序列所依赖的构造原则。整数必须作为单位来看待,这些单位仅仅由于在这个序列中的位置而相互区别。

希尔伯特证明论的主导思想是,即使经典数学的陈述从内容上说竟然是错误的,然而经典数学含有一个内在封闭的程序,这程序是按所有数学家都知道的固定规则操作的,它基本上在于相继地构造原始符号的一些组合,而这些组合被认为是“正确性”或“已被证明的”。而且这个构造程序是“有限性的”和直接构造性的。

五:数学哲学的现代发展

自20世纪50年代起数学哲学便进入了一个新的发展时期,与数学基础研究相比,这一新的发展表现出了一些显著的不同特点。

(1)研究立场的转移,即由严重脱离实际数学活动转移到了与其密切结合。具体地说,在数学基础研究中,尽管逻辑主义等学派提出了不同的主张,但他们所实际从事的都是一种趋于规范性的工作。现代数学哲学认为,数学哲学应当是数学家们工作中的“活的哲学”,即研究人员、教师和使用数学者对他们所从事的工作的哲学见解。

研究立场的转移直接导致了新的数学观念。例如,正是基于对数学家实际言行及数学史上实例的考察,经验主义才得以在现代数学哲学中“复兴”。

(2)研究的内容和方法表现出了明显的开放性,特别是由一般科学哲学中吸取了不少重要的研究问题和有益的思想,这就和以往的封闭式的数学基础研究大相径庭。

例如,I. Lakatos 所倡导的拟经验的数学观事实上就是将K. Popper 的证伪主义科学哲学理论推广应用到了数学的领域。又如,在T. Kuhn 的科学哲学研究的影响下,出现了关于数学的社会—— 文化 研究。显然,这关于数学的动态研究是与先前的研究传统,亦即单纯着

眼于数学知识的逻辑结构的静态分析大相径庭的。

另外,新的研究的又一重要特点则是突出强调了数学研究的社会性。最后,与实际的数学活动的密切联系也可看成为现代数学哲学研究开放性的一个重要表现。特别是,作为对于思想方法的研究,数学方法论的研究在现代得到了新的发展。

六:总结

数学和哲学是同门异户,声息相通的,你敲开一家门,另一家就会立刻向你敞开窗户。 数学哲学是在不断变化的,随着时代的发展,会有不同的表现,人们研究也会跟以前不一样。

参考文献

(1)《西方数学哲学》 夏基松 郑毓信 著

人民出版社 1986年1月出版 p10--p13

(2)《数学哲学译文集》自然科学哲学问题译丛 林夏水 主编

知识出版社 1986年7月出版 p24--p25

(3)《数学哲学--对数学的思考》西方数学文化理念传播译丛 丛书主编 汪宁

【美】斯图尔特·夏皮罗 著 郝兆宽 杨督之 译

复旦大学出版社 2009年2月出版 p20--p23

(4)《数学哲学》 【美】保罗·贝纳塞拉夫 希拉里·普特南 编

商务印书馆 2003年2月出版 p47--p76

(5)《徐利治读数学哲学》 徐利治 著

大连理工大学出版社 2008年1月出版 p73--p82

2012年4月6日

  • 索引序列
  • 关于的数学的论文参考文献
  • 关于数学电影的数学论文参考文献
  • 关于欧拉的数学论文的参考文献
  • 关于生活中的数学的论文参考文献
  • 关于数学与哲学的论文参考文献
  • 返回顶部