首页 > 学术期刊知识库 > 论文检测标高

论文检测标高

发布时间:

论文检测标高

现在很多同学都在准备毕业论文,写完了还需要查重。所以,他们在完成论文后,会先找一些论文初稿的查重系统来检测论文。那么,学校要求论文查重后的重复率多久才能通过呢? 1.如何知道查重率的要求? 每个学校对论文的标准都不一样。在没有通知的情况下,学生可以向老师或学长询问最近两年查重率的标准以及查重制度对论文的要求,一般不会有太大变化。 2.论文重复率在多大程度上符合要求的标准? 有些学校对查重的要求比较高。除了逻辑内容,重复率要达到合格标准。论文查重系统是根据检测系统拥有的数据库和设定的查重算法来判断论文查重系统中是否存在抄袭现象。我们都知道连续重复多少个词才算抄袭,其他的不用了解太多。 学生在写论文之前会受到他们读过的文章的影响。另外,如果论文里包含了很多专有名词,又没有其他的词来代替,这就会导致论文的重复率很高,所以论文要修改很多次。重复率降到10%左右,然后提交给学校。一般学校要求本科论文的重复率在20%左右。把论文重复率降到10%对大家来说比较靠谱。

硕士论文顺利通过查重的技巧有哪些?现在国内读硕士比较好,但是毕业的时候很严格,论文重复率要通过查重系统检测才能毕业。可以肯定的是,毕业越来越难了,不管好不好,因为打击学术造假的力度在不断加大,如果论文重复率不达标,毕业就很难了。但不用担心,如果你能看懂这篇文章,你成功通过知网硕士论文查重测试也就不难了。看你能不能按照下面的介绍去做了。自己做新课题的研究。其实硕士研究生顺利毕业最简单的就是自己做一个新课题的研究,选题的时候要有所创新,而不是去研究别人学了无数遍的内容。如果研究是别人做的,重复率自然高。当然,做新课题的研究需要更多的精力,这要看你有没有足够的时间,能不能认真做研究。如果你能做到,成功毕业并不难。学习语言创新,论文可以用幽默的风格写吗?当然,事实并非如此。我个人不推荐幽默的散文,但是同样的说法很多。如果你能掌握语言创新的技巧,你很容易成功毕业。知网硕士论文查重涉及的数据库会比较大,所以不管是不是研究内容,都有可能重复数据库中的内容,这就需要大家在写作的时候注意语言的运用,合理的改变语言的表达方式,而不仅仅是按照一般的说话习惯来写,这也是降低论文重复率的一种方法。当然,语言创新不是一件容易的事情,它需要人们平时积累更多的语言。但是,如果论文已经完成,但是重复率不达标,那么最基本的重复词替换,或者是被字句和把字句的变化,也会有助于降低重复率。以上就是硕士论文顺利通过论文查重的技巧有哪些的问题解答,希望能够帮助到大家。

在写毕业论文之前,我们需要注意的是,首先要明确我们学校的论文查重标准。只有知道大家在写论文的过程中才能保持警惕。请和paperfree小编一起来了解一下论文查重标准是什么? 不同学校的论文查重标准可能不同。一般来说,论文只能在定稿后查重。论文很难定稿。根据以往的经验,论文需要修改一稿、二稿、三稿、四稿,才能最终定稿。定稿后,可以对论文进行查重。一般来说,本科论文的重复率应该低于30%。通常,每个大学都要求每个人统一使用一个论文查重检测系统。有些学校的要求很严格,要求学生的重复率保持在20%左右,达到30%但不达到20%。需要导师和论文评审老师签字确认。如果老师和评审老师没有签字确认,学校不会承认这份查重报告,他们会要求学生继续降重。 还需要注意的是,不同的学校可能会采用不同的论文检测系统,不同的论文检测系统存在一定的误差。因此,我们仍然需要根据学校的具体情况进行分析,并根据学校要求的论文查重标准进行查重。论文查重检测是一件很重要的事情,大家一定要注意。还有就是查重不可能一次就能通过,所以大家一定要做好准备。

每个学校的标准是不一样的。用的查重软件可能也是不同的。

比如浙江大学要求各院系根据学科专业特点制定重复率要求,大部分院系小于10%,也有的定在15%、20%。

一般本科院校在30%以下,硕博等一般在10%以下,当然不同的学校要求也是不同的,也可能有些本科院校要求在10%以下,所以可以在检测修改前,问问自己的老师,确定一下,做到心中有数。剩下的就是努力检测并修改。

每个学校要求使用的论文检测系统也是不同的,比如某大学使用的是知网的论文查重检测系统,而定一个大学使用的是维普的论文检测系统,那么按照这样的标准,首先是肯定不能以一个确定的结果值进行衡量的。

因为对于不同的论文检测系统来说,算法和收录文献库的情况都不一样,有时候检测的差距大也是必然的,所以同学们在检测论文的时候,最好是先确定一下学校所使用的系统,后期一直使用即可。

比如学校要求使用维普的论文检测系统,同学们就没有必要再使用Paperpass。不然造成了浪费而且也不会有准确的检测结果。

扩展资料:

人民网:毕业论文查重要求更严格

如果要问今年毕业生的毕业季关键词,“论文查重”一定是其中之一。

社交媒体上,关于论文重复率要求降低的吐槽天天都有。据媒体报道,部分学校的毕业论文重复率要求从以前的30%以内下降到20%,有的学校甚至降到了8%。如果重复率过不了关,论文就进入不了答辩环节。

前不久,中共中央办公厅、国务院办公厅印发了《关于进一步弘扬科学家精神加强作风和学风建设的意见》。

在浙江大学人文学院党委副书记楼艳看来,学术规范是学风建设的重要内容。近日,她在接受科技日报记者采访时表示,学术规范是诚信底线,学生是未来的建设者和接班人,在学生时代就应该牢牢树立底线思维,具有“红线”意识。

“查重的目的,也是在学生中建立纪律观念和规则意识,教育学生要敬畏规则,遵守制度。”楼艳说。

不过,查重只是一种技术手段。中国教育科学研究院研究员储朝晖说,查重本身,解决不了学术不规范问题。有技术,就有规避技术的方法,这就是所谓的“道高一尺,魔高一丈”。而且,并不能简单认为重复率越低,论文就一定越好。

“有些论文需要对他人文章观点进行引用,只要标明出处,引用恰当,我们就认为它符合学术规范;如果引文内容不恰当,即便只有10%的重复率,也是不应该有的。”储朝晖强调,人不能被技术框死,要用更加专业的方式来判断论文质量。

浙江大学本科生院教务处副处长刘有恃认为,查重报告可以作为一种辅助判断工具,不过,低重复率不能作为学生毕业论文的唯一检验标准。

“我校要求各院系根据学科专业特点制定重复率要求,大部分院系小于10%,也有的定在15%、20%,还有学院由导师根据论文查重数据审核判断。”

他表示,在论文质量方面,相比结果管理,更应重视科学的过程管理,建立从课程教学—学位论文开题报告—中期检查—论文评审和论文答辩—论文评优等环节的全过程质量管理观念和质量管理体系,通过全过程的质量管理有效促进和保障学生学位论文质量的不断提高。

确实,提高育人质量,重点不仅在于加强对学生毕业论文的审核,还要加强对学生日常的学业管理。学风建设,也不在于毕业突击,而在于平时的潜移默化。

“大学应该要长期常规性开展学风建设工作,建立严格的学术规范和学术评价体系。”储朝晖说。楼艳也表示,学术规范训练是常态化的,要贯穿学生培养的整个过程。

比如,在新生入学教育时,人文学院就会专门安排“坚守学术规范”的报告,对学生的学术研究提出要求;前不久,人文学院还组织了第一届“学风特优班”暨“志学奖”评选活动。

刘有恃告诉科技日报记者,相信“严出”将是高校长期存在的“新常态”。“要切实增强在校学生责任感、紧迫感和使命感,不要在大学期间虚度光阴,错失成长良机。”

参考资料来源:人民网-毕业论文查重要求更严格

论文检测标点

知网检测论文,引用的参考文献并不是只有用插入尾注的方法引用参考文献才算引用,如果只是自己一个一个敲的也是算是引用的,只是引用一定得正确,必须符合以下四个标准。

一、参考文献标识一定要正确。

这里提及的参考文献标识是指的论文的最后,由“参考文献”四个字独占一行,你再在下面列出你所引用的各个参考文献的名称等等。记住,每一个参考文献都必须有正确且明显的标识,例如:[XXX]、(XXX)等,这个标识可以电脑生成,也可以自己手工打,但是一定得是正规的,不能有任何的其他标点符号。

二、不能有太长的引用内容。

不管你是不是标出了引用,我们都不能引用太长别人的文章,毕竟引用只是为了佐证自己的观点,如果大段大段地引用的话,不是为了扩充字数,那就只有被判定为“抄袭”了。

三、引用符号使用正确。

我们在论文的中间如果有引用文献,一定记住将引用符号标记上,如果没有引用符号的标记,那么是很有可能被直接标红的,而这种情况可以说是最多的。同时记住,引用的内容最好是在双引号之中,最后使用句号,如果双引号中间也有句号的话也会被标红视为抄袭的哦。

四、不要篡改原文。

在引用参考文献的时候,不要对别人的原话进行删改或者增加,不然也是会被视为抄袭的哦。

扩展资料:

参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。

按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。

然而,按照GB/T 7714-2015《信息与文献 参考文献著录规则》”的定义,文后参考文献是指:“为撰写或编辑论文和著作而引用的有关文献信息资源。“

根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为“对正文中某一内容作进一步解释或补充说明的文字”,列于文末并与参考文献分列或置于当页脚地。

参考资料来源:学术端系统-知网论文检测中如何引用文献才不会被标红?

论文查重系统判断抄袭的方式:1、和其他文献期刊、学位论文、网络学术文章,在语义上相识。2、大面积范围的引用,凑字数。第一种抄袭,分为两种,一种是有意识地抄袭,完全照搬其他地方的文献,网络学术文章数据,或者有部分修改。第二就是无意识的抄袭,可能完全是你自己写的,但是系统查出来你还是抄袭了,这就是无意识的抄袭,由于这种情况的不可判断,所以一般高校对于学位论文,是允许一定比例的相似的。一般在20%-30%左右。论文怎样算抄袭?第一核心语义相同,语句中往往存在着形容词,副词等一些修饰词,没有什么具体的意义存在。有的时候大家会把文献原文照搬过来然后加上一些修饰词,或者把语句的循序调换,其实这样做没有实际意义,对于目前的自然语言,大数据分析技术,这个已经不能躲避被查到抄袭了。完全没有任何变动的就更不用说了,肯定是抄袭的。目前可能存在一些学术方面的常用语,目前还不能很好的完全规避,需要指导老师进行人为的降重处理。就学术研究而言,被动抄袭的发生概率不会超过10%,只要是完全以实践为基础进行的学术报告,就不存在论文查重不过的情况。要想顺利毕业,还是要自己踏踏实实的做好学术研究才是正道。

就是本文,与网络上的文章,重复率有多少,抄袭的是多少。

目前,高校对于硕博士论文,需要通过抄袭检测系统的检测才能算过关。对本科生来说,大部分学校也采取抽查的方式对本科论文进行检测。抄袭过多,一经查出超过30%,后果严重。轻者延期毕业,重者取消学位。辛辛苦苦读个大学,学位报销了多不爽。但是,软件毕竟是人工设置的一种机制,里面内嵌了检测算法,我们只要摸清其中的机理,通过简单的修改,就能成功通过检测。本文是在网络收集的资料。整理了最重要的部分,供大家参考。论文抄袭检测算法:1.论文的段落与格式论文检测基本都是整篇文章上传,上传后,论文检测软件首先进行部分划分,上交的最终稿件格式对抄袭率有很大影响。不同段落的划分可能造成几十个字的小段落检测不出来。因此,我们可以通过划分多的小段落来降低抄袭率。2.数据库论文检测,多半是针对已发表的毕业论文,期刊文章,还有会议论文进行匹配的,有的数据库也包含了网络的一些文章。这里给大家透露下,很多书籍是没有包含在检测数据库中的。之前朋友从一本研究性的著作中摘抄了大量文字,也没被查出来。就能看出,这个方法还是有效果的。3.章节变换很多同学改变了章节的顺序,或者从不同的文章中抽取不同的章节拼接而成的文章,对抄袭检测的结果影响几乎为零。所以论文抄袭检测大师建议大家不要以为抄袭了几篇文章,或者几十篇文章就能过关。4.标注参考文献参考别人的文章和抄袭别人的文章在检测软件中是如何界定的。其实很简单,我们的论文中加了参考文献的引用符号,但是在抄袭检测软件中。都是统一看待,软件的阀值一般设定为1%,例如一篇文章有5000字,文章的1%就是50字,如果抄袭了多于50,即使加了参考文献,也会被判定为抄袭。5.字数匹配论文抄袭检测系统相对比较严格,只要多于20单位的字数匹配一致,就被认定为抄袭,但是前提是满足第4点,参考文献的标注。论文抄袭修改方法:首先是词语变化。文章中的专业词汇可以保留,尽量变换同义词;其次,改变文中的描述方式,例如倒装句、被动句、主动句;打乱段落的顺序,抄袭原文时分割段落,并重组。通过上述方法,能有效降低抄袭率。下面举几个例子,大家可以参考下:例句A:本文以设备利用率最大化为目标函数,采用整数编码与实数编码相结合的遗传算法,研究了HFS的构建问题。本文提出的染色体编码方法及相应的遗传操作方法可实现研究对象的全局随机寻优。通过对car系列标准算例的研究,显示了本文提出方法具有较高的计算重复性和计算效率。修改A:本文研究了HFS问题的构建,通过遗传算法并结合整数与实数编码,目标函数为最大化设备利用率来求解。本文的染色体编码方法与对应的遗传算法操作可有效提高算法的全局搜索能力。通过对一些列基准算例的研究,验证了本文算法的有效性,并具有较高的计算重复性和较高的运算效率。例句B:由于房地产商品的地域性强,房地产开发企业在进行不同区域投资时,通常需要建立项目公司,此时就会面临建立分公司还是子公司的选择。子公司是一个独立的法人,而分公司则不是独立法人,它们在税收利益方面存在差异。子公司是独立法人,在设立区域被视为纳税人,通常要承担与该区域其它公司一样的全面纳税义务;分公司不是独立的法人实体,在设立分公司的所在区域不被视为纳税人,只承担有限的纳税义务,分公司发生的利润与亏损要与总公司合并计算。修改B:房地产开发企业在不同区域进行投资时,由于此类商品的地域性强,因此需要建立项目公司。此时,企业需要选择建立分公司还是子公司。主要的区别是子公司具有独立的法人,分公司则不是独立法人。其次,在税收利益方面,由于分公司不是独立的法人实体,在设立分公司的所在区域不被视为纳税人,只承担纳税义务,总公司需要合并计算分公司的利润与亏损;而子公司是独立法人,在所在区域被视为法人实体,需要承担与区域其他公司一样的全面纳税义务。修改抄袭的方法不外乎这些,这里更建议同学们,先熟悉你所看的参考论文,关闭文档,用自己的话写出来,这样就不会受参考文献的太多影响。有同学这里就提出问题了,学校用的检测系统是知网的学术不端检测系统,不是淘宝几元钱买的万方数据检测。其实,各个检测系统的算法区别并不大,只是数据库有多有少,如果你没有太多,什么系统都不用怕。既然你抄了,得到检测报告的同时,先好好修改自己的文章。抄了之后,改相拟度,可以这样去头去尾留中间,意同词不同。一、查重原理1、知网学位论文检测为整篇上传,格式对检测结果可能会造成影响,需要将最终交稿格式提交检测,将影响降到最小,此影响为几十字的小段可能检测不出。对于3万字符以上文字较多的论文是可以忽略的。对比数据库为:中国学术期刊网络出版总库,中国博士学位论文全文数据库/中国优秀硕士学位论文全文数据库,国重要会议论文全文数据库,中国重要报纸全文数据库,中国专利全文数据库,个人比对库,其他比对库。部分书籍不在知网库,检测不到。2、上传论文后,系统会自动检测该论文的章节信息,如果有自动生成的目录信息,那么系统会将论文按章节分段检测,否则会自动分段检测。3、有部分同学反映说自己在段落中明明引用或者抄袭了其他文献的段落或句子,为什么没有检测出来,这是正常的。中国知网对该套检测系统的灵敏度设置了一个阀值,该阀值为5%,以段落计,低于5%的抄袭或引用是检测不出来的,这种情况常见于大段落中的小句或者小概念。举个例子:假如检测段落1有10000字,那么引用单篇文献500字以下,是不会被检测出来的。实际上这里也告诉同学们一个修改的方法,就是对段落抄袭千万不要选一篇文章来引用,尽可能多的选择多篇文献,一篇截取几句,这样是不会被检测出来的。4、一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。二、快速通过论文查重的七大方法方法一:外文文献翻译法查阅研究领域外文文献,特别是高水平期刊的文献,比如Science,Nature,WaterRes等,将其中的理论讲解翻译成中文,放在自己的论文中。优点:1、每个人语言习惯不同,翻译成的汉语必然不同。因此即使是同一段文字,不同人翻译了之后,也 不会出现抄袭的情况。2、外文文献的阅读,可以提升自身英语水平,拓展专业领域视野。缺点:英文不好特别是专业英文不好的同学实施起来比较费劲。方法二:变化措辞法将别人论文里的文字,或按照意思重写,或变换句式结构,更改主被动语态,或更换关键词,或通过增减。当然如果却属于经典名句,还是按照经典的方法加以引用。优点:1.将文字修改之后,按照知网程序和算法,只要不出现连续13个字重复,以及关键词的重复,就不会被标红。2.对论文的每字每句都了如指掌,烂熟于心,答辩时亦会如鱼得水。缺点:逐字逐句的改,费时费力。方法三:减头去尾,中间换语序将别人论文里的文字,头尾换掉中间留下,留下的部分改成被动句,句式和结构就会发生改变,再自行修改下语病后,即可顺利躲过查重。优点:方便快捷,可以一大段一大段的修改。缺点中文没学好的,会很费劲,要想半天。方法四:转换图片法将别人论文里的文字,截成图片,放在自己的论文里。因为知网查重系统目前只能查文字,而不能查图片和表格,因此可以躲过查重。优点:比改句序更加方便快捷。缺点:用顺手了容易出现整页都是图片的情况,会影响整个论文的字数统计。方法五:插入文档法将某些参考引用来的文字通过word文档的形式插入到论文中。优点:此法比方法四更甚一筹,因为该方法日后还可以在所插入的文档里进行重新编辑,而图片转换法以后就不便于再修改了。缺点:还没发现。方法六:插入空格法将文章中所有的字间插入空格,然后将空 格 字 间距调到最小。因为查重的根据是以词为基础的,空格切断了词语,自然略过了查重系统。优点:从查重系统的原理出发,可靠性高。缺点:工作量极大,课可以考虑通过宏完成,但宏的编制需要研究。方法七:自己原创法自己动手写论文,在写作时,要么不原文复制粘贴;要么正确的加上引用。优点:基本上绝对不会担心查重不通过,哪怕这个查重系统的阈值调的再低。缺点:如果说优缺点的话,就是写完一篇毕业论文,可能会死掉更多的脑细胞。呵呵。。。知网系统计算标准详细说明:1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗?学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢?最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%. 请明示超过多少算是警戒线?百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。3.如何防止学位论文学术不端行为检测系统成为个人报复的平台?这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么?我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭?检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,如果是您描述的这种情况,专家会有相应判断。我们的系统只是提供各种线索和依据,让人能够快速掌握检测文献的信息。6.知网检测系统的权威性?学术不端文献检测系统并不下结论,即检测系统并不对检测文献定性,只是将检测文献中与其他已发表文献中的雷同部分陈列出来,列出客观事实,而这篇检测文献是否属于学术不端,需专家做最后的审查确认。一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。论文查重修改的规律:1、如果是引用,在引用标号后,不要轻易使用句号,如果写了句号,句号后面的就是剽窃了(尽管自已认为是引用),所以,引用没有结束前,尽量使用分号。有些人将引用的上标放在了句号后面,这是不对的,应该在句号之前。2、可以将文字转换为表格,将表格边框隐藏。3、如果你看的外文的多,由外文自己翻译过来引用的,个人认为,不需要尾注,就可以当做自己的,因为查重的数据库只是字符的匹配,无法做到中文和英文的匹配。4、查重是一个匹配的过程,是以句为单位,如果一句话重复了,就很容易判定重复了,所以:的确是经典的句子,就用上标的尾注的方式,在参考文献中表达出来,或者是用:原文章作者《名字》和引号的方式,将引用的内容框出来。引号内的东西,系统会识别为引用如果是一般的引用,就采用罗嗦法,将原句中省略的主语、谓语、等等添加全,反正哪怕多一个字,就是胜利,也可以采用横刀法,将一些句子的成分,去除,用一些代词替代。或者是用洋鬼子法,将原文中的洋名,是中文的,就直接用英文,是英文的直接用中文,或是哦中文的全姓名,就用中文的名,如果是中文的名,就找齐了,替换成中文的姓名。故意在一些缩写的英文边上,加上(注释)(画蛇添足法),总之,将每句话都可以变化一下,哪怕增加一个字或减少一个字,都是胜利了。特别注意标点符号,变化变化,将英文的复合句,变成两个或多个单句,等等,自己灵活掌握。因为真正写一篇论文,很罕见地都是自己的,几乎不可能,但大量引用别人的东西,说明你的综合能力强,你已经阅读了大量的资料,这就是一个过程,一个学习、总结的过程。所有的一切,千万别在版面上让导师责难,这是最划不来的。导师最讨厌版面不规范的,因为他只负责内容,但又不忍心因为版面问题自己的弟子被轰出来。5、下面这一条我傻妞试过的,决对牛B:将别人的文字和部分你自己的文字,选中,复制(成为块,长方形),另外在桌面建一个空文件,将内容,复制到文件中,存盘,关闭。将这个文件的图标选中,复制,在你的正文中的位置上,直接黏贴,就变成了图片了,不能编辑的。这个操作事实上是将内容的文件作为一个对象插入的,所以是图片。这个操作事实上是将内容的文件作为一个对象插入的。所以是图片。以上那些东西再次总结一下:查重是一个匹配的过程,是以句为单位,如果一句话重复了,就很容易判定重复了,所以:1)如果的确是经典的句子,就用上标的尾注的方式,在参考文献中表达出来。2)如果是一般的引用,就采用罗嗦法,将原句中省略的主语、谓语、等等添加全,反正哪怕多一个字,就是胜利。3)也可以采用横刀法,将一些句子的成分,去除,用一些代词替代。4)或者是用洋鬼子法,将原文中的洋名,是中文的,就直接用英文,是英文的直接用中文,或是中文的全姓名,就用中文的名,如果是中文的名,就找齐了,替换成中文的姓名。5)故意在一些缩写的英文边上,加上(注释)(画蛇添足法),总之,将每句话都可以变化一下,哪怕增加一个字或减少一个字,都是胜利了。6)如果是引用,在引用标号后,不要轻易使用句号,如果写了句号,句号后面的就是剽窃了(尽管自已认为是引用),所以,引用没有结束前,尽量使用分号。有些人将引用的上标放在了句号后面,这是不对的,应该在句号之前。7)可以将文字转换为表格、表格基本是查重不了的,文字变成图形、表格变成图形,一目了然,绝对不会检查出是重复剽窃了。论文查重修改学校的要求:1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

论文检测标题

论文标题是不参与查重的。要想知道标题是不是参与查重,验证方法很简单,只要看看以往的检测报告,看看标题有没有标红,一看便知,标题都没有被标红,而且标题都不会显示在报告正文里面。

知网查重应该根据论文类型来选,比如说期刊投稿一定选择知网期刊检测系统,本科论文选择pmlc系统,硕博论文选择vip系统。比如问工程硕士论文可以用知网吗,也是属于硕士论文,当然可以用,而且要用vip系统。

扩展资料

知网学位论文检测为整篇上传,格式对检测结果可能会造成影响,需要将最终交稿格式提交检测,将影响降到最小,此影响为几十字的小段可能检测不出。对于3万字符以上文字较多的论文是可以忽略的。

大概当今所有的研究生毕业论文都会经过中国知网的“学术不端检测”,即便最后不被盲审。这个系统的初衷其实是很好的,在一定程度上能够对即将踏入中国科研界的硕士研究生们一个警示作用:杜绝抄袭,踏实学问。

参考资料来源:

百度百科——论文检测服务

查,标题重复问题不大,主要是内容重复率不能太高。

每个学校的标准不太一样,原则上是所有的字包括标题都会查的。

每逢毕业季,高校学生都需要进行论文写作,在进行论文写作的过程中,学术不端行为时有发生,因此教育局和国家各个部门都加大了对学术不端行为的严厉打击力度。一个明显的措施是各大高校对论文查重的要求变得更加严格,论文查重对于学生非常重要。如果毕业论文不能顺利通过论文查重,就不能顺利毕业。下面让我们来看看论文的哪些部分是需要进行查重的。高校对于论文的查重非常严格,所以同学们在写论文的时候要认真准备,要有原创性,避免后续论文重复率高。如果论文重复率偏高,每个人都会面临非常痛苦的修改步骤。通常论文检测主要包括论文的标题、摘要、前言和正文部分,而论文的正文部分占据了很大的篇幅。图片、公式、图标等,不参与论文查重,但是要非常注意,论文的整体格式一定要设置好。如果设置不好,会影响论文查重的结果。如前所述,图片、公式、图标等。不参与论文检测,在对论文重复率进行降低时,如果遇到非常难以修改的重复内容,可以使用插入图片的方法,也可以使用一些降重技巧来修改这些句子。最后,值得注意的是,论文中的参考文献不需要参与检测,只要格式设置正确,参考文献就不会参与检测,因此,论文的格式很重要,所以要确保格式正确。

论文检测标红和标橙

篇论文提交上传至论文查重系统检测后,论文查重系统会将论文内容进行分割,通常是按照论文格式来进行划分,然后将划分好的论文一一与论文查重系统中的数据库资源进行比对,检测出有相似重复的内容就会将这些内容进行标注,标记红色或者黄色。当然每个查重系统会存在着差异,划分内容的范围多少是有区别的。

以知网为例,知网除了全文查重率和去除引用文献查重率部分,还有论文章节查重率部分,每章节的查重率是指论文章节的重复字数占此章节的总字数。此前不就更新的知网查重系统既可以查文字部分,也可以查代码、公式、表格、图片甚至一些英语的重复率,所以,知网检测论文的查重率这些内容也是包含在内。

一般说来,论文查重率 = 论文中重复字数/论文总字数*100%。以知网论文查重系统举例来说,目前知网论文查重主要包括有五个查重子系统,当然这些查重子系统的规则算法都是相同的,也就是说知网检测论文重复率的规则算法是统一的,只是系统数据库存在着一些差异,对应着不同的论文类型。

参考资料:《论文查重是怎么计算重复率的?》

以paperpp论文查重系统为例,橙色字表示轻度抄袭,红色表示严重抄袭,绿色表示合格。不同的查重系统用来表示这些意思的颜色会不一样,具体还是要看查重网站的说明。

查重时:标红表示相似度较高,在70以上;标黄表示相似度在40%-70%之间,相似度不如红色那么高。

相似度计算公式 : (句子1相似度+句子2相似度+...+句子n相似度)/ n,句子相似度范围,绿色句子相似度按照0计算。

知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足下面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。

扩展资料:

“毕业论文知网重复率修改技巧十则”,论文修改技巧十个原则具体如下:

修改技巧【1】:反抄袭软件知网论文检测到13个相同的字,就认为是雷同,所以连续相同的,不要超过13个字;

修改技巧【2】:尽量用同义词替代,比如:损坏=破坏;渠道=途径;原理=基本思路;不可见=隐藏;优点尤其突出=优势尽显无疑

修改技巧【3】:改变句子的主动被动语态,比如:数字水印为多媒体数据文件在认证、防伪、防篡改、保障数据安全和完整性等方面提供了有效的技术手段。=在多媒体制品的认证、防伪、防修改和传送安全以及完整性保障方面,可以采用数字水印的检测作为有力的检测手段。

修改技巧【4】:可以将文字转换为表格、表格基本是查重不了的,文字变成图形、表格变成图形,一目了然,绝对不会被知网论文检测检查出是重复剽窃了。

修改技巧【5】:故意在一些缩写的英文边上,加上(注释)(画蛇添足法),总之,将每句话都可以变化一下,哪怕增加一个字或减少一个字,都是胜利了。

修改技巧【6】:如果是引用,在引用标号后,不要轻易使用句号,如果写了句号,句号后面的就是剽窃了(尽管自己认为是引用),所以,引用没有结束前,尽量使用分号。有些人将引用的上标放在了句号后面,这是不对的,应该在句号之前。

修改技巧【7】:可以将文字转换为表格、表格基本是查重不了的,文字变成图形、表格变成图形,一目了然,绝对不会检查出是重复剽窃了。

修改技巧【8】:特别注意标点符号的变化,将英文的复合句,变成两个或多个单句等等,自己灵活掌握。

修改技巧【9】:如果大概知道本校的答辩成员的名单,就有意无意引用他们的东西,让他们高兴一点,答辩顺利点,但一定要看懂。让答辩组成员认为你真的认真拜读过他的文章。

修改技巧【10】:以上是对于中文的资料的引用的问题,如果你看的外文多,自己将外文翻译过来引用的,不需要尾注,可以当作自己的。因为知网论文检测的数据库只是字符的匹配,无法做到中英文的匹配。另一方面,你自己找到的外文资料,你付出了劳动,你自己翻译的,你也付出了劳动,基本可以算你自己的劳动了。

以知网查重系统报告为例,目前在知网硕博系统,以及本PMLC系统报告里,红色是代表有抄袭重复的部分,绿色是代表引用重复的部分。引用也是算到总重复里面,都需要做修改的。

yolo目标检测论文

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

YOLO v1:You Only Look Once: Unified, Real-Time Object Detection YOLO v2:YOLO9000:Better,Faster,Stronger YOLO v3:YOLOv3: An Incremental Improvement

近几年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN),它们是two-stage的,需要先使用启发式方法(selective search)或者CNN网络(RPN)产生Region Proposal,然后再在Region Proposal上做分类与回归。而另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个CNN网络直接预测不同目标的类别与位置。第一类方法是准确度高一些,但是速度慢,但是第二类算法是速度快,但是准确性要低一些。这里我们谈的是Yolo-v1版本算法,其性能是差于后来的SSD算法的,但是Yolo后来也继续进行改进,产生了Yolo9000、YOLO v3算法。

传统方法常采用滑动窗口法,滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如 DPM 就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置不同大小和比例的窗口去滑动,而且还要选取合适的步长。但是这样会产生很多的子区域,并且都要经过分类器去做预测,这需要很大的计算量,所以你的分类器不能太复杂,因为要保证速度。解决思路之一就是减少要分类的子区域,这就是R-CNN的一个改进策略,其采用了 selective search 方法来找到最有可能包含目标的子区域(Region Proposal),其实可以看成采用启发式方法过滤掉很多子区域,这会提升效率。

如果你使用的是CNN分类器,那么滑动窗口是非常耗时的。但是结合卷积运算的特点,我们可以使用CNN实现更高效的滑动窗口方法。这里要介绍的是一种全卷积的方法,简单来说就是网络中用卷积层代替了全连接层,如图所示。输入图片大小是16x16,经过一系列卷积操作,提取了2x2的特征图,但是这个2x2的图上每个元素都是和原图是一一对应的,如图上蓝色的格子对应蓝色的区域,这不就是相当于在原图上做大小为14x14的窗口滑动,且步长为2,共产生4个字区域。最终输出的通道数为4,可以看成4个类别的预测概率值,这样一次CNN计算就可以实现窗口滑动的所有子区域的分类预测。这其实是overfeat算法的思路。之所可以CNN可以实现这样的效果是因为卷积操作的特性,就是图片的空间位置信息的不变性,尽管卷积过程中图片大小减少,但是位置对应关系还是保存的。这个思路也被R-CNN借鉴,从而诞生了Fast R-cNN算法。

上面尽管可以减少滑动窗口的计算量,但是只是针对一个固定大小与步长的窗口,这是远远不够的。Yolo算法很好的解决了这个问题,它不再是窗口滑动了,而是直接将原始图片分割成互不重合的小方块,然后通过卷积最后生产这样大小的特征图,基于上面的分析,可以认为特征图的每个元素也是对应原始图片的一个小方块,然后用每个元素来可以预测那些中心点在该小方格内的目标,这就是Yolo算法的朴素思想。

整体来看,Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,整个系统如图所示:首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。

具体来说,Yolo的CNN网络将输入的图片分割成 网格,然后每个单元格负责去检测那些中心点落在该格子内的目标,如图所示,可以看到狗这个目标的中心落在左下角一个单元格内,那么该单元格负责预测这个狗。每个单元格会预测B个边界框(bounding box)以及边界框的 置信度 (confidence score)。所谓置信度其实包含两个方面,一是这个边界框含有目标的可能性大小,二是这个边界框的准确度。前者记为 ,当该边界框是背景时(即不包含目标),此时 。而当该边界框包含目标时, 。边界框的准确度可以用预测框与实际框(ground truth)的 IOU (intersection over union,交并比)来表征,记为 IOU 。因此置信度可以定义为 。

很多人可能将Yolo的置信度看成边界框是否含有目标的概率,但是其实它是两个因子的乘积,预测框的准确度也反映在里面。边界框的大小与位置可以用4个值来表征:(x,y,h,w),其中(x,y)是边界框的中心坐标,而w和h是边界框的宽与高。还有一点要注意,中心坐标的预测值(x,y)是相对于每个单元格左上角坐标点的偏移值,并且单位是相对于单元格大小的,单元格的坐标定义如图所示。而边界框的w和h预测值是相对于整个图片的宽与高的比例,这样理论上4个元素的大小应该在[0,1]范围。这样,每个边界框的预测值实际上包含5个元素:(x,y,w,h,c),其中前4个表征边界框的大小与位置,而最后一个值是置信度。

值得注意的是,不管一个单元格预测多少个边界框,其只预测一组类别概率值,这是Yolo算法的一个缺点,在后来的改进版本中,Yolo9000是把类别概率预测值与边界框是绑定在一起的。同时,我们可以计算出各个边界框类别置信度(class-specificconfidence scores):

边界框类别置信度表征的是该边界框中目标属于各个类别的可能性大小以及边界框匹配目标的好坏。后面会说,一般会根据类别置信度来过滤网络的预测框。

总结一下,每个单元格需要预测 个值。如果将输入图片划分为 网格,那么最终预测值为 大小的张量。整个模型的预测值结构如下图所示。对于PASCALVOC数据,其共有20个类别,如果使用S=7,B=2,那么最终的预测结果就是 大小的张量。在下面的网络结构中我们会详细讲述每个单元格的预测值的分布位置。

Yolo采用卷积网络来提取特征,然后使用全连接层来得到预测值。网络结构参考GooLeNet模型,包含24个卷积层和2个全连接层,如图所示。对于卷积层,主要使用1x1卷积来做channle reduction,然后紧跟3x3卷积。对于卷积层和全连接层,采用Leaky ReLU激活函数:max(x,0)。但是最后一层却采用线性激活函数。除了上面这个结构,文章还提出了一个轻量级版本Fast Yolo,其仅使用9个卷积层,并且卷积层中使用更少的卷积核。

可以看到网络的最后输出为 大小的张量。这和前面的讨论是一致的。这个张量所代表的具体含义如图所示。对于每一个单元格,前20个元素是类别概率值,然后2个元素是边界框置信度,两者相乘可以得到类别置信度,最后8个元素是边界框的(x,y,w,h)。大家可能会感到奇怪,对于边界框为什么把置信度c和(x,y,w,h)都分开排列,而不是按照(x,y,w,h,c)这样排列,其实纯粹是为了计算方便,因为实际上这30个元素都是对应一个单元格,其排列是可以任意的。但是分离排布,可以方便地提取每一个部分。这里来解释一下,首先网络的预测值是一个二维张量P,其shape为 。

采用切片,那么 就是类别概率部分; 是置信度部分; 是边界框的预测结果。这样,提取每个部分是非常方便的,这会方面后面的训练及预测时的计算。

在训练之前,先在ImageNet上进行了预训练,其预训练的分类模型采用图中前20个卷积层,然后添加一个average-pool层和全连接层。预训练之后,在预训练得到的20层卷积层之上加上随机初始化的4个卷积层和2个全连接层。由于检测任务一般需要更高清的图片,所以将网络的输入从224x224增加到了448x448。整个网络的流程如下图所示:

损失函数计算如下:

其中第一项是边界框中心坐标的误差项, 指的是第i个单元格存在目标,且该单元格中的第j个边界框负责预测该目标。第二项是边界框的高与宽的误差项。第三项是包含目标的边界框的置信度误差项。第四项是不包含目标的边界框的置信度误差项。而最后一项是包含目标的单元格的分类误差项, 指的是第i个单元格存在目标。

在说明Yolo算法的预测过程之前,这里先介绍一下非极大值抑制算法(non maximum suppression, NMS),这个算法不单单是针对Yolo算法的,而是所有的检测算法中都会用到。NMS算法主要解决的是一个目标被多次检测的问题,如图中人脸检测,可以看到人脸被多次检测,但是其实我们希望最后仅仅输出其中一个最好的预测框,比如对于美女,只想要红色那个检测结果。那么可以采用NMS算法来实现这样的效果:首先从所有的检测框中找到置信度最大的那个框,然后挨个计算其与剩余框的IOU,如果其值大于一定阈值(重合度过高),那么就将该框剔除;然后对剩余的检测框重复上述过程,直到处理完所有的检测框。

下面就来分析Yolo的预测过程,这里我们不考虑batch,认为只是预测一张输入图片。根据前面的分析,最终的网络输出是 ,但是我们可以将其分割成三个部分:类别概率部分为 ,置信度部分为 ,而边界框部分为 (对于这部分不要忘记根据原始图片计算出其真实值)。然后将前两项相乘可以得到 类别置信度值为 ,这里总共预测了 边界框。

所有的准备数据已经得到了,那么先说第一种策略来得到检测框的结果。首先,对于每个预测框根据类别置信度选取置信度最大的那个类别作为其预测标签,经过这层处理我们得到各个预测框的预测类别及对应的置信度值,其大小都是[7,7,2]。一般情况下,会设置置信度阈值,就是将置信度小于该阈值的box过滤掉,所以经过这层处理,剩余的是置信度比较高的预测框。最后再对这些预测框使用NMS算法,最后留下来的就是检测结果。一个值得注意的点是NMS是对所有预测框一视同仁,还是区分每个类别,分别使用NMS。Ng在中讲应该区分每个类别分别使用NMS,但是看了很多实现,其实还是同等对待所有的框,可能是不同类别的目标出现在相同位置这种概率很低吧。

上面的预测方法应该非常简单明了,但是对于Yolo算法,其却采用了另外一个不同的处理思路(至少从C源码看是这样的),其区别就是先使用NMS,然后再确定各个box的类别。其基本过程如图所示。对于98个boxes,首先将小于置信度阈值的值归0,然后分类别地对置信度值采用NMS,这里NMS处理结果不是剔除,而是将其置信度值归为0。最后才是确定各个box的类别,当其置信度值不为0时才做出检测结果输出。这个策略不是很直接,但是貌似Yolo源码就是这样做的。Yolo论文里面说NMS算法对Yolo的性能是影响很大的,所以可能这种策略对Yolo更好。

总结一下Yolo的优缺点。首先是优点,Yolo采用一个CNN网络来实现检测,是单管道策略,其训练与预测都是end-to-end,所以Yolo算法比较简洁且速度快。第二点由于Yolo是对整张图片做卷积,所以其在检测目标有更大的视野,它不容易对背景误判。另外,Yolo的泛化能力强,在做迁移时,模型鲁棒性高。

Yolo的缺点,首先Yolo各个单元格仅仅预测两个边界框,而且属于一个类别。对于小物体,Yolo的表现会不如人意。这方面的改进可以看SSD,其采用多尺度单元格。也可以看Faster R-CNN,其采用了anchor boxes。Yolo对于在物体的宽高比方面泛化率低,就是无法定位不寻常比例的物体。当然Yolo的定位不准确也是很大的问题。

参考链接 YOLO算法的原理与实现

  • 索引序列
  • 论文检测标高
  • 论文检测标点
  • 论文检测标题
  • 论文检测标红和标橙
  • yolo目标检测论文
  • 返回顶部