首页 > 学术期刊知识库 > 数学小论文初三

数学小论文初三

发布时间:

初三数学小论文

上面的好长啊~我也来答:生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:…而…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的…处。音乐家们则认为将琴马放在琴弦的…处会使琴声更柔和甜美。 数…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的处,效率将大大提高,这种方法被称作“法”,实践证明,对于一个因素的问题,用“法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。

数学论文.html 高中生数学成绩分化的原因与对策 在初中数学教学中渗透数学思想和数学方法 谈小学数学教学与中学的衔接 谈小学数学教学在素质教育中的地位作用及其课堂教学 自然数集扩充后的基数理论 中学生数学学习的心理障碍及其消除 中学数学教科书中的开放题 求新 求活 求近 —精心设计习题,激发作业兴趣 提高学生数学素养的探讨 中学数学教学方法的中西比较研究 参数方程在解题中的广泛应用 关于三角教材与教法的新思考 提高小学数学课堂教学效率的几点思考 提高小学数学课堂教学效率的基本要求 提高小学数学教学质量的两点体会 提高数学课堂教学效率的一种有效形式——“班内分层教学”初探 为创新而学习——倡导机智速算 鼓励赢在创新 把握好学生动手操作的时机 2 对《新世纪小数学教材》的初步认识 运用多媒体技术上好《新世纪小学数学教科书》 一个中学数学教师的困惑 新世纪数学课程改革呼唤教师角色的转变 PowerPoint巧做教学投影片 抓教材·导学法·促思维--从两个教学片段,看学法指导与学生思维能力的培养 小学数学竞赛活动与素质教育 小学数学概念的创造性教学 数控技术与产业发展途径探讨 发挥计算机的潜力推进数学教学改革 研究突发事件——数学金融学的重要课题 数学中的问题解决 世界银行关于中国GDP数据的调整及其存在的问题 支出法国内生产总值的构成指标与有关统计指标之间的相互关系 关于进一步改革和完善贸易统计制度方法的宏观思考 GDDS的主要内容 辽宁省地方财政科技三项费用投入状况分析研究 辽宁可持续发展能力分析——兼论加强辽宁可持续发展能力建设 要坚定不移地抓好农业这个根本——对海南农业发展的思考 消费及其与经济增长关系的研究 OECD主要国家软件业发展概况 在小学数学教学中开展有意义学习活动的尝试 在小学数学教学中培养学生的思维能力 在小学数学教学中培养儿童的观察能力 在小学数学教学中巧妙安排教学过程的尝试 小学数学教学评价改革初探 “参与探究型”结构在小学数学新授课中的应用 加强小学数学教学中说的训练 低年级小学数学教学中常用的学具和主要使用方法 批改小学数学作业的几种策略 关于小学数学课堂教学评价的构想 浅谈比较法在小学数学教学中的应用 提高小学数学教学质量的两点体会 2 小学数学教学过程最优化的探讨 小学数学教学中发散思维的培养 小学数学教学中实施素质教育应注意的几个问题 在小学数学教学中对学生进行数学基本思想方法的 “问题解决”和中学数学课程 小学数学活动课的开设原则与形式 关键是创设问题情境——引导学生自主学习的教学体会点滴 如何激发学生的数学学习动机 重视高中女生数学能力的培养 五点一线备一课 浅论数学直觉思维及培养 素质教育背景下小学生自主参与数学课堂学习活动探究 遵循尝试教学规律 给学生创设思维的空间——《分数四则混合运算》教学简评 把握好学生动手操作的时机 对现行高中数学教材中几个问题的探讨 数学教学中的课程观 小学数学教学中几种主要思维能力及其关系 阅读教学新理念剪影 小学数学教学要重视质疑 回归生活学数学 把问题解决贯串于数学教学的全过程 女孩缺乏数学才能? 数学课堂教学的心理障碍及对策 浅谈数学活动中的情感教学 对有数学天赋的学生的施教对策初探 中国能走向数学强国吗? 在数学活动中促进学生的发展 小学数学自主解决问题课堂教学模式的研究 数学美与数学教学 采访质量控制数学模型研究 数学教学如何培养学生的学习兴趣 如何在数学教学中体现新理念 我们的学生真聪明 大班“小超市”数学活动 一节数学课的启迪 数学课堂中的“数学化” 数学美的哲学断想 小学数学教学中几种主要思维能力及其关系 从课程功能的转变看小学数学教学改革 课堂教学应加强对学生数学应用意识的培养 谈计算题的总复习 谈数学解题的规范 谈数学教学中的游戏设计 谈数学活动课与学科课及数学活动的联系与区别 谈如何转化中学数学学业不良的学生 谈练习及练习设计 谈如何培养学生的解题能力 谈如何培养学生的审题能力 谈幻灯投影在小学数学教学中的作用 谈复习中数学试卷的讲评 探索,猜想,论证 提高初中数学教学质量的做法 提高空间想象力的有效途径 提高平面几何教学质量之管见 谈在数学教学中如何体现学生的主体地位 谈小学数学课的导入和课末的小结 加强数学实验教学 推进新课程改革 “活动”——数学的生命 探究性教学在数学教学的实践探索 关注学生发展 实现动态生成——“面积和面积单位”说课设计 “问题解决”和中学数学课程 小学数学活动课的开设原则与形式 关键是创设问题情境——引导学生自主学习的教学体会点滴 如何激发学生的数学学习动机 重视高中女生数学能力的培养 五点一线备一课 浅论数学直觉思维及培养 素质教育背景下小学生自主参与数学课堂学习活动探究 遵循尝试教学规律 给学生创设思维的空间——《分数四则混合运算》教学简评 把握好学生动手操作的时机 对现行高中数学教材中几个问题的探讨 数学教学中的课程观 小学数学教学中几种主要思维能力及其关系 阅读教学新理念剪影 小学数学教学要重视质疑 回归生活学数学 把问题解决贯串于数学教学的全过程 女孩缺乏数学才能? 数学课堂教学的心理障碍及对策 浅谈数学活动中的情感教学 对有数学天赋的学生的施教对策初探 中国能走向数学强国吗? 在数学活动中促进学生的发展 小学数学自主解决问题课堂教学模式的研究 数学美与数学教学 采访质量控制数学模型研究 大班“小超市”数学活动 一节数学课的启迪 数学课堂中的“数学化” 数学美的哲学断想 小学数学教学中几种主要思维能力及其关系 从课程功能的转变看小学数学教学改革 课堂教学应加强对学生数学应用意识的培养 谈计算题的总复习 谈数学解题的规范 谈数学教学中的游戏设计 谈数学活动课与学科课及数学活动的联系与区别 谈如何转化中学数学学业不良的学生 谈练习及练习设计 谈如何培养学生的解题能力 谈如何培养学生的审题能力 谈如何培养学生的提问能力 谈幻灯投影在小学数学教学中的作用 谈复习中数学试卷的讲评 探索,猜想,论证 提高初中数学教学质量的做法 提高空间想象力的有效途径 提高平面几何教学质量之管见 谈在数学教学中如何体现学生的主体地位 谈小学数学课堂提问艺术 谈小学数学课的导入和课末的小结 谈谈“暴露式”的数学教学过程 不可忽视高三册英语复习 一九九七年中考英语走向和应考对策 把握知识点注重实践性 初三英语重点难点解析 高二册9—12课语言要点归纳与扩展 高一英语(SEFC)教学调研与思考 高中英语阅读选修课的选材及教学方法的新尝试 巧讲语言点二题 如何培养中学生的阅读能力 谈高中英语教学中的几个重要环节 小学英语课堂教学中的笔头练习 形容词、副词的比较级 ——中考典型试题例析 学习得法事半功倍 英语复合句的用法及解题技巧 英语格言警句——在教学中的应用 在低年级英语教学中激发兴趣例谈 怎样加深英语课的概念理解 怎样进行初中英语总复习 综合编排教学法的原则与方法 比较的特殊表达法初探 测试改革是全面贯彻英语新《大纲》的保证 初中英语活动课研究实验的尝试 初中英语教学点滴谈 初中英语课堂目标教学初探

关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 写的不好,多多包涵!!

生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:…而…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的…处。音乐家们则认为将琴马放在琴弦的…处会使琴声更柔和甜美。 数…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的处,效率将大大提高,这种方法被称作“法”,实践证明,对于一个因素的问题,用“法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。

数学小论文初三

自己网上去查一篇啊 而且悬赏分也没有.....

曾经有数学家说:圆是最完美的形状。在日常生活中也有许多地方要用圆:汽车、火车的轮子都是圆的,我们在搬重物的时候可以把物体放在圆柱或圆管上。有其他形状可以代替圆吗?在不断的探索失败和进一步探索中,我逐渐发现了一个与圆有着许多相似作用的图形——“等宽曲线”。并在这次数学的探索之旅中体会到了探求数学之谜的艰辛,感受到了探索成功的喜悦。一、问题的提出:大街上车水马龙,车来车往,每一辆汽车的轮子都是圆的;我们在搬重物的时候,会把物体放在圆柱或圆管上。看到这些,我非常疑惑:为什么它们都是圆的而不是其他形状的呢?这个问题困扰我很久,直到这个学期我们学习“圆”这一课时,老师在课件中为我们演示了三角形轮子与正方形轮子的可笑表演后,我才明白:把车轮做成圆形,车轴安在圆心上,车轴离开地面的距离,就总是等于车轮半径那么长。这样车轮在地面上就容易滚动了。假如这个轮子是方形、三角形的,从轮缘到轮子圆心的距离各不相等,那么,这种车子走起来,一定会忽高忽低,震动的很厉害。因此车轮都是圆的,搬东西时我们也会选择圆管垫在下面。可我还是在想:真的只有是圆吗?有没有其他形状可以代替圆呢?二、思考与探索:趁着周末,我找了一辆玩具车、一块泡沫板、小刀等,开始了我的探索之旅。1、第一次探索:增加边数我注意到在课件中正方形的轮子虽然也颠簸,但比三角形的轮子平稳了很多,于是我想:如果把轮子做成正六边形,会不会更平稳呢?于是,我做了四个正六边形的轮子,试了试,果然平稳多了。我不由得兴奋起来:只要把边数做得更多,不就更平稳了吗?我开始在脑子里幻想“轮子边数越来越多,车子越来越平稳”的情形,可是想着想着,我觉得不对劲了:边数不断增多,不就慢慢变成圆了吗?这和“圆的面积”中学到的“分的份数越多,拼成的图形就越接近平行四边形”是一个道理啊,这应该就是老师说的“极限”吧。想到这儿,我有些沮丧:这个方法行不通。2、第二次探索:圆的模仿秀一计不成,再生一计。我又想:轮子之所以做成圆的,是因为中心到周围的距离都是一样的。三角形和正方形的轮子会颠簸则是因为中心到边上的距离比到顶点短,如果我们增加中心到边上的距离,使它们一样长,不就行了吗?想到这儿,我画了一个正三角形,找到它的中心(三条中线的交点),以它为圆心,以中心到顶点的长度为半径,分别画了三段弧。我心中暗暗得意,这样一来,距离不就相等了吗?可画好后一看,我不由得傻眼了:它就是一个圆啊!我不死心,又画了一个正方形,找出中心,画了四段弧。结果,还是一个圆。看来,此路不通。3、第三次探索:换个圆心第二次的失败让我体会到:不能把原来的中心作为圆心,因为这样会让它变成圆。那么圆心定在哪儿比较合适呢?看着面前的几个图形,一个念头油然而生:用顶点作圆心如何?说干就干,我先画了一个正三角形,再将它的三个顶点分别作为圆心,以边长为半径,分别作了三段弧。于是一个怪模怪样的家伙就“诞生”了。我迫不及待地做了四个这样的轮子,试验的结果却让我的满腔希望化为泡影:这种轮子比三角形、正方形、正六边形等平稳了很多,但还是上下起伏,没有达到圆形轮子的效果。4、爸爸的怪主意:接二连三的失败让我非常沮丧,我心灰意冷地呆坐在那儿,一种山穷水尽的感觉涌上心头:也许真的只有圆才能做轮子。爸爸注意到了我沮丧的表情,走过来询问我,我强打精神向他倾述了我的疑惑与几次尝试,希望爸爸能给我出个主意。爸爸边听边饶有兴趣地看着我的“杰作”,过了许久才说:“你的想法都很好,失败了也不要紧,而且你的这个作品很有趣。”他指着我最后做出的怪模怪样的家伙说,“你拿块木板放在它上面试试,注意:要直接放在轮子上,别放在轴上。”“什么?直接放在轮子上?”我简直不相信自己的耳朵,“这真是个怪想法。”尽管心中疑惑,但我相信爸爸不会无缘无故地这么说,于是就照着做了,做好后我推着它前进了一段。怪了!小车是平的!小车居然走得很平稳!就和车轮是圆形的一样平稳!我跳起来,惊讶地看着爸爸,希望他能给我一个答案。爸爸看着我惊愕的表情,呵呵笑着说:“你小子不简单,你“创造”的这个东西叫等宽曲线,有兴趣的话可以上网去找找相关的资料。”三、答案与新的疑惑:我迫不及待地上网查找资料,在网上,我找到了等宽曲线的解释:“等宽曲线是指非圆的等宽曲线,一条相对于“支持线”之间的距离为一固定常数的封闭曲线,当形状为等宽曲线的轮子作水平滚动时,其表现为最高点的高度保持不变。”确实如此,只有当它滚动时最高点不变,才能象刚才这样让小车保持稳定。更让我意外和惊喜的是:等宽曲线也可以当轮子!下面是我在网络上看到的文章和图片:操作:按下启动按钮,观察车轮为等宽曲线形状的小车的运行状况。原理:车轮并非一定要做成圆的,形状近似于“三角形”的等宽曲线车轮,也能使车子平稳行驶。如果在等宽曲线上作两根平行线与之相切,不管瞄在什么位置,夹在这两根平行线之间的距离都相等。所以,当形状为等宽曲线的轮子作水平滚动时,其表现为最高点的高度保持不变。通过本展品的演示,能形象地揭示等宽曲线的奇妙特性及与圆的内在联系,引起观众突破常规的思维方式。 几经周折,终于找到了圆的代替图形——“等宽曲线”,这让我非常高兴,在这次数学的探索之旅中,我既体会到了探求数学之谜的艰辛,又感受到了探索成功的喜悦。这种感觉正像数学家陈省声爷爷说的:数学真好玩!欣喜之余,一个新的疑问慢慢浮现出来:这辆小车的车轴显然不能在中心位置,那它在哪儿呢?

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

初三数学小论文600

小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

这是我的博客中的一篇文,复制给你做参考: 自然数的因数我们知道,每个自然数(不包括0和1)都有2个以上的因数,因数最少的是质数(也叫素数),质数的因数是1和它本身。非质数的自然数也叫合数,它们都含有3个以上(含3个)的因数。1、怎样求一个数有多少个因数?对于一个已知的自然数,要求出它有多少个因数,可用下列方法:首先将这个已知数分解质因数,将此数化成几个质数幂的连乘形式,然后把这些质数的指数分别加一,再相乘,求出来的积就是我们要的结果。例如:求360有多少个因数。因为360分解质因数可表示为:360=2^3×3^2×5,2、3、5的指数分别是3、2、1,这样360的因数个数可这样计算出:(3+1)(2+1)(1+1)=24个。我们知道,360的因数有 1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360正好24个,可见上述计算正确。2、怎样求出有n个因数的最小自然数?同样拥有n个(n为确定的数)因数的自然数可以有多个不同的数,如何求出这些数中的最小数?这是与上一个问题相反的要求,是上一题的逆运算。比如求有24个因数的最小数是多少?根据上一问题解决过程的启示,可以这样做,先将24分解因式,把24表示成几个数连乘积的形式,再把这几个数各减去1,作为质数2、3、5、7......的指数,求出这些带指数的数连乘积,试算出最小数即可。具体做法是:因为:24=4×6, 24=3×8, 24=4×3×2,现在分别以这三种表示法试求出目标数x:(1)、24=4×6,4-1=3,6-1=5 X=2^5×3^3=864 (2)、24=3×8,3-1=2,8-1=7X=2^7×3^2=1152(3)24=4×3×2,4-1=3, 3-1=2, 2-1=1X=2^3×3^2×5=360综合(1)、(2)、(3)可知360是有24个因数的最小数。

从一年级开始接触数学;从一个什么也不懂的孩子时开始接触数学;从1+1=2、1+2=3…… 开始学习数学,直至今天还在学习数学。学数学不是一两天的事,而是一条漫长的道路!在学习数学的道路上,你会不知不觉的发现学数学的乐趣,数学的奥妙,你也会发现数学在生活中无处不在!学数学就是为了能在实际生活中应用,其实,数学就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋要画图纸....... 同学们,你们肯定知道商人们批发商品吧,而且,商人们为了赚钱,会不停地把商品卖出买进,这样就能获得更多利润了。 一次,我和爸爸在文具店买东西,爸爸拿起一个7元的笔盒对我说:“如果一个商人买了50个这种笔盒,以每个8元卖给文具批发商,又以每只9元收购回来,再以每只10元卖出去,那么他是亏了还是赚了?” 我不假思索地回答道:“这么简单的题还想考我!他肯定是赚了,而且是赚了一大笔钱呢!” “那他到底赚了多少利润?”爸爸追问道。 我毫不犹豫地说:“他一个笔盒以7元买进,8元卖出,9元买进,10元卖出,一共可得利润(8+10)—(7+9)=2(元)。就是说一个笔盒就可以赚得2元,50个笔盒按这种方式买进卖出,共得利润100元。他是个很精明的商人。” “不错!”爸爸微笑着说。“也可以这样算:买进时用了(7+9)×50=800(元)。卖出时得了(8+10)×50=900(元)。则这个商人赚了900—800=100(元)。”不过,爸爸话锋一转,“你知道为什么要问你一个这么简单的问题吗?” “不知道。”我摇摇头,惊奇地说。 “一般来说,计算一道题有很多种方法。只要思考方式和推理过程是对的,结果就是一样的。计算和预测利润或损失就是用卖出商品得到的钱减去买入花的钱,结果是正数,就是赚了;结果是负数,就是亏了。就像刚才那个笔盒,如果商人用7元买走笔盒,用6元卖给另一个人,他就亏了1元。而商人用8元卖给另一个人后,他就赚了1元。” “这就是说,生活中数学的影子无处不在,在商场里、交易所里都要广泛运用到数学。”我恍然大悟。 在六年的小学生涯里我学到了许多许多,及将需要我探讨是初中、高中、大学……的知识,我一定要努力学习!

数学小论文初三学生

在国家教委制订的《九年义务教育全日制初级中学数学教学大纲(试用)》中,第一次使用了“数学素养”一词,成为全国中学数学教师的热门话题之一。数学素养是人所必备的素养。人们在社会活动中,逐渐积累着对于数量关系和空间形式的认识,没有这种素养,人类就不会记数,不会排序,不会测量,不会分配,社会也就不可能发展,就没有现代社会的物质文明和精神文明。数学素养是民族素质的重要组成部分:思想道德、文化科学、劳动技术和身体心理这四项素质的各个方位及其成分、因素,都要通过量化才能得以充分展示,并且变得更有标准、可操作、可测量、可评价。数学图形是物质世界和人类文化相结合的一种完善形式。数学语言是全人类共同使用并可以传授给机器人的一种交流手段。数学是思维的体操,思维是数学灵魂,在运用数学思想、数学方法去思考和解决问题的过程中,培养着人的辩证唯物主义的世界观和严谨的科学态度。数学素养的结构是多方位的,基本的有下列四个:1.知识技能素养。2.逻辑思维素养。3.运用数学素养。4.唯物辩证素养。数学素养除了具有素质的一切特性以外,还具有以下特性:1.精确性。2.思想性。3.并发性。4.有用性。我国建国以来,民族素质和数学素养都得到了很大的提高。中国学生的数学素养也已为世人所公认。根据国际教育评估协会1992年的报告,在参加数学测试的21个国家或地区中,我国以总平均80分的成绩荣居榜首。此外,我国中学生在国际奥林匹克数学中连获冠军,有时竟囊括全部金牌,我们还拥有一批数学尖子。提高学生的数学素养,需从以下几方面努力:(一)面向全体学生。(二)突出基本的数学思想和数学方法。(三)抓住培养思维能力这一数学教学的核心。(四)注重运用数学。

各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

在国家教委制订的《九年义务教育全日制初级中学数学教学大纲(试用)》中,第一次使用 了“数学素养”一词,成为全国中学数学教师的热门话题之一。 数学素养是人所必备的素养。人们在社会活动中,逐渐积累着对于数量关系和空间形式的认 识,没有这种素养,人类就不会记数,不会排序,不会测量,不会分配,社会也就不可能发 展,就没有现代社会的物质文明和精神文明。 数学素养是民族素质的重要组成部分:思想道德、文化科学、劳动技术和身体心理这四项素 质的各个方位及其成分、因素,都要通过量化才能得以充分展示,并且变得更有标准、可操 作、可测量、可评价。 数学图形是物质世界和人类文化相结合的一种完善形式。数学语言是全人类共同使用并可以 传授给机器人的一种交流手段。数学是思维的体操,思维是数学灵魂,在运用数学思想、数 学方法去思考和解决问题的过程中,培养着人的辩证唯物主义的世界观和严谨的科学态度。 数学素养的结构是多方位的,基本的有下列四个:1.知识技能素养。2.逻辑思维素养。3.运 用数学素养。4.唯物辩证素养。 数学素养除了具有素质的一切特性以外,还具有以下特性:1.精确性。2.思想性。3.并 发性。4.有用性。 我国建国以来,民族素质和数学素养都得到了很大的提高。中国学生的数学素养也已为世人 所公认。 根据国际教育评估协会1992年的报告,在参加数学测试的21个国家或地区中,我国以总平 均80分的成绩荣居榜首。此外,我国中学生在国际奥林匹克数学中连获冠军,有时竟囊括 全部金牌,我们还拥有一批数学尖子。 提高学生的数学素养,需从以下几方面努力: (一)面向全体学生。 (二)突出基本的数学思想和数学方法。 (三)抓住培养思维能力这一数学教学的核心。 (四)注重运用数学。

曾经有数学家说:圆是最完美的形状。在日常生活中也有许多地方要用圆:汽车、火车的轮子都是圆的,我们在搬重物的时候可以把物体放在圆柱或圆管上。有其他形状可以代替圆吗?在不断的探索失败和进一步探索中,我逐渐发现了一个与圆有着许多相似作用的图形——“等宽曲线”。并在这次数学的探索之旅中体会到了探求数学之谜的艰辛,感受到了探索成功的喜悦。一、问题的提出:大街上车水马龙,车来车往,每一辆汽车的轮子都是圆的;我们在搬重物的时候,会把物体放在圆柱或圆管上。看到这些,我非常疑惑:为什么它们都是圆的而不是其他形状的呢?这个问题困扰我很久,直到这个学期我们学习“圆”这一课时,老师在课件中为我们演示了三角形轮子与正方形轮子的可笑表演后,我才明白:把车轮做成圆形,车轴安在圆心上,车轴离开地面的距离,就总是等于车轮半径那么长。这样车轮在地面上就容易滚动了。假如这个轮子是方形、三角形的,从轮缘到轮子圆心的距离各不相等,那么,这种车子走起来,一定会忽高忽低,震动的很厉害。因此车轮都是圆的,搬东西时我们也会选择圆管垫在下面。可我还是在想:真的只有是圆吗?有没有其他形状可以代替圆呢?二、思考与探索:趁着周末,我找了一辆玩具车、一块泡沫板、小刀等,开始了我的探索之旅。1、第一次探索:增加边数我注意到在课件中正方形的轮子虽然也颠簸,但比三角形的轮子平稳了很多,于是我想:如果把轮子做成正六边形,会不会更平稳呢?于是,我做了四个正六边形的轮子,试了试,果然平稳多了。我不由得兴奋起来:只要把边数做得更多,不就更平稳了吗?我开始在脑子里幻想“轮子边数越来越多,车子越来越平稳”的情形,可是想着想着,我觉得不对劲了:边数不断增多,不就慢慢变成圆了吗?这和“圆的面积”中学到的“分的份数越多,拼成的图形就越接近平行四边形”是一个道理啊,这应该就是老师说的“极限”吧。想到这儿,我有些沮丧:这个方法行不通。2、第二次探索:圆的模仿秀一计不成,再生一计。我又想:轮子之所以做成圆的,是因为中心到周围的距离都是一样的。三角形和正方形的轮子会颠簸则是因为中心到边上的距离比到顶点短,如果我们增加中心到边上的距离,使它们一样长,不就行了吗?想到这儿,我画了一个正三角形,找到它的中心(三条中线的交点),以它为圆心,以中心到顶点的长度为半径,分别画了三段弧。我心中暗暗得意,这样一来,距离不就相等了吗?可画好后一看,我不由得傻眼了:它就是一个圆啊!我不死心,又画了一个正方形,找出中心,画了四段弧。结果,还是一个圆。看来,此路不通。3、第三次探索:换个圆心第二次的失败让我体会到:不能把原来的中心作为圆心,因为这样会让它变成圆。那么圆心定在哪儿比较合适呢?看着面前的几个图形,一个念头油然而生:用顶点作圆心如何?说干就干,我先画了一个正三角形,再将它的三个顶点分别作为圆心,以边长为半径,分别作了三段弧。于是一个怪模怪样的家伙就“诞生”了。我迫不及待地做了四个这样的轮子,试验的结果却让我的满腔希望化为泡影:这种轮子比三角形、正方形、正六边形等平稳了很多,但还是上下起伏,没有达到圆形轮子的效果。4、爸爸的怪主意:接二连三的失败让我非常沮丧,我心灰意冷地呆坐在那儿,一种山穷水尽的感觉涌上心头:也许真的只有圆才能做轮子。爸爸注意到了我沮丧的表情,走过来询问我,我强打精神向他倾述了我的疑惑与几次尝试,希望爸爸能给我出个主意。爸爸边听边饶有兴趣地看着我的“杰作”,过了许久才说:“你的想法都很好,失败了也不要紧,而且你的这个作品很有趣。”他指着我最后做出的怪模怪样的家伙说,“你拿块木板放在它上面试试,注意:要直接放在轮子上,别放在轴上。”“什么?直接放在轮子上?”我简直不相信自己的耳朵,“这真是个怪想法。”尽管心中疑惑,但我相信爸爸不会无缘无故地这么说,于是就照着做了,做好后我推着它前进了一段。怪了!小车是平的!小车居然走得很平稳!就和车轮是圆形的一样平稳!我跳起来,惊讶地看着爸爸,希望他能给我一个答案。爸爸看着我惊愕的表情,呵呵笑着说:“你小子不简单,你“创造”的这个东西叫等宽曲线,有兴趣的话可以上网去找找相关的资料。”三、答案与新的疑惑:我迫不及待地上网查找资料,在网上,我找到了等宽曲线的解释:“等宽曲线是指非圆的等宽曲线,一条相对于“支持线”之间的距离为一固定常数的封闭曲线,当形状为等宽曲线的轮子作水平滚动时,其表现为最高点的高度保持不变。”确实如此,只有当它滚动时最高点不变,才能象刚才这样让小车保持稳定。更让我意外和惊喜的是:等宽曲线也可以当轮子!下面是我在网络上看到的文章和图片:操作:按下启动按钮,观察车轮为等宽曲线形状的小车的运行状况。原理:车轮并非一定要做成圆的,形状近似于“三角形”的等宽曲线车轮,也能使车子平稳行驶。如果在等宽曲线上作两根平行线与之相切,不管瞄在什么位置,夹在这两根平行线之间的距离都相等。所以,当形状为等宽曲线的轮子作水平滚动时,其表现为最高点的高度保持不变。通过本展品的演示,能形象地揭示等宽曲线的奇妙特性及与圆的内在联系,引起观众突破常规的思维方式。 几经周折,终于找到了圆的代替图形——“等宽曲线”,这让我非常高兴,在这次数学的探索之旅中,我既体会到了探求数学之谜的艰辛,又感受到了探索成功的喜悦。这种感觉正像数学家陈省声爷爷说的:数学真好玩!欣喜之余,一个新的疑问慢慢浮现出来:这辆小车的车轴显然不能在中心位置,那它在哪儿呢?

初三数学小论文800字

无论是身处学校还是步入社会,大家都接触过论文吧,论文是描述学术研究成果进行学术交流的一种工具。你知道论文怎样写才规范吗?以下是我为大家收集的数学小论文作文,仅供参考,大家一起来看看吧。

星期天,全家人在一起讨论清明节回老家扫墓的事。谈着谈着,我心里忽然冒出了一个疑问:这里离老家有多远呢?”我问妈妈,妈妈笑了,说:你说呢?你上了这么多年学,一定会有办法知道的,对吧?”

我想了想,灵光一闪,对了,可以用我们最近学的比例尺的知识来算。我立即拿来地图,找到了泰州市,却怎么也找不到老家所在地顾高镇。怎么办呢?我冥思苦想,突然灵机一动:我可以先找到离老家顾高镇最近的乡镇黄桥镇,量出地图上泰州到黄桥的距离,再减去一些,就是地图上泰州到老家的大约的距离了!说干就干,我立即量出地图上泰州到黄桥的距离,它是0。6cm。因为老家比黄桥离泰州更近些,我便把减去了,变成了。因为这份地图的比例尺是1:6000000,我便用0。5×6000000=3000000cm,3000000cm=30km。

我立即向妈妈报出了我的答案:大约30千米,本以为会得到妈妈的表扬,可谁知妈妈却疑惑地说:好像没这么近吧?”听了妈妈的话,我也疑惑不解:怎么会这样?”我又来到地图前,重新量起来。量着量着,我突然发现了其中的奥秘:我量的是地图上两点间的直线距离,而实际的道路不是直线的,是绕来绕去的,所以实际路程一定比依据地图计算出来的远。

我把我的发现告诉了妈妈,妈妈也恍然大悟:对!就是这样!你真聪明!”

在学校里,学了如何算体积的,急忙想算一下周围用品的体积。突然,我的目光集中在我的未开封清风面巾纸上,有了,就只算单张面巾纸的体积。

既然算单张的,就要先算整包的。我拿出尺子,分别量出了长,宽,高。

长:7。4厘米 体积为:7·4×5。6×2。5=103。6立方厘米

宽:5,6厘米 但是,我突然想到,面巾纸是可以压的扁一点的,这不

高:2。5厘米 就减少了体积吗?我思考了几分钟,想到既然是测量未开封的的,就应该是未压扁的。想到这,我又看到了我的数据。可能是量的是压得。最后仔仔细细量重新变动数据。

长:7。5厘米 体积为:7·5×5。5×2。5=立方厘米

宽:5,5厘米 眼看就要成功了,可我猛地发现,包装塑料纸也是有体

高:2。5厘米 积的,可是又有什么办法。思考许久,忽然,我想到了一个很原始的办法。我抽出里面的面巾纸,把塑料包装纸对折4着,这成了一个小正方体。

长:2。1厘米 体积为:2。1×1。8×0。3=1。134立方厘米

宽:1,8厘米 虽然可能有误,但是我也想不出其他办法了。

高:0。3厘米

最后算式:(103,125—1。134)÷10(一包面巾纸里有10张)=10。1991立方厘米

经过这次,我终于享受到写数学小论文的快乐。

今天,我无意间发现里一个有趣的测试,这是一个由印第安人发明的水晶球心理测试。

我打开页面,看了看规则,是这样的:随便从10—99之间选一个数字,把十位数和个位数相加,再把原数减去相加的数,最后记住得出数字的图案,点一下水晶球,就会出现那个你记住的图案了(水晶球旁边有10——99的数字,数字旁有一种图案)。如:23 2+3=5 23——5=18。

我看好后,就选了78 7+8=15 78——15=63。我又看了看63旁的图案,便点了点水晶球,发现出现的图还真的是我记下的图。我又选了一些数字,算了算,水晶球都可以准确的出现我记下的图案。好神奇啊!

我心想:水晶球为什么知道我记下的图案啊?

于是,我做了一个很笨的小实验:从10——99的数字都算一遍。结果发现得出来的数都是9的倍数:9。18。27。36。45。54。63。72。我又看了看这些数字边的图案,都是一样的。我说:”哦,所以水晶球会知道我记下的图案啊!哈哈哈!“

我发现数学其实无处不在。只要我们善于发现,善于观察,善于思考,数学的海洋将任我们翱翔!

西瓜是夏天中最爱欢迎的水果。今天,妈妈买回了一个又大又圆的`西瓜。于是,我们准备吃西瓜了!

小妹妹问我:”嘉嘉姐姐,你要吃多少呀!“我想了想说,”我吃这个西瓜的1/2吧。“”1/2是什么?“她问。”1/2是分数,是把一个东西平均分成2份,取其中的1份。“我说。”哦。“小妹妹似懂非懂地说。”我吃这个西瓜剩下的1/2。“妈妈插话道。小妹妹问:”剩下的1/2是不是嘉嘉姐姐留下的全部吃掉啊?那我没得吃了?“”哈哈!“我和妈妈哈哈大笑。”不是这样的。“妈妈笑着说。我接话道:”剩下的1/2就是把我吃剩的那部分看作一个整体,再把这部分平均分成2份,取其中的1份。“”是这样啊!那我还是有西瓜吃的了!“小妹妹恍然大悟。小妹妹调皮地说:”以后我要先吃1/2,这样我的1/2比你的多,这次不划算!“”你的,我哪吃得了这么多?你想吃多少就吃多少!“我们都笑了!

你现在认识分数了吗?分数还有很多哦!等着你去发现。让我们一起踏上寻找数学的旅程吧!

一年一度的双11“剁手节”来了。

今天下午,妈妈坐在沙发上,翻看着天猫里面的商品准备在明天双十一抢购。我一直想买一个做奶茶的工具,妈妈是一个实用主意者,没有用的东西一般都不会买回来。我很担心提出需求后妈妈不给买,又说我乱花钱。忍不住内心的想要还是说了出来。

“妈妈可以给我买个玩具吗”?我轻声细语的问。妈妈说,只要我能回答她一个数学问题可以买,我爽快的答应了。我们搜了做奶茶的工具,出现了许多的旗舰店,其中有两家销量最好的都各有各的优惠。它们一套都是68。5元,但是甲店是买两套送一套,乙店是打七折。我要买三套,妈妈问我哪一家便宜,我说甲店是68。5×2=137元(3套),乙店是68。5×3=205。5元,205。5×0。7=143。85元(3套)。143。85大于137,所以甲店划算。当我准确算出答案时,妈妈很爽快的我买了做奶茶的工具。

数学知识在生活中无处不在,我要找到数学的乐趣,遨游在数字的海洋里。

关于速度一向学习成绩不好的我,在无意中发现了一道题,并且给做出来了,下面我给大家分享一下吧!在20xx年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电。该地供电局组织电工进行抢修供电局距离抢修工地15千米。抢修车装载着所需材料先从供电局出发,15分钟后电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地,已知吉普车速度是抢修车速度的1。5倍,求这两种车的速度。

解:1。设抢修车的速度为x千米/时,则吉普车的速度为1。5x千米/时.由题意走相同路程15千米,吉普车比抢修车快15分钟(即0。25小时)得方程15/X-15/1。5X=0。25解得X=20千米/小时,则1。5X=30千米/小时

答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.

2。因为走的路程(S=15KM)一样,人用的时间是X。材料用的时间是X+15,即(15÷X)÷(15÷(X+15))=1。5,一元一次方程,得X=30分钟,即0。5小时,那么吉普车的速度就是30KM/H,抢修车20KM/H

答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.

3。设吉普车用的时间为x小时。

根据题意得:x+15=1。5x

一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。

算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000

答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.

简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”

我思索了一会儿,不慌不忙地说:“可以这样算:

5/1=5

30*5=150(小时)200小时>150小时

还可以这样算:

5/1=5

200/5=40(小时)30小时<40小时

由这几步可得出结论,节能灯泡省钱。”

妈妈又问我:“很好。再想想看,还有没有别的办法来算?”

我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:

5/200*100=*100=

1/30*100≈*100=

>

或者这样算:

200/5*100=40*100=4000

30/1*100=30*100=3000

4000>3000

因此,也是节能灯泡便宜。。”

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:“生活处处有数学”这个道理。

今天,老师给我们讲了一道三级训练上的重点难题:一个长100米,宽80米的广场中间留了宽4米的人行道,把广场平均分成4块,求每块的面积是多少?

看到题目后,有的人开动脑筋,寻找方法;有的人望着天花板干瞪眼;我绞尽脑汁使劲地想,终于思考出一种方法,于是赶紧举起小手,老师便叫我起来回答,我大声地说:“100-4=96米;96÷2=48米;80-4=76米;76÷2=38米;38×48=1824平方米”。

“你能说说你的思考方法吗?”沈老师问。“先把长减去4,算出两块的长,再除以2就得出一块小广场的长;宽也用同样的方法,最后长和宽相乘便得出一块的面积了。”

沈老师又问“还有其他的方法吗?”

夏雨航站起来回答,他连说了好几个算式,可我们却不懂。

老师又让大家想其他方法,大家看起来信心十足,但又害怕不对又都低下了头。

于是沈老师就带着我们一起理解了各个算式,这困难就迎刃而解了.

通过这节课我明白了一个道理:世上无难事,只怕有心人,只要你肯想,就一定能想出解决问题的办法来!

有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”

这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。

比如,在我爸爸给我买的一本数学拓展题中,有一题思考题是这样说的:”一辆客车从东城开向西城,每小时行45千米,行了2。5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?“ 这时,我就在数学草稿纸上这样写: 45×2。5=112。5(千米),112。5+18=130。5(千米),130。5×2=261(千米),答:东西两城相距261千米。

但我又看了看,发现有点不对劲。原来,我忽略了一个重要的东西,就是:这时刚好离东西两城的中点18千米,其中的”离“,这到底是没到中点呢?还是过了中点呢?如果是还没到中点,离中点还差18千米的话,就是我刚刚这么写。但如果是到了中点多了18千米,那就应该这么写:45×2。5=112。5(千米),112。5——18=94。5(千米),94。5×2=189(千米)。

那到底是怎么写呢?我便向爸爸求助,我跟爸爸讲了这件事后,又给爸爸看了看式子,结果,爸爸却说:”嗯……你写的这两个式子都对。都可以写。“

在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,根据生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案。

今天早上一起来,妈妈就宣布:由于家里停水,今天全家到欧尚那边去吃早餐,顺便到超市买东西。

到了那边,我们准备先去吃早餐,先来到了珅府捞面。可是,这里一碗面就要3、40块钱,好贵,而且更加“惊悚”的是,这里的一个鸡爪要5块钱。我们觉得太贵不合算,就来到了“丸来丸趣”,没想到,仅仅一墙之隔,价钱差距就这么大:这里一碗面只要9块钱。吃完早餐,我们就开始逛超市啦!我们先买了一袋我和爸爸最喜欢吃的青桔子,总共数量是11个,价钱是元,差不多一个5毛钱左右。我们又去买了5个鸡爪,一共元。这个鸡爪的价格简直与珅府捞面的价格有着“天壤之别”,一边是不到1元/个,一边是5元/个。来到水果区,我们买了一袋青蛇果,3个共元,这么小的一个青蛇果差不多一个要6元,好贵!接下来,我们又去买了一个哈密瓜,元,没想到,3个小小的青蛇果比一个大大的哈密瓜整整还贵出了元。由于我在邻居桃桃家里尝过黄桃很好吃,我们又去买了3个大大的黄桃,一共元,平均下来每个黄桃是元。我们买完所有需要的东西去结帐,算上这里没有提到的东西,一共是500元。

这次,我从买东西里面学到了很多数学知识,今天真是太开心了!

今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。

”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。

爸爸是一个的十足的数学迷,平时最爱出些数学题来考我了。这不,今天闲来无事又向我出题了,我问道“:爸爸今儿要出啥题?我奉陪到底:”爸爸看我自信满满,满脸笑意说:“输了可别哭鼻子,请听题:有一师徒二人共同加工26个零件,徒弟先到车间,就先拿了一些零件放在自己的机床边。师傅”来了,一看徒弟要拿去加工的零件太多了,他除了拿了留给他的零件外,又从徒弟那里拿了一半零件。徒弟觉得自己应该多干一点,又从师傅那里拿来一半。师傅不肯,徒弟只好再给师傅5个零件,最后还是师傅比徒弟多加工2个零件。请问,徒弟最初准备加工零件是多少个?“我不禁想:可以先求出徒弟最后加工零件(26÷2)÷2=12个。徒弟没给师傅5个零件时,徒弟有零件12+5=17个,徒弟没从师傅那里拿走一半之前,师傅有9×2=18个,而这时徒弟只有零件26——18=8个,因此师傅没拿走徒弟手中零件的一半之前徒弟有零件8×2=16个。这时,爸爸拍了我的肩,说:”想出来了没。“我这才恍过神来,答道:”徒弟最初准备加工零件16个。“

爸爸故弄玄虚地问:”你确定吗,还要改吗?“我胸有成竹的摇了摇脑袋,说:”不用改了 。“”恭喜你……答对了!“

我高兴的一蹦三尺高,心里乐滋滋的,像吃了蜜一样甜。

我和妈妈去金鸡湖玩。途中看到很多交通指示牌。有的写着离前方1000米,有的500米,也有3公里等等。我就好奇的问妈妈:”妈妈,10公里有多少米啊?“妈妈笑着对我说就是10000米啊!”啊?我以为10米呢!“我对妈妈说。

”哦,儿子你知道一公里等于多少米么?“妈妈问

”100米?“我试着回答

”错了,一公里等于1000米!“妈妈说

”那为什么人们不说一公里是1000米,而以公里计算呢?“我问道

”那样太麻烦啦,如果是几百几千甚至几万公里,以米计算的话那得写多少个0啊,人们为了便于记录,就以公里代替,1000米,10000米,100000米等等,只要把后面的3个0去掉,就是公里数啦!“妈妈说。

”我懂了,妈妈,1000米去了3个0就是1公里,10000米去了3个0就是10公里,100000米去了3个0就是100公里!“我兴奋地告诉妈妈

”儿子,你真棒!“妈妈赞许的说道。

哈哈,原来计算公里数是有窍门的呀!

自己网上去查一篇啊 而且悬赏分也没有.....

各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”

query取得iframe中元素的几种方法在iframe子页面获取父页面元素代码如下:$(

  • 索引序列
  • 初三数学小论文
  • 数学小论文初三
  • 初三数学小论文600
  • 数学小论文初三学生
  • 初三数学小论文800字
  • 返回顶部