论文开题报告模板!直接套用!
每一个内容都有参考句式,把自己的研究内容往上套即可。
1. 论题的背景及意义
例:...研究有利于全面...的特点,可以丰富现...的研究。
这一...研究可以弥补......研究的不足,深化与之密切相关......的研究......研究。
......角度进行研究,运用相关的......理论分析...问题,突破传统的......的角度去研......的模式,使......的研究能从一个新的角度获得解决方法。
2. 国内外研究现状
例:......在国际的研究现状;......国内的研究现春仔袭状。
文献评述(把上面的国内外的研扒兄究现状总结一下即可)
3. 研究目标、研究内容和拟解决的问题
A研究目标与内容
例:
本文拟......分析......分析两部分。首先对......情况重新审视,深入分析......,然后与其相关的......进行异同比较,最后归纳......的类型,并得......启示。本文的研究重戚裂点是.....情况
B拟解决的问题
例:
根据对......的现有研究成果,在全面考察的......情况下,结合......综合考虑......因素,以确定......
绘制相应的......模型后,通过实验结论证实其......的有效性和合理性。
4. 研究方法
例:
文春仔袭献研究法:通过图书馆、互联网、电子资源数据库等途径查阅大量文献,理解......等相关知识,理清......的发展脉络及研究现状,学习......有关理论,获取......等相关数据信息,为设计......提供思路和参照。
实验研究法:通过设计......选取......,进行数据分析,考察.......。
统计分析法:运用......数据分析软件,采用拍冲人工操作和计算机统计向结合的方法,进行定扒兄性与定量分析。经过人工和计算机校对筛选出所有合乎要求的信息,在定量研究春仔袭的基础上进行定性分析。
5. 创新之处和袭乎歼预期成果
例:
通过与戚裂现......技术的结合,使扒兄用......软件设计模型,......运用到......方面提春仔袭供新的视角。
6. 进度计划(根据自己院校顷凳修改相应时间扒兄即可)
例:
2020年10月中旬-2020年11月底确定论文选题,完成开题报告及答辩。
2020年12月初-2021年1月底撰写论文大纲完成论文前X章
2021年2月初-2021年2月底撰写论文后X章,完成初稿。
2021年3月初-20213月底交导戚裂师审批修改,完成二稿。
2021年4月初-2021年4月底进一步修改格式,完成三稿。
2021年5月初-2021年5月中旬查重定稿,装订成册及论文答辩准备。
7. 已取得的研究工作成绩
例:
已积累了一定的相关文献,初步研读了其中的大部分文献扒兄,并将其分类春仔袭以方便日后查阅参考,基本完成了本研究的准备工作。
8. 已具备的研究条件、尚缺少的研究条件和拟解决的途径
已具备的研究条件
例:
已经查阅到相关的论文和著作,并且研读了其的大部分文献,理清了论文的基本思路。
尚缺少的研究条件
例:
由......的使用权限有限,使得搜集到......不多,关......的搜集比较困难。
对......的理论知识的掌握还不够,自己......理论素养还不够深厚。
拟解决的途戚裂径
例:
利用图书馆的文献传戚裂递功能,向其他高校图书馆求助,同时向老师和前辈寻求帮助。
完毕!
开题报告的格式 由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题说清楚,应包含两个部分:总述、提纲。 1 总述 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法、必要的数据等等。 2 提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。 3 参考文献 开题报告中应包括相关参考文献的目录 4 要求 开题报告应有封面页,总页数应不少于4页。版面格式应符合以下第3部分第2)项“格式”的规定。 开 题 报 告 学 生: 一、 选题意义 1、 理论意义 2、 现实意义 二、 论文综述 1、 理论的渊源及演进过程 2、 国外有关研究的综述 3、 国内研究的综述 4、 本人对以上综述的评价 三、 论文提纲 前言、 一、 1、 2、 3、 · 二、 1、 2、 3、 ·· 三、 1、 2、 3、 结论 四、论文写作进度安排 毕业论文开题报告提纲 一、开题报告封面:论文题目、系别、专业、年级、姓名、导师 二、目的意义和国内外研究概况 三、论文的理论依据、研究方法、研究内容 四、研究条件和可能存在的问题 五、预期的结果 六、进度安排 七、教研室可行性论证结论
开题报告:包含论文题目、系别、专业、年级、姓名和导师。论文的题目要准确规范,题目不要过长,一般20字以内最佳。以简洁专业的术语表明论文研究的核心内容。开题报告一般不使用副标题。
开题报告其实就是论文的一个精简版介绍,确定论文主题的大方向,帮助读者更好的理解论文。开题报告需详细说明论文的大纲,讲明课题的研究目的、意义,以及论文所需要引用的文献;需说明研究课题的可行性与创新性以及介绍本人所研究课题的初步方案。
你为什么要做这个研究,研究它的价值是什么。这个可以先结合现实情况去进行论述,指出现实中存在的问题,需要去做研究解决。然后就论文研究的实际作用、预期达到的结果以及该研究的理论意义和实践意义进行阐述。
文献综述部分,就该研究课题的发展历史,以及前人的研究成果、发展趋势、问题等综合进行比较分析,然后提出自己的见解。
将文中的研究方法逐一列举出来,并按照你如何使用该方法进行阐述。研究内容将大纲再进行深入阐述一遍即可。
毕业设计说明书(论文)制版格式一、用纸格式论文一律使用A4白纸,左侧装订。订口(左边界)为:25mm翻口(右边界)为:25mm天白(上边界)为:30mm地白(下边界)为:30mm(不含页码)二、页面规格论文一律要求设置统一规则,页眉要求标明“黄冈职业技术学院毕业论文”字样;页脚要求表明“第×页 共×页”字样。文字均须居中排列,使用5号宋体字。三、字体字号1、未作特殊说明文中图文颜色均为黑色。2、排版规格标题上空2行,用2号小标宋体字,可分一行或多行居中排布;回行时,要做到词意完整,排列对称,间距恰当。正文用小4号宋体字。小标题以及“摘要”、“关键词”、“引言”、“参考文献”等字样,用小4号宋体加粗。四、正文序列正文各个部分内容的序列一级标注用“一、”,二级标注用“(一)”,三级标注用“1、”,四级标注用“(1)”,其余使用英文或者“甲乙丙丁”标注。五、装订要求左侧装订,不掉页。骑马订或平订的订位为两钉钉锯处订眼距书芯上下各1/4处,平订钉锯与书脊间的距离为5mm。六、装订顺序1、封面2、目录3、题目,作者,摘要,关键词4、正文(5000字以上):含插图,附表等5、小结6、参考文献目录所引用的文献的主要来源有:专著或书;连续出版物或期刊杂志;会议文献或会议记录、资料汇编;报告;专利。给你提供一个样张:黄冈职业技术学院毕业设计(论文)开题报告课题名称: 浅谈激光加工技术在模具制造中的应用系 别专 业班 级姓 名学 号指导教师毕业设计(论文)开题报告题目:1. 本课题的来源、选题依据:1. 来源 : 选题依据 :2. 本课题的设计(研究)意义(相关技术的现状和发展趋势): 研究意义 :3. 本课题的基本内容、重点和难点,拟采用的实现手段(途径):(可以另附页)4. 文献综述(列出主要参考文献的作者、名称、出版社、出版时间以及与本课题相关的主要参考要点):指导教师意见:指导教师:年 月 日系意见:盖章年 月 日开题报告填写要求1、学生接受毕业设计(论文)任务书后,要围绕课题方向查阅文献、收集资料,进行调研,充分了解课题相关技术的现状和发展趋势,在此基础上确定自己的课题研究范围。2、开题报告应着重说明课题来源、选题依据,本课题的设计(研究)意义,课题的主要内容、重点和难点,拟采用的实现手段(途径)。3、开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。4、此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见审查后生效。开题报告通过后,原则上一般不再随意改题。如确有特殊原因需改题者,须由学生写出书面报告,经指导教师签署意见,教研室审核批准方可。改题后,需重新撰写开题报告。5、开题报告内容必须按现代制造工程系统一设计的电子文档标准格式打印,完成后应及时交给指导教师签署意见。6、学生查阅资料的参考文献应在3篇及以上,开题报告的字数要在1000字以上。
方法/步骤其实前面这部分,填写下指导老师的信息就行了。不过那个课题题目,还是要自己确定了认真填写的!请点击输入图片描述也许很多人主要是不知道如何填写以下如图的部分。请点击输入图片描述31.课题意义主要写课题具有的理论或实践意义,即可解决什么问题,理论上有何提高,或者对企业有什么作用。2.课题满足哪些要求主要写通过课题研究,在哪些方面能够将理论与实践相结合,将学到的理论知识应用到生产实践中来,对提高发现问题、分析问题、解决问题有何帮助。3.与专业方向的关系主要体现出课题是物流管理的重要内容,与专业结合紧密。4.完成课题的条件分两大部分写,第一部分说明通过理论学习已掌握了书当然理论与基础知识;第二部分写自己对该课题的准备情况,如是否已获取了相关资料。此外还可以写一些查阅资料的条件等。4余下的部分,一般都是学校要求好了的。校外单位名称一栏,只有当你决定在实习单位完成论文时才填写,在校内完成论文不必填写。
我发些给参考下吧,至于要怎么写就得看你要怎么写了,主要还是要老师那边同意的,以下的你看看参考参考吧!或许对你有用,希望能帮到你一,主要任务与目标: (一)主要任务 在商学院规定的毕业论文撰写期间内,根据师生共同商定的毕业论文选题《连锁超市物流成本控制问题研究》,综合运用本科阶段所学财务管理专业知识和相关学科知识,撰写一篇具有一定的理论价值和应用价值、篇幅不少于8000字的毕业论文。(二)目标 论文的主要目标是在阐明物流成本控制对连锁超市重要性的基础上,结合具体案例和数据分析和总结连锁超市物流成本控制存在的问题以及原因,并提出相应的解决对策。二、主要内容与基本要求: (二)主要内容 本文属于根据所学的财务管理理论知识结合连锁超市物流成本控制问题的一篇应用型论文,对提高连锁超市物流成本管理水平,增强连锁超市的盈利能力具有现实意义。 论文主要是从以下几个内容进行阐述:(1)物流成本控制的理论基础;(2)物流成本控制对连锁超市健康运营的重要性;(3)连锁超市物流成本控制中存在的问题;(4)问题的改进与对策。 本文研究的重点在于:(1)结合收集的资料,分析连锁超市在经营过程中对物流成本控制时存在的相关问题;(2)针对问题,结合案例,对各个物流环节提出相应的解决对策和改进方案。这也是本文的难点和创新所在。 (二)基本要求 严格按照毕业论文撰写进度和计划,完成文献资料的收集、开题报告的撰写、外文文献的收集和翻译和毕业论文的撰写等项工作。开题报告应反映该课题的最新发展成果与研究动态,力求层次清晰、格式规范。外文文献应与毕业论文密切相关,外文文献译文应忠实原文、语言流畅。毕业论文应结构完整、观点鲜明、论证充分、思维严密、内容充实、格式规范,力求有所创新。在阐明物流成本控制对连锁超市的重要性时要公允、周全、中肯;总结连锁超市物流成本控制存在的问题时需要一定的实证资料。在对策方面要具体,要有所创新,不能泛泛而谈文 献 综 述 题 目 连锁超市物流成本控制问题研究 一、前言部分 随着社会的不断发展、市场的不断扩大以及市场领头行业的日益更新,零售连锁行业的地位日渐突显,使越来越多的商业者将零售连锁行业视为可挖掘利润的宝地。在这些行业中,最为突出的,便是连锁超市行业。 物流成本是指产品的空间移动或时间占有
在不断进步的时代,越来越多的事务都会使用到报告,报告具有成文事后性的特点。那么,报告到底怎么写才合适呢?下面是我精心整理的物流管理专业论文开题报告,希望对大家有所帮助。
一、选题的依据和意义
医药制造业是我国国民经济的重要组成部分,中国作为全球人口最多的国家,随着人民生活水平的日益提高和人口老龄化趋势的出现,人们将越来越重视自己的健康,这也促使中国医药行业进入了高速增长的阶段。随着医药需求的快速增长,发展物流是医药制造业提高竞争力的必然要求。据全国重点企业物流统计调查数据显示,我国医药制造业物流规模不断扩大,但物流效率、物流服务水平等与发达国家相比差距依然较大。物流作为现代生产型服务业,是企业降低成本、获取第三利润源的重要途径。尤其是在当前转变经济发展方式的背景下,医药制造业更需要大力发挥现代物流在行业转型中的作用。如何完整地展示医药物流中心的物流成本结构,并对其进行物流成本分析及成本控制,也成了各医药物流中心迫切关注的问题。
二、国内外研究现状
国外物流成本控制研究现状:从国外知名的期刊上看,其物流成本控制的研究主要集中于对微观企业物流成本的研究,从企业的实际需要出发,例如:约束条件下的供应商选择、物流及配送系统的设计、运输及仓储策略等。同时更加侧重于从实证研究角度来研究企业物流成本的控制、优化策略及相关数学分析模型。本文则将从供应商选择策略、库存及仓储策略、运输及配送策略三个主要方面来综述国外的物流成本控制的研究现状。
1、供应商选择策略中的物流成本控制的研究。Mooret和Fearon主张价格、质量和产品交付是影响供应商选择策略的重要准则,他们认为线性规划方法可以成为供应商选择的一个重要方法。在这一思路的影响下,Gaballa首次从实证角度将数学规划方法应用于供应商的选择。Anthony和Buffa开创了一个单目标的线性规划模型用以支持企业的战略采购计划,但是订单成本、运输和验货成本等因素未被考虑到该模型中。Narasimhan和Stoynoff将一个单目标混合型整数规划模型应用于某大型制造企业,以优化面向供应商群体的订单分配及物料获取过程。Turner为BritishCoal公司提出了一个单目标线性规划模型,该模型在考虑供应商能力、最大订单量、最小订单量、顾客需求,及区域布局的约束条件下,实现总折扣价格的最小化。Sharma等人提出了一个非线性的混合型整数目标规划模型用以解决供应商选择问题。他们在模型中考虑了价格、质量、产品交付和服务等因素,所有的准则均作为目标。Benton在多品类、多供应商、资源限制和数量折扣的条件下,应用拉格朗日放松法开发了一个非线性规划和启发式过程模型用于供应商的选择。该模型目标是实现采购成本、库存持有成本和订单成本的最小化。Ghodsypour和开发了一个决策支持系统(DDS),用于减少供应商数量和对供应商的商业伙伴数量进行管理。
除此之外,还有许多学者提出了自己的观点,以和为例,他们在2001年讨论了在多供应商、多种标准和供应商能力限制的约束条件下,供应商选择决策中的物流总成本问题,他们开发了一个混合型的整数非线性规划模型,并进行了相应的数学实例分析。
2、库存及仓储策略中物流成本控制的研究。库存与仓储问题,很早就被国外学者纳入关于物流成本控制的研究范畴,因而国外学者在这一方面的研究十分深入,也取得丰硕的成果。
1913年,FordHarrisr在其论文中首次发表了著名的经济订货批量(EOQ-EconomicOrderQuantity)模型;随后,Clark和Searf开始研究多级库存,并于1960年分析和建立了一个不考虑批量的N级流水系统(SerialSystem)。他们证明了对于考虑贴现和存储成本的N级流水系统来说,其最优库存控制策略是所谓的最大订货水平(Order-up-Level)策略。
在这些前人研究的基础上,后边的学者相继从不同的问题和角度出发,提出了一系列经典模型。例如:经济生产批量模型、允许缺货的经济订购批量模型、经济订购批量折扣模型、物料需求计划(MRP)与及时化生产方式(JIT)库存模型等等。
而关于库存成本方面的研究,近些年也取得了很显著的成就。例如:和在对现有文献中的库存模型进行回顾与总结的基础上,提出以下5种成本应该被视为关键性成本:(1)损坏成本;(2)持有成本;(3)缺货成本;(4)机会成本;(5)补货成本。和YehudaBassok于2005年讨论了基于延迟定制化战略的库存模型,他们认为采用延迟制造战略来维持其库存战略能够带来可关注的利润增长。
3、运输及配送策略中物流成本控制的研究。
运输是物流系统的一大支柱体系,它被认为是经济增长和发展的重要条件。国外学者对物流运输成本的研究涵盖了宏观、微观的各项运输及配送成本问题,具体研究成果如下所述。
Krugman进行了开创性的研究,他指出贸易成本规模在经济地理模型中有着至关重要的影响;Henderson等人也强调了运输成本在贸易和收益方面扮演的角色以及其影响;Kumar和Hoffmann分析了贸易、运输成本和适度全球化之间的多重联系;而HensRunhaar和RobvanderHeijden探讨了公共政策对货物运输成本的干预,以荷兰的纸质印刷品的物流为例进行全面的分析,揭示了货物运输成本对供应链中的货物运输需求进行管理控制的机制。
除此之外,国外的一些学者对如何测量运输成本进行了尝试,开始使用到岸价对离岸价的比率作为测量海运成本的'工具,但是对于这种观点,也有许多学者提出了质疑,反对者认为,用到岸价对离岸价的比率计算出来的成本不能提供与时间变化趋势相同的足够信息。
综合上述,可以看出国外物流成本研究体现出很强的实用性与针对性,研究内容和问题十分广泛,研究成果也很多。他们对物流成本的具体构成及相互影响的认识存有许多差异。他们集中于对物流成本优化策略、方法及技术等实操性的研究很多,而对于物流成本理论体系等相关基础理论的研究却相对较少。
国内物流成本控制研究现状:我国对物流成本控制的研究起步相对较晚,引入我国也仅有20多年的历史,但是也取得了一定的成果。开发出了一系列可操作性较强的各类物流成本测算模型,例如:物流成本总量的测算模型、第三方物流服务市场规模的测算模型、物流业成本水平的测算模型等。
黄岩提出了基于横向控制、纵向控制以及供应链为对象的计算机网络控制系统。在这个系统中,假设销售、生产、采购和售后服务四个环节的.物流成本分别是物流过程的函数,然后建立各部分的成本函数和总成本函数,最终构建了以物流成本的预测、计划、分析、信息反馈和决策等步骤为主体的横向控制和以过程为基础的纵向控制以及以供应链为对象的计算机网络系统控制。
柳键、马士华从供应商缺货对购买方的影响出发,引入有效库存水平概念,创建了在供应和需求都不确定的情形下仓库和零售商的库存模型,并在此基础上提出了安全因子整体优化的思路和方法。
李慧对物流作业成本法中的物流成本与作业量的相关关系进行了研究,引入线性回归预测与控制原理对物流作业成本预测和物流作业量的优化控制这一概念,并提出了多种作业的正态线性回归模型。
张令荣,杨梅提出了基于价值链的作业成本法,分析一体化物流成本的数学模型。通过这个模型可以预测或模拟成本数据,并通过有关矩阵对应的变量,求取较优解或最优解,以便于物流成本控制。但是有所不足的是此模型仅仅是理论上的假设,并没有进一步的分析和实证。
田肇云提出挖掘逆向物流潜在价值的策略。他指出有效的逆向物流管理能够减少企业乃至整个供应链的运营成本、增加利润,改善企业的现金流,提高客户服务质量,并为企业赢得信用和品牌形象。
石明虹,滕芳提出制造业企业内部物流绩效评价指标体系,探讨了物流评价体系的量化方法,他们主张从内部物流成本控制能力、库存物料管理能力、内部物流布局能力和内部物流管理成熟度四个方面构造评价指标。
张余华,翁君认为供应链物流中,物流作为整个供应链子环节,其决策最终必须服从供应链,单纯对系统自身优化具有很大局限性。他们认为在供应链的背景下,物流系统优化将会遇到来自系统内部和外部的不同因素的影响,这些都会加剧优化的难度。
三、论文提纲的初步设计
(一)引言
(二)物流成本理论基础
医药物流成本概述
医药物流成本的概念
医药物流成本的分类
医药物流成本的特征
物流成本管理
物流成本管理的环节
物流成本管理的方法
物流作业成本控制体系
(三)基于作业成本法的医药物流成本分析
作业成本法
作业成本法简介
作业成本法进行成本计算的要点分析
作业成本法在医药物流中心应用的必要性和可行性分析
医药物流中心的物流成本核算
物流成本的作业成本核算模型研究
物流成本法的成本分配
医药物流中心的物流成本预测
物流成本的多作业线性回归模型
物流成本的线性回归预测
(四)医药物流中心的物流成本控制体系
物流成本控制体系概述
物流成本控制的含义
物流成本控制的要求
物流成本控制体系框架
事前成本控制阶段
事中成本控制阶段
事后成本控制阶段
医药物流中心的物流成本控制体系
作业成本核算
物流成本的控制策略
(五)结论
四、进程安排
1、确定论文题目,撰写开题报告;
2、——文献阅读与整理,理论研究与分析;
3、——实地调研,数据分析与整理;
4、——论文撰写,形成初稿;
5、——论文修改,形成定稿;
6、提交论文。
五、主要参考文献
[1]黄岩,高建兵,蔡雨阳.企业物流成本的控制研究[J].中国软科学,2000(7):82-85.
[2]柳键,马士华.供应链合作及其契约研究[J].管理工程学报,2004(1):85-87.
[3]李慧.线性回归预测与控制在物流作业成本法中的应用[J].重庆交通学院学报,2004(6):115-117.
[4]张令荣,杨梅.基于价值链的企业物流一体化成本分析方法研究[J].大连理工大学学报,2005(4):33-36.
[5]田肇云.逆向物流潜在价值及挖掘策略[J].商业时代,2006(8):17.
[6]石明虹,滕芳.制造业企业内部物流绩效评价指标体系研究[J].商场现代化,2006(26):146-147.
[7]张余华,翁君.供应链背景下物流系统优化问题分析[J].国际经贸探索,2006(1):76-79.
[8]胡开桥.苏宁电器公司物流成本管理与控制的策略浅析[J].消费导刊,2009(1):33-35.
[9]翟娜.连锁超市物流成本优化研究--怎样做到“天天平价”[J].科技信息,2009(5):477-478.
一、国外研究现状
在物流发展的同时,西方发达国家的物流成本控制研究经历了:了解物流成本实际状况、物流成本实际核算、物流成本管理、物流收益评估、物流盈亏分析等五个阶段。虽然很多物流企业开始分析其物流体系,但大多数情况下这种分析是根据经验和直觉进行的,分析过程中很少使用分析模型或工具。虽然西方学术界开发了许多有效的分析模型、工具和决策支持系统,论述这些工具、模型和决策支持系统的著作也很少,但是工业界还未真正了解和应用这些技术,因而目前部分企业物流成本控制达到第四个阶段,而多数企业的物流成本控制还都处于第三阶段,还没有达到第四、第五阶段。虽然现在对物流成本构成有了更加全面的理解,但是由于许多会计核算方法不健全成为解决物流成本的障碍,现在对物流过程进行有效的成本管理控制仍然存在困难。
二、国内研究现状
我国现代物流经过数十年的发展,已经迎来了物流业的春天。近十年来国家经济持续稳定的高速增长、电子商务的兴起、加入世贸组织等等,为我国物流业激起一个又一个的浪潮。目前由于政策环境与经济环境的改善,企业改革日益深化,为物流企业发展建立了良好的宏观环境与微观基础,物流事业的发展形势越来越好。
然而对于物流成本控制而言,我国企业的物流成本控制大多还处于了解物流成本实际状况的阶段,即对物流活动的重要性认知的阶段,只有少部分企业达到了物流成本核算,即了解并解决物流活动中存在问题的阶段(但核算水平很低,了解和解决问题的层次也不深),物流部门远远落后于生产部门,物流成本管理也远远落后于生产管理。对物流成本核算的相关理论和实务探讨非常薄弱,对物流成本的计算没有明确规定,对物流成本的计算方法的研究大多是基于日本的
三、选题背景与意义
随着人们物流管理意识的增强,降低物流成本已经成为物流管理的首要任务。无论采取什么样的物流技术与管理模式,最终的目的都不在与这种模式与技术本身,而是要通过物流系统的整体优化,在保证一定的物流服务水平的前提下实现物流成本的降低。可以说,整个物流技术和物流管理的发展过程就是不断追求物流成本降低的过程。
同时伴随着新经济时代的到来,经济全球化、市场一体化的趋势日益加强,企业面对变化无常、竞争激烈的市场环境以及顾客需求多样化、个性化消费水平的不断提高,其传统的、机械的采购、生产、物流模式己经难以适应市场的需要。企业必须快速把握市场的真实需求,缩短产品的开发周期、采购供应周期、生产加工周期、流通配送周期,全面降低企业作业链过程的成本,才能提高企业的生存能力和竞争能力。在传统的企业成本管理模式下,企业往往过于强调通过产量的扩大来降低单位产品所分摊的固定成本,通过采用廉价劳动力和原材料等措施降低企业的生产成本,从而获得预期的利润。但是,随着企业间的竞争越来越激烈,单纯通过扩大产量来形成规模经济而不考虑市场对产品接受程度和竞争对手的策略的做法,己经被证明是行不通的,通过改进产品的设计和控制生产过程中的浪费来降低成本的手段所能起的作用和降低成本的空间也越来越小。因此,人们意识到,为保持企业的生存能力和竞争能力,必须为企业寻找新的利润源泉。
通过多年的研究,发现在企业物资的流动过程中所发生的成本并不会增加顾客的价值,并且企业物流活动所发生的成本占企业总成本的比例较大。由此引发了学术界对企业物流的研究,同时,实务界也在积极地研究如何规划和实施本企业的物流战略。另一方面,各国政府为搞活本国的经济,通过大流通促进大生产,希望对本国基础建设的投资来带动国家的经济发展,也迫切需要研究如何发展物流战略。通过几十年研究的积累,物流学界对企业物流成本管理的认识,形成了第三利润源、物流冰山、效益背反等理论。国内企业一般没有单独对物流成本进行核算,往往都是和企业其它成本一同核算,没有单独设立核算项目。即使有些企业将物流成本划分出来进行单独核算也往往应用比较传统的分步法或品种法等,导致物流成本核算的严重失真。
对于恩希爱这个外资企业,虽然在日本的市场已经完全打开,但对于中国这个陌生市场,要打开这个市场就必须降低成本,提高竞争力。由于长期以来企业重生产和销售,轻流通,导致企业的物流成本偏高。目前,我国生产企业生产中直接劳动成本占总成本的比重不到10%,而物流费用达到了40%。在当今激烈的市场竞争下,物流成本的降低比销售额的提高更容易。这意味着在激烈的竞争中谁降低了物流费用,谁就降低了成本,谁就会在竞争中取胜。
从分析物流成本入手,进行物流成本管理,改善企业物流,具有重要的意义。物流成本计算是物流成本管理的基础,但在我国现行的会计制度下,难以按照物流成本的内涵完整地计算出物流成本,而且按照传统成本法分摊出来的物流成本,也不能满足物流管理的需要。这种状况不仅打击企业进行物流成本计算的积极性,更重要的是由于缺乏物流成本这一基础数据,影响了企业物流管理、物流系统再造等决策的科学性和正确性,从而制约了企业物流管理水平的提高和企业竞争力的加强。
因此,开展企业物流成本计算研究,确定其成本构成,可以有效地降低企业成本,提高资金利用率和提升企业竞争力。
课题来源主要是写你导师课题的内容,国家级课题,973,国家自然基金课题等,或者是省局级课题,注明方面就可以,还要写上课题名称,即你导师课题的名称。
第一次数学危机编辑简介从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。这个学派兴旺的时期为公元前500年左右,它是一个唯心主义流派。他们重视自然及社会中不变因素的研究,把几何、算术、天文学、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。引起不可通约性的发现引起第一次数学危机。有人说,这种性质是希帕索斯约在公元前400年发现的,为此,他的同伴把他抛进大海。不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。不管怎样,这个发现对古希腊的数学观点有极大的冲击,换句话说,如果希帕索斯发现的无理数真的存在,那么古希腊的数学理论体系就完全崩溃了。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物。回顾以前的各种数学,无非都是“算”,也就是提供算法。即使在古希腊,数学也是从实际出发,应用到实际问题中去的。比如泰勒斯预测日食,利用影子距离计算金字塔高度,测量船只离岸距离等等,都是属于计算技术范围的。至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,所以也就一直停留在“算学”阶段。而希腊数学则走向了完全不同的道路,形成了欧几里得《几何原本》的公理体系与亚里士多德的逻辑体系。危机产物古典逻辑与欧氏几何学亚里士多德的方法论对于数学方法的影响是巨大的,他指出了正确的定义原理。亚里士多德继承自己老师柏拉图的观念,把定义与存在区分,由某些属性来定义的东西可能未必存在(如正九面体)。另外,定义必须用已存在的定义过的东西来定义,所以必定有些最原始的定义,如点、直线等。而证明存在的方法需要规定和限制。亚里士多德还指出公理的必要性,因为这是演绎推理的出发点。他区别了公理和公设,认为公理是一切科学所公有的真理,而公设则只是某一门学科特有的最基本的原理。他把逻辑规律(矛盾律、排中律等)也列为公理。亚里士多德对逻辑推理过程进行深入研究,得出三段论法,并把它表达成一个公理系统,这是最早的公理系统。他关于逻辑的研究不仅使逻辑形成一个独立学科,而且对数学证明的发展也有良好的影响。亚里士多德对于离散与连续的矛盾有一定阐述。对于潜在的“无穷大”和实在的“无穷大”加以区别。他认为正整数是潜在无穷的,因为任何整数加上1以后总能得到一个新的数。但是他认为所谓“无穷集合”是不存在的。他认为空间是潜在无穷的,时间在延长上是潜在无穷的,在细分上也是潜在无穷的。欧几里得的《几何原本》对数学发展的作用无须在此多谈。不过应该指出,欧几里得的贡献在于他有史以来第一次总结了以往希腊人的数学知识,构成一个标准化的演绎体系。这对数学乃至哲学、自然科学的影响一直延续到十九世纪。牛顿的《自然哲学的数学原理》和斯宾诺莎的《伦理学》等都采用了欧几里得《几何原本》的体例。欧几里得的平面几何学为《几何原本》的最初四篇与第六篇。其中有七个原始定义,五个公理和五个公设。他规定了存在的证明依赖于构造。《几何原本》在西方世界成为仅次于《圣经》而流传最广的书籍。它一直是几何学的标准著作。但是它还存在许多缺点并不断受到批评,比如对于点、线、面的定义是不严格的:“点是没有部分的对象”,“线是没有宽度的长度(线指曲线)”,“面是只有长度和宽度的对象”。显然,这些定义是不能起逻辑推理的作用。特别是直线、平面的定义更是从直观来解释的(“直线是同其中各点看齐的线”)。另外,他的公理五是“整体大于部分”,没有涉及无穷量的问题。在他的证明中,原来的公理也不够用,须加上新的公理。特别是平行公设是否可由其他公理、公设推出更是人所瞩目的问题。尽管如此,近代数学的体系特点在其中已经基本上形成了。诞生非欧几何学的诞生欧几里得的《几何原本》是第一次数学危机的产物。尽管它有种种缺点和毛病,毕竟两千多年来一直是大家公认的典范。尤其是许多哲学家,把欧几里得几何学摆在绝对几何学的地位。十八世纪时,大部分人都认为欧几里得几何是物质空间中图形性质的正确理想化。特别是康德认为关于空间的原理是先验综合判断,物质世界必然是欧几里得式的,欧几里得几何是唯一的、必然的、完美的。既然是完美的,大家希望公理、公设简单明白、直截了当。其他的公理和公设都满足了上面的这个条件,唯独平行公设不够简明,像是一条定理。欧几里得的平行公设是:每当一条直线与另外两条直线相交,在它一侧做成的两个同侧内角的和小于两直角时,这另外两条直线就在同侧内角和小于两直角的那一侧相交。在《几何原本》中,证明前28个命题并没有用到这个公设,这很自然引起人们考虑:这条啰哩啰嗦的公设是否可由其他的公理和公设推出,也就是说,平行公设可能是多余的。之后的二千多年,许许多多人曾试图证明这点,有些人开始以为成功了,但是经过仔细检查发现:所有的证明都使用了一些其他的假设,而这些假设又可以从平行公设推出来,所以他们只不过得到一些和平行公设等价的命题罢了。到了十八世纪,有人开始想用反证法来证明,即假设平行公设不成立,企图由此得出矛盾。他们得出了一些推论,比如“有两条线在无穷远点处相交,而在交点处这两条线有公垂线”等等。在他们看来,这些结论不合情理,因此不可能真实。但是这些推论的含义不清楚,也很难说是导出矛盾,所以不能说由此证明了平行公设。从旧的欧几里得几何观念到新几何观念的确立,需要在某种程度上解放思想。首先,要能从二千年来证明平行公设的失败过程中看出这个证明是办不到的事,并且这种不可能性是可以加以证实的;其次,要选取与平行公设相矛盾的其他公设,也能建立逻辑上没有矛盾的几何。这主要是罗巴切夫斯基的开创性工作。要认识到欧几里得几何不一定是物质空间的几何学,欧几里得几何学只是许多可能的几何学中的一种。而几何学要从由直觉、经验来检验的空间科学要变成一门纯粹数学,也就是说,它的存在性只由无矛盾性来决定。虽说象兰伯特等人已有这些思想苗头,但是真正把几何学变成这样一门纯粹数学的是希尔伯特。这个过程是漫长的,其中最主要的一步是罗巴切夫斯基和波耶分别独立地创立非欧几何学,尤其是它们所考虑的无矛盾性是历史上的独创。后人把罗氏几何的无矛盾性隐含地变成欧氏几何无矛盾性的问题。这种利用“模型”和证明“相对无矛盾性”的思想一直贯穿到以后的数学基础的研究中。而且这种把非欧几何归结到大家一贯相信的欧氏几何,也使得大家在接受非欧几何方面起到重要作用。应该指出,非欧几何为广大数学界接受还是经过几番艰苦斗争的。首先要证明第五公设的否定并不会导致矛盾,只有这样才能说新几何学成立,才能说明第五公设独立于别的公理公设,这是一个起码的要求。当时证明的方法是证明“相对无矛盾性”。因为当时大家都承认欧几里得几何学没有矛盾,如果能把非欧几何学用欧几里得几何学来解释而且解释得通,也就变得没有矛盾。而这就要把非欧几何中的点、直线、平面、角、平行等翻译成欧几里得几何学中相应的东西,公理和定理也可用相应欧几里得几何学的公理和定理来解释,这种解释叫做非欧几何学的欧氏模型。对于罗巴切夫斯基几何学,最著名的欧氏模型有意大利数学家贝特拉米于1869年提出的常负曲率曲面模型;德国数学家克莱因于1871年提出的射影平面模型和彭加勒在1882年提出的用自守函数解释的单位圆内部模型。这些模型的确证实了非欧几何的相对无矛盾性,而且有的可以推广到更一般非欧几何,即黎曼创立的椭圆几何学,另外还可以推广到高维空间上。因此,从十九世纪六十年代末到八十年代初,大部分数学家接受了非欧几何学。尽管有的人还坚持欧几里得几何学的独特性,但是许多人明确指出非欧几何学和欧氏几何学平起平坐的时代已经到来。当然也有少数顽固派,如数理逻辑的缔造者弗雷格,至死不肯承认非欧几何学,不过这已无关大局了。非欧几何学的创建对数学的震动很大。数学家开始关心几何学的基础问题,从十九世纪八十年代起,几何学的公理化成为大家关注的目标,并由此产生了希尔伯特的新公理化运动。3第二次数学危机编辑简介早在古代,人们就对长度、面积、体积的度量问题感兴趣。古希腊的欧多克斯引入量的观念来考虑连续变动的东西,并完全依据几何来严格处理连续量。这造成数与量的长期脱离。古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例。他们对于连续与离散的关系很有兴趣,尤其是芝诺提出的四个著名的悖论:第一个悖论是说运动不存在,理由是运动物体到达目的地之前必须到达半路,而到达半路之前又必须到达半路的半路……如此下去,它必须通过无限多个点,这在有限长时间之内是无法办到的。第二个悖论是跑得很快的阿希里赶不上在他前面的乌龟。因为乌龟在他前面时,他必须首先到达乌龟的起点,然后用第一个悖论的逻辑,乌龟者在他的前面。这两个悖论是反对空间、时间无限可分的观点的。而第三、第四悖论是反对空间、时间由不可分的间隔组成。第三个悖论是说“飞矢不动”,因为在某一时间间隔,飞矢总是在某个空间间隔中确定的位置上,因而是静止的。第四个悖论是游行队伍悖论,内容大体相似。这说明希腊人已经看到无穷小与“很小很小”的矛盾。当然他们无法解决这些矛盾。希腊人虽然没有明确的极限概念,但他们在处理面积体积的问题时,却有严格的逼近步骤,这就是所谓“穷竭法”。它依靠间接的证明方法,证明了许多重要而难证的定理。新问题到了十六、十七世纪,除了求曲线长度和曲线所包围的面积等类问题外,还产生了许多新问题,如求速度、求切线,以及求极大、极小值等问题。经过许多人多年的努力,终于在十七世纪晚期,形成了无穷小演算——微积分这门学科,这也就是数学分析的开端。牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:1,把各种问题的解法统一成一种方法,微分法和积分法;2,有明确的计算微分法的步骤;3.微分法和积分法互为逆运算。由于运算的完整性和应用范围的广泛性,微积分成为了解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是Δs/Δt当Δt趋向于零时的值。Δt是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。十八世纪的数学家成功地用微积分解决了许多实际问题,因此有些人就对这些基础问题的讨论不感兴趣。如达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。更有许多人认为所谓的严密化就是繁琐。但也正是因此,微积分的基础问题一直受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。建立基础十八世纪的数学思想的确是不严密的、直观的、强调形式的计算,而不管基础的可靠与否,其中特别是:没有清楚的无穷小概念,因此导数、微分、积分等概念不清楚;对无穷大的概念也不清楚;发散级数求和的任意性;符号使用的不严格性;不考虑连续性就进行微分,不考虑导数及积分的存在性以及可否展成幂级数等等。一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由魏尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。波尔查诺不承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε - δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。十九世纪七十年代初,魏尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。同时,魏尔斯特拉斯给出一个处处不可微的连续函数的例子。这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础——实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是二十世纪数学基础中的首要问题。4第三次数学危机编辑简介经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。1918年,罗素把这个悖论通俗化,称为“理发师悖论”。罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。产生集合论悖论的原因在于集合的辨证性与数学方法的形式特性或者形而上学的思维方法的矛盾。如产生罗素悖论的原因,就在于概括原则造集的任意性与生成集合的客观规则的非任意性之间的矛盾。再次产物数理逻辑的发展与一批现代数学的产生。为了解决第三次数学危机,数学家们作了不同的努力。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。为了排除集合论悖论,罗素提出了类型论,策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗——弗伦克尔集合论公理体系,以后又经伯奈斯和哥德尔进一步改进和简化,得到伯奈斯——哥德尔集合论公理体系。希尔伯特还建立了元数学。作为对集合论悖论研究的直接成果是哥德尔不完全性定理。美国杰出数学家哥德尔于20世纪30年代提出了不完全性定理。他指出:一个包含逻辑和初等数论的形式系统,如果是协调的,则是不完全的,亦即无矛盾性不可能在本系统内确立;如果初等算术系统是协调的,则协调性在算术系统内是不可能证明的。哥德尔不完全性定理无可辩驳地揭示了形式主义系统的局限性,从数学上证明了企图以形式主义的技术方法一劳永逸地解决悖论问题的不可能性。它实际上告诉人们,任何想要为数学找到绝对可靠的基础,从而彻底避免悖论的种种企图都是徒劳无益的,哥德尔定理是数理逻辑、人工智能、集合论的基石,是数学史上的一个里程碑。美国著名数学家冯·诺伊曼说过:“哥德尔在现代逻辑中的成就是非凡的、不朽的——它的不朽甚至超过了纪念碑,它是一个里程碑,在可以望见的地方和可以望见的未来中永远存在的纪念碑”。时至今日,第三次数学危机还不能说已从根本上消除了,因为数学基础和数理逻辑的许多重要课题还未能从根本上得到解决。然而,人们正向根本解决的目标逐渐接近。可以预料,在这个过程中还将产生许多新的重要成果。参考来源:望采纳~~~
数学悖论与三次数学危机陈基耿摘要:数学发展从来不是完全直线式的,而是常常出现悖论。历史上一连串的数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机。数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。危机产生、解决、又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。关键词:数学悖论;数学危机;毕达哥拉斯悖论;贝克莱悖论;罗素悖论数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。悖论是指在某一一定的理论体系的基础上,根据合理的推理原则,推出了两个互相矛盾的命题,或者是证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式[1]。数学悖论在数学理论中的发展是一件严重的事,因为它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的动摇。数学史上曾经发生过三次数学危机,每次都是由一两个典型的数学悖论引起的。本文回顾了历史上发生的三次数学危机,重点介绍了三次数学危机对数学发展的重要作用。1毕达哥拉斯悖论与第一次数学危机第一次数学危机的内容公元前六世纪,在古希腊学术界占统治地位的毕达哥拉斯学派,其思想在当时被认为是绝对权威的真理,毕达哥拉斯学派倡导的是一种称为“唯数论”的哲学观点,他们认为宇宙的本质就是数的和谐[2]。他们认为万物皆数,而数只有两种,就是正整数和可通约的数(即分数,两个整数的比), 除此之外不再有别的数,即是说世界上只有整数或分数。毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理[3],也就是我们所说的勾股定理。勾股定理指出直角三角形三边应有如下关系,即a2=b2+c2,a和b分别代表直角三角形的两条直角边,c表示斜边。然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。他发现边长相等的正方形其对角线长并不能用整数或整数之比来表示。假设正方形边长为1,并设其对角线长为d,依勾股定理应有d2=12+12=2,即d2=2,那么d是多少呢?显然d不是整数,那它必是两整数之比。希伯斯花了很多时间来寻找这两个整数之比,结果没找着,反而找到了两数不可通约性的证明[4],用反证法证明如下:设Rt△ABC,两直角边为a=b,则由勾股定理有c2=2a2,设已将a和c中的公约数约去,即a、c已经互素,于是c为偶数,a为奇数,不妨令c=2m,则有(2m)2=2a2,a2=2m2,于是a为偶数,这与前面已证a为奇数矛盾。这一发现历史上称为毕达哥拉斯悖论。第一次数学危机的影响毕达哥拉斯悖论的出现,对毕达哥拉斯学派产生了沉重的打击,“数即万物”的世界观被极大的动摇了,有理数的尊崇地位也受到了挑战,因此也影响到了整个数学的基础,使数学界产生了极度的思想混乱,历史上称之为第一次数学危机。第一次数学危机的影响是巨大的,它极大的推动了数学及其相关学科的发展。首先,第一次数学危机让人们第一次认识到了无理数的存在,无理数从此诞生了,之后,许多数学家正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类——实数,并建立了完整的实数理论[5],为数学分析的发展奠定了基础。再者,第一次数学危机表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演绎推理,并由此建立了几何公理体系。欧氏几何就是人们为了消除矛盾,解除危机,在这时候应运而生的[6]。第一次数学危机极大地促进了几何学的发展,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命。2贝克莱悖论与第二次数学危机第二次数学危机的内容公元17世纪,牛顿和莱布尼兹创立了微积分,微积分能提示和解释许多自然现象,它在自然科学的理论研究和实际应用中的重要作用引起人们高度的重视。然而,因为微积分才刚刚建立起来,这时的微积分只有方法,没有严密的理论作为基础,许多地方存在漏洞,还不能自圆其说。例如牛顿当时是这样求函数y=xn的导数的[7]:(x+△x)n=xn+n•xn-1•△x+[n(n+1)/2]•xn-2•(△x)2+……+(△x)n,然后用自变量的增量△x除以函数的增量△y ,△y/△x=[(x+△x)n-xn ]/△x=n•xn-1+[n(n-1)/2] •xn-2•△x+……+n•x•(△x)n-2+(△x)n-1,最后,扔掉其中含有无穷小量△x的项,即得函数y=xn的导数为y′=nxn-1。对于牛顿对导数求导过程的论述,哲学家贝克莱很快发现了其中的问题,他一针见血的指出:先用△x为除数除以△y,说明△x不等于零,而后又扔掉含有△x的项,则又说明△x等于零,这岂不是自相矛盾吗?因此贝克莱嘲弄无穷小是“逝去的量的鬼魂”,他认为微积分是依靠双重的错误得到了正确的结果,说微积分的推导是“分明的诡辩”。[8]这就是著名的“贝克莱悖论”。确实,这种在同一问题的讨论中,将所谓的无穷小量有时作为0,有时又异于0的做法,不得不让人怀疑。无穷小量究竟是不是零?无穷小及其分析是否合理?贝克莱悖论的出现危及到了微积分的基础,引起了数学界长达两个多世纪的论战,从而形成了数学发展史中的第二次危机。第二次数学危机的影响[8]第二次数学危机的出现,迫使数学家们不得不认真对待无穷小量△x,为了克服由此引起思维上的混乱,解决这一危机,无数人投入大量的劳动。在初期,经过欧拉、拉格朗日等人的努力,微积分取得了一些进展;从19世纪开始为彻底解决微积分的基础问题,柯西、外尔斯特拉斯等人进行了微积分理论的严格化工作。微积分内在的根本矛盾,就是怎样用数学的和逻辑的方法来表现无穷小,从而表现与无穷小紧密相关的微积分的本质。在解决使无穷小数学化的问题上,出现了罗比达公理:一个量增加或减少与之相比是无穷小的另一个量,则可认为它保持不变。而柯西采用的ε-δ方法刻画无穷小,把无穷小定义为以0为极限的变量,沿用到今,无穷小被极限代替了。后来外尔斯特拉斯又把它明确化,给出了极限的严格定义,建立了极限理论,这样就使微积分建立在极限基础之上了。极限的ε-δ定义就是用静态的ε-δ刻画动态极限,用有限量来描述无限性过程,它是从有限到无限的桥梁和路标,它表现了有限与无限的关系,使微积分朝科学化、数学化前进了一大步。极限理论的建立加速了微积分的发展,它不仅在数学上,而且在认识论上也有重大的意义。后来在考查极限理论的基础中,经过代德金、康托尔、海涅、外尔斯特拉斯和巴门赫等人的努力,产生了实数理论;在考查实数理论的基础时,康托尔又创立了集合论。这样有了极限理论、实数理论和集合论三大理论后,微积分才算建立在比较稳固和完美的基础之上了,从而结束了二百多年的纷乱争论局面,进而开辟了下一个世纪的函数论的发展道路。3罗素悖论与第三次数学危机第三次数学危机的内容在前两次数学危机解决后不到30年即19世纪70年代,德国数学家康托尔创立了集合论,集合论是数学上最具革命性的理论,初衷是为整个数学大厦奠定坚实的基础。1900年,在巴黎召开的国际数学家会议上,法国大数学家庞加莱兴奋的宣布[9]:“我们可以说,现在数学已经达到了绝对的严格。”然而,正当人们为集合论的诞生而欢欣鼓舞之时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安,其中英国数学家罗素1902年提出的悖论影响最大,“罗素悖论”的内容是这样的:设集合B是一切不以自身为元素的集合所组成的集合,问:B是否属于B?若B属于B,则B是B的元素,于是B不属于自身,即B不属于B;反之,若B不属于B,则B不是B的元素,于是B属于自己,即B属于B。这样,利用集合的概念,罗素导出了——集合B不属于B当且仅当集合B属于B时成立的悖论。之后,罗素本人还提出了罗素悖论的通俗版本,即理发师悖论[10]。理发师宣布了这样一条原则:他只为村子里不给自己刮胡子的人刮胡子。那么现在的问题是,理发师的胡子应该由谁来刮?。如果他自己给自己刮胡子,那么他就是村子里给自己刮胡子的人,根据他的原则,他就不应给自己刮胡子;如果他不给自己刮胡子,那么他就是村子里不给自己刮胡子的人,那么又按他的原则他就该为自己刮胡子。同样有产生了这样的悖论:理发师给自己刮胡子当且仅当理发师不给自己刮胡子。这就是历史上著名的罗素悖论。罗素悖论的出现,动摇了数学的基础,震撼了整个数学界,导致了第三次数学危机。第三次数学危机的影响罗素悖论的出现,动摇了本来作为整个数学大厦的基础——集合论,自然引起人们对数学基本结构有效性的怀疑。罗素悖论的高明之处,还在于它只是用了集合的概念本身,而并不涉及其它概念而得出来的,使人们更是无从下手解决。罗素悖论导致的第三次数学危机,使数学家们面临着极大的困难。数学家弗雷格在他刚要出版的《论数学基础》卷二末尾就写道[11]:“对一位科学家来说,没有一件比下列事实更令人扫兴:当他工作刚刚完成的时候,它的一块基石崩塌下来了。在本书的印刷快要完成时,罗素先生给我的一封信就使我陷入这种境地。”可见第三次数学危机使人们面临多么尴尬的境地。然而科学面前没有人会回避,数学家们立即投入到了消除悖论的工作中,值得庆幸的是,产生罗素悖论的根源很快被找到了,原来康托尔提出集合论时对“集合”的概念没有做必要的限制,以至于可以构造“一切集合的集体”这种过大的集合而产生了悖论。为了从根本上消除集合论中出现的各种悖论,特别是罗素悖论,许多数学家进行了不懈的努力。如以罗素为主要代表的逻辑主义学派[12],提出了类型论以及后来的曲折理论、限制大小理论、非类理论和分支理论,这些理论都对消除悖论起到了一定的作用;而最重要的是德国数学家策梅罗提出的集合论的公理化,策梅罗认为,适当的公理体系可以限制集合的概念,从逻辑上保证集合的纯粹性,他首次提出了集合论公理系统,后经费兰克尔、冯•诺伊曼等人的补充形成了一个完整的集合论公理体系(ZFC系统)[5],在ZFC系统中,“集合”和“属于”是两个不加定义的原始概念,另外还有十条公理。ZFC系统的建立,使各种矛盾得到回避,从而消除了罗素悖论为代表的一系列集合悖论,第三次数学危机也随之销声匿迹了。尽管悖论消除了,但数学的确定性却在一步一步丧失,现代公理集合论一大堆公理是在很难说孰真孰假,可是又不能把它们一古脑消除掉,它们跟整个数学是血肉相连的,所以第三次危机表面上解决了,实质上更深刻地以其它形式延续[7]。为了消除第三次数学危机,数理逻辑也取得了很大发展,证明论、模型论和递归论相继诞生,出现了数学基础理论、类型论和多值逻辑等。可以说第三次数学危机大大促进了数学基础研究及数理逻辑的现代性,而且也因此直接造成了数学哲学研究的“黄金时代”。4结语历史上的三次数学危机,给人们带来了极大的麻烦,危机的产生使人们认识到了现有理论的缺陷,科学中悖论的产生常常预示着人类的认识将进入一个新阶段,所以悖论是科学发展的产物,又是科学发展源泉之一。第一次数学危机使人们发现无理数,建立了完整的实数理论,欧氏几何也应运而生并建立了几何公理体系;第二次数学危机的出现,直接导致了极限理论、实数理论和集合论三大理论的产生和完善,使微积分建立在稳固且完美的基础之上;第三次数学危机,使集合论成为一个完整的集合论公理体系(ZFC系统),促进了数学基础研究及数理逻辑的现代性。数学发展的历史表明对数学基础的深入研究、悖论的出现和危机的相对解决有着十分密切的关系,每一次危机的消除都会给数学带来许多新内容、新认识,甚至是革命性的变化,使数学体系达到新的和谐,数学理论得到进一步深化和发展。悖论的存在反映了数学概念、原理在一定历史阶段会存在很多矛盾,导致人们的怀疑,产生危机感,然而事物就是在不断产生矛盾和解决矛盾中逐渐发展完善起来的,旧的矛盾解决了,新的矛盾还会产生,而就是在其过程中,人们便不断积累了新的认识、新的知识,发展了新的理论。数学家对悖论的研究和解决促进了数学的繁荣和发展,数学中悖论的产生和危机的出现,不单是给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望。数学中悖论和危机的历史也说明了这一点:已有的悖论和危机消除了,又产生新的悖论和危机。但是人的认识是发展的,悖论或危机迟早都能获得解决。“产生悖论和危机,然后努力解决它们,而后又产生新的悖论和危机。”这是一个无穷反复的过程,也就不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。参考文献:[1] 师琼,王保红.悖论及其意义[J].中共山西省委党校学报,2005,28(4):76~78.[2] 赵院娥,乔淑莉.悖论及其对数学发展的影响[J].延安大学学报(自然科学版),2004,2(1):21~25.[3] 李春兰.试论数学史上的第一次危机及其影响[J].内蒙古师范大学学报(教育科学版),2006,19(1):88~90.[4] 梁伟.试析悖论与数学史上三次危机及其方法论意义[J].科技资讯,2005,(27):187~188.[5] 王方汉.历史上的三次数学危机[J].数学通报,2002,(5):42~43.[6] 胡作玄.第三次数学危机[M].四川:四川人民出版社,1985,1~108.[7] 黄燕玲,代贤军.悖论对数学发展的影响[J].河池师专学报,2003, 23(4):62~64. [8] 周勇.第2次数学危机的影响和启示[J].数学通讯,2005,(13):47.[9] 王庚.数学怪论[A].数学文化与数学教育——数学文化报告集[C].北京:科学出版社,~25.[10] 兰林世.三次数学危机与悖论[J].集宁师专学报,2003,25(4):47~49.[11] 王风春.数学史上的三次危机[J].上海中学数学,2004,(6):42~43.[12] 张怀德.数学危机与数学发展[J].甘肃高师学报,2004,9(2):60~62
你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确 定了框架,避免以后论文修改过程中出现大改的情况!! 学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以 问我,希望你能够顺利毕业,迈向新的人生。下面我就阐述一下对于本次开题报告的心得体会。 一、总体感受 刚从本科生跨入研究生的大门,我觉得很难自如地转变角色。以前是按部就班地上课、考试, 有老师计划性的安排。而现在全凭自觉,师傅领进门,修行靠个人,想要培养独立学习的习惯实 在是困难,而且学习动力不足,总是得过且过。今天我意识到,只靠鞭子抽打才会前进的耕牛, 即使最终完成任务,过程也注定艰辛。学长学姐们正在实习,教课已经很累了,还要写论文,确 实是很辛苦,所以有些人就想要敷衍了事。但是各位导师都是很有责任心的,对于每一篇开题报 告都仔细阅读并发现问题,给予学生建设性的指导,足见他们对学生的负责态度、对学术的严谨 作风、对自身本职工作的敬业精神。导师每一个建议都是多年经验的沉淀,对我们来说都是沉甸 甸的宝贵财富。所以,我认为,既然选定了研究生这条路,我就必须牢记“不忘初衷,方能始 终”这句话,踏踏实实地看书、学习、实践、搞研究,努力提高个人修养。而且我是教育硕士, 更肩负着国家教育事业的未来,因此,唯有不断提高自身理论水平,并应用于实践,在实践中总 结经验,做到研究实践两不误,才能成为一名合格的教育者。二、对于选题的思考“主题”是一篇论文的精髓,是眼睛,透过它不仅能读懂论文,更能窥探作者内心的思想。以下 是我的一些思考:1、选题一定要“新”。 所谓“新”,不是为了“新”而“新”,去凭空创造一个童话般的东西来研究,这只是在建 造空中楼阁,根本找不到坚固的支撑。我认为,新颖就是“横看成岭侧成峰,远近高低各不 同”,即视角新。暂且不谈其他领域和专业,仅就思想政治教育专业而言,我国的研究成果就数 不胜数,放眼望去,似乎找不到一块处女地来开发。恰恰是这些烟雾弹蒙蔽了我们的双眼,世界 上最创新、最独特的不就是我们自己吗?有谁可以完全复制我们吗?没有的,所以站在自己的视 角,用自己的亲身经历来思考问题,不要试图从别人身上挖掘漏洞来研究,自己的思想永远是别 人不可复制的创新点。今天几位导师反复提到,说我们是教育硕士,有机会在一线教学,这是学 术型研究生所不具备的条件,因此我们要充分利用这一优势,在自身教学实践中发现问题。我国 教育方面存在许多问题,仅仅站在理论层面去探讨是没有实际意义的,自己在教学中发现的问题 才是真正迫切需要解决的问题。此外,我们的专业是培养中学思想政治教育课老师,这就是一个 限定,我们专注于本学科,就应该在选题上突出学科特点,不能泛泛地谈论所有学科都出现的问 题。因此,关于我的论文选题,我认为需要经历一段教学实践才能提出更有价值、更新颖的观 点。2、选题一定要“精”。 所谓“精”是指把主题的范围缩小至精华,找准一个核心点来深入探究,就好像抛进水中一 块石头,我们不能只研究水面泛起的波纹多么美丽,重点应该是石头进入水中的状况。 俗话说,面面俱到就是面面不到。选题也是如此,作为一名研究生,我们的能力有限,国家、社 会层面的问题是我们力所不能及的,太过宽泛就是“假、大、空”,因此只要做好眼前就行了, 针对自己所教学科、年级甚至班级、某一节课出现的问题进行研究,范围越小就越出新,越能深 入挖掘,越能触及本质问题。例如有篇论文是《当代中学生孝道问题研究》,导师们说选题很 好,“孝道”问题是个新问题,但是界定的太过宽泛,可以缩小为“中学思想政治教育课中孝道 问题研究”,这样就提高了研究的深度。再如,论文《探究式教学在<文化生活>中的应用研 究》,导师指出,并不是《文化生活》中的每一节课都需要运用探究式教学,最好是细化到具体 某一节课来研究。当然,“精”也要把握好一定的尺度,要确保在精准的前提下有话可说,有东 西可挖。 3、选题一定要“准”。 所谓“准”就是界定准确。 一般理科类研究力求精准,用数字说话,不能有半点误差。人文科学虽然不能数量化,但是 许多概念很类似,多一字少一字就会改变原意,如果在选题上界定不准就容易在今后的研究中走 错方向。例如,有篇论文是《中职生心理健康教育中的现状、问题、策略研究》,导师提出, “心理健康教育”在这里是指狭义的“心理健康教育课”还是广义的“心理健康教育”,这两者 是差别迥异的,如果不界定清楚就会使读者误解。因此,搞学术研究要注意语言的准确性。 4、选题一定要“真”。 所谓“真”就是真实发生的、真切存在的。 在选题时我们往往为了追求创新点而无病呻吟,本来微不足道的问题也可以放大去谈,只因 为这个问题没人研究过。这是一个恶性循环,其弊端将是学术越来越偏离其实效性。前面已经提 到,教育硕士在撰写论文时一定要侧重实践研究,这是我们的特点,更是优势。所以要想选题 “真”,唯有实践,实践才能出真知。一篇论文就是一段教学经历的总结,亲眼看到的、亲耳听 到的第一手资料绝对比书上看来的更有价值、更有说服力。因此,我们该摒弃眼高手低的坏习 惯,低下头去身体力行,用行动做学问,用真心解决问题。 5、关于选题的其他问题 除了以上详细论述的问题之外,我认为选题还要注意一下几个方面:实际性、科学性、可行 性、合适性。导师没有重点讲解,我通过查阅课堂笔记整理了这么几点,认为也是值得借鉴的。 三、对于文献综述的思考 文献综述是写作前期进行大量准备工作的总结性报告,不仅要整理所读文献,还要提出自己 的见解。文献综述反映了作者阅读文献的广度和深度,因此我们需要注意一下几个问题: 1、文献尽量全面。我们说,老师要给学生一杯水,自己就要有一桶水,写论文亦是如此,只有 查阅了大量的相关文献我们才能全面地了解选题的发展动态,包括国外的和国内的,胸中没有足 够的墨水是难以写出有理有据的论文的。这就启示我要多读书、读好书,充分利用图书馆以及网 络资源,拓宽知识面。 2、选用较新的文献。我们的选题要推陈出新,参考文献也要与时俱进,紧跟学术发展潮流,筛 选出最新最近的文献,这样才能更好地体现时代特点,更容易我们结合实际。 3、选用具有代表性、科学性、可靠性的文献。老话说的好,病急乱投医。我们在写作时常常出 现这样的问题,凡是与选题相关的文献通通阅读,以至于找不到重点,甚至不考虑文献的可靠 性,结果就是“乱花渐欲迷人眼”,根本分不清楚孰好孰坏了。所以,选择文献要去权威机构搜 索,注意筛选,不可尽信。 4、要忠实于参考文献。我们常常有这样一种心理,就是所选资料都是为论文服务的,所以当出 现与论文观点不符的内容时,会选择性地篡改一些资料以满足论文。我自己也出现过这样的错 误。在以后的研究中,我们应尊重科学,保持严谨的科研态度,实事求是。 四、对于论文框架的思考 框架是整篇论文的骨架,是作者思路的反映。我认为在写论文框架时需要注意一下几个问题: 1、要思路清晰。包含两个方面,一是各个大标题的关联度。也就是说论文标题要有一定的顺序 性,比如常见的“目的-意义-现状-问题-策略”式,要符合逻辑,这个方面一般没有问题。二是 某一标题下内容的契合度。我们的论文会涉及三级标题甚至四级标题,层次越多就越容易混乱, 本应属于这一个标题的内容却写到了别的标题下,内容与标题的吻合度不高,似乎适合于这个标 题,又适合于那个标题。所以还是上文提到的,选题要准确,进而思路紧扣主题,都有极强的针 对性,这样就不容易混乱。 2、要分清主次。这一点还是要和选题结合起来。在今天的开题报告中普遍存在一个问题,那就 是本末倒置。大家都是基于自身实践提出一个问题进行研究,在行文时先介绍这个问题的相关理 论知识,比如目的、意义、原则等,然后开始谈论实践意义。思路是对的,只是在论述理论时篇 幅过长,这些理论都是前人总结好载入书籍的,没有必要再拿出来长篇大论,使人看不到新意, 好像是观点堆砌一样,实践部分本应是重点,却被忽视。这个现象在我们做论文时普遍存在,当 我们搜集到大量相关信息时就希望全都写到论文里面以显示自己多有水平,其实不然,这样会让 读者敬佩你的阅读量时认为你没有自我。所以搞研究还是要脚踏实地,多思考,多创造。 以上便是参加开题报告的心得体会,愿您一切安好!
开题报告就是你选题的一些简要介绍,让老师看看你的题目是否合理,准备的差不多。
开题报告是指开题者对科研课题的一种文字说明材料,是一种应用写作文体。它作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。开题者把自己所选的课题的概况向有关专家、学者等进行陈述。然后由他们对科研课题进行评议,再由科研管理部门综合评议意见,确定是否批准选题。
开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题写清楚。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既避免遗漏;又便于评审者一目了然,把握要点。
开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。
开题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用"德尔菲法"评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一
扩展资料:
开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题写清楚。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既避免遗漏;又便于评审者一目了然,把握要点。
开题报告的内容一般包括:题目、理论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)、课题负责人、起止时间、报告提纲等。
开题报告怎么写如下:
一、论文拟研究解决的问题
明确提出论文所要解决的具体学术问题,也就是论文拟定的创新点。明确指出国内外文献就这一问题已经提出的观点、结论、解决方法、阶段性成果。评述上述文献研究成果的不足。提出你的论文准备论证的观点或解决方法,简述初步理由。
你的观点或方法正是需要通过论文研究撰写所要论证的核心内容,提出和论证它是论文的目的和任务,因而并不是定论,研究中可能推翻,也可能得不出结果。
开题报告的目的就是要请专家帮助判断你所提出的问题是否值得研究,你准备论证的观点方法是否能够研究出来。一般提出3或4个问题,可以是一个大问题下的几个子问题,也可以是几个并行的相关问题。
二、国内外研究现状
内容要求:列举与论文拟研究解决的问题密切相关的前沿文献。基于“论文拟研究解决的问题”提出,允许有部分内容重复。只简单评述与论文拟研究解决的问题密切相关的前沿文献,其他相关文献评述则在文献综述中评述。
三、论文研究的目的与意义
简介论文所研究问题的基本概念和背景。简单明了地指出论文所要研究解决的具体问题。简单阐述如果解决上述问题在学术上的推进或作用。基于论文拟研究解决的问题提出,允许有所重复。
四、论文研究主要内容
容要求:初步提出整个论文的写作大纲或内容结构。由此更能理解“论文拟研究解决的问题”不同于论文主要内容,而是论文的目的与核心。
开题报告的基本内容及其顺序:论文的目的与意义;国内外研究概况;论文拟研究解决的主要问题;论文拟撰写的主要内容(提纲);论文计划进度;其它。其中的核心内容是“论文拟研究解决的主要问题”。在撰写时可以先写这一部分,以此为基础撰写其他部分。具体要求如下:1.论文拟研究解决的问题明确提出论文所要解决的具体学术问题,也就是论文拟定的创新点。明确指出国内外文献就这一问题已经提出的观点、结论、解决方法、阶段性成果、……。评述上述文献研究成果的不足。提出你的论文准备论证的观点或解决方法,简述初步理由。你的观点或方法正是需要通过论文研究撰写所要论证的核心内容,提出和论证它是论文的目的和任务,因而并不是定论,研究中可能推翻,也可能得不出结果。开题报告的目的就是要请专家帮助判断你所提出的问题是否值得研究,你准备论证的观点方法是否能够研究出来。一般提出3或4个问题,可以是一个大问题下的几个子问题,也可以是几个并行的相关问题。2.国内外研究现状只简单评述与论文拟研究解决的问题密切相关的前沿文献,其他相关文献评述则在文献综述中评述。基于“论文拟研究解决的问题”提出,允许有部分内容重复。3.论文研究的目的与意义简介论文所研究问题的基本概念和背景。简单明了地指出论文所要研究解决的具体问题。简单阐述如果解决上述问题在学术上的推进或作用。基于“论文拟研究解决的问题”提出,允许有所重复。4.论文研究主要内容初步提出整个论文的写作大纲或内容结构。由此更能理解“论文拟研究解决的问题”不同于论文主要内容,而是论文的目的与核心。
如果你感觉开题报告的格式太复杂,不想浪费太多的时间在格式上面,但是还必须要符合学校要求的标准格式,建议试一下求道无忧论文系统,3分钟搞定开题报告格式,输出标准的开题报告格式,把更多的精力放在开题报告内容上。
能明白的,知道了。哈
开题报告的格式如下:课题名称、选题的背景、研究的意义、目标、内容、研究步骤、研究方法、预期成果等。