首页 > 学术期刊知识库 > 直角三角形的作用研究论文

直角三角形的作用研究论文

发布时间:

直角三角形的作用研究论文

你好!设三边分别为a,b,c。a*a+b*b=c*c如果对你有帮助,望采纳。

性质1:直角三角形两直角边的平方和等于斜边的平方。性质2:在直角三角形中,两个锐角互余。性质3:在直角三角形中,斜边上的中线等于斜边的一半。性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)×2=BD·DC,(2)(AB)×2=BD·BC,射影定理图(3)(AC)×2=CD·BC。等积式(4)ABXAC=ADXBC(可用面积来证明)(5)直角三角形的外接圆的半径R=1/2BC,(6)直角三角形的内切圆的半径r=1/2(AB+AC-BC)(公式一);r=AB*AC/(AB+BC+CA)(公式二)

1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子能上去,地也没法用尺子去一段一段丈量,那么如何才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们能清楚地看到,我国古代的人民早在多少千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面多少何饿读者都清楚,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年第一发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则能确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便能得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 来源: 毕达哥拉斯树是一个基本的多少何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 文章来源: 原文链接: 满意请采纳

关于三角形的研究论文

在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。

例谈椭圆与三角形相关问题解析几何与三角是高中数学的重要内容,两者结合能体现两主干知识的内在联系和知识之间的综合应用,而在知识网络交汇处设计的试题历来受命题者的青睐,在各级各类考试中频频出现,各省和全国高考卷对此也情有独钟.本文就以椭圆和三角形相关问题作一归例谈解析.粗;一、三角形边长问题例1设只、抓为椭圆兰十丝=1的两个焦点.p为椭圆上一点.已知尸、抓、几是一个直94角三角形的三个顶点,且}PF,l>IP不飞I,求里旦的值.IP不’2l分析:利用定义,求出两焦半径即可将问题解决.但根据直角的位置,分两种情解:(l)若乙尸凡式为直角,则}PFl}2二}PFz}2+l名FzI,,…}PF,}2=(6一IPF,l)’+20,得}PF,l=14.。。.4}尸F,}7—,廿?21=一,…二二丁,=一33}件铆2(2)若乙FIPFz为直角,则IFIFzlz=IPFzlz+IPFI尸,…20:lPF.}2+(6一}PF,l)’,得IPFI}=4,IPFI.二2,故塑二2.!丹U本题还可以根据椭圆的对称性,求出P点的坐标:略解如下(l)若乙PFzFI为直角,P(二,力满足方程组。V了兰+竺=l’’“94拭吓,{),..·器7一2一一扩扩=(2)若乙乙PFz为直角尹(:,力满足方程组x2—十9丝=l4n13V污es1--1—终可亏!5/四l二2.}PFzl说明:本题的直角三角形直角的位置没有确定,要分类讨论,这点不注意就可能导致解题不全,其二是解题利用方程的思想.髻撇鑫全、离心率问题例2已知脆椭圆兰+止=1(a>。>0)上一点.只、兀是左右两焦点在△抓PF,中.若矿乙2乙凡外飞二90“,求椭圆离心率的取值范围.解法一:设P(x。,y0),由椭圆的第二定义可得}PFll=a+ex0,}PFzl=a一:。,丫乙凡PFz=900,:.}PF,lz+IPFz臼几月,,即az+e、;二2c,,则了鉴2c,,.,.:.。·{粤,‘}·二〕卫二又因为0b>0)上一点了bzA、B是长轴的两个端点,如果椭圆上存在一点Q使得乙AQB=1200.求椭圆的离心率。的取值范围.翼纂l戴弃角形面积何题以椭圆为载体考查三角形面积问题,或以三角形面积为载体考查椭圆的问题是考试卷中经常出现的一类问题.例32oo7浙江卷)如图,直线:二k:+b与椭圆吐十4户l交于A,B两点,记△AoB的面积为s.(I)求在k=O,0

关于三角形三条边的论文学生写的谢啦! 5分没人写的。。。在说老师例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的

三点确定平面,三点测距法,多了……

三角形的毕业论文

论文发表写作指导:

探究三角形的等积分割线如何将一个三角形面积分割成两个相等的部分,是我们已熟知的问题,只要沿三角形的中线,即可把三角形分割成面积相等的两个部分,许多同学认为,这样的分割线只有三条,但是,这样的分割线到底有多少条呢?问题1:请用一条直线,把△ABC分割为面积相等的两部分。解:取BC的中点,记为点D,连结AD,则AD所在直线把△ABC分成面积相等的两个部分。大家知道,这样分割线一共有三条,分别是经过△ABC的三条中线的直线,能把△ABC的面积分成相等两部分。除了这三条以外,还有很多种,并且对于△ABC边上任意一点,都可以找到一条经过这点且把三角形面积平分的直线。问题2:点E是△ABC中AB边上的任意一点,且AE≠BE,过点E求作一条直线,把△ABC分成面积相等的两部分。解:如图2,取AB的中点D,连结CD,过点D作DF∥CE,交BC于点F,则直线EF就是所求的分割线。证明:设CD、EF相交于点P∵点D是AB的中点∴AD=BD∴S△CAD=S△CBD∴S四边形CAEP+S△PED=S四边形DPFB+S△PCF又∵DF∥CE∴S△FED=S△DCF(同底等高)即:S△PED=S△PCF∴S四边形CAEP=S四边形DPFB∴S四边形CAEP+SPCF=S四边形DPFB+S△PED即S四边形AEFC=S△EBF由此可知,把三角形面积进行平分的直线有无数条,而本文来自第一论文网来源于毕业论文望可以帮到您。。

有一个网站叫中华论文中心,貌似有很多文章,你自己上去看下吧!

全等三角形的应用论文格式

因为………………所以………………(全等三角形的对应角相等)因为………………所以………………(全等三角形的对应边相等)所以………………

加入要证明 三角形ABC全等于三角形DEF格式一般是这样的在三角形ABC和三角形DEF中因为……(此处列出3个条件----边边边、边角边、角角边)所以三角形ABC≌三角形DEF就是这个格式了

现已知BC=EF,AF=DC,AB=DE,请证明∠EFD=∠BCA(在同一平面内) 证明: 因为AF= DC ( 已知) 所以AF+ FC=DC+ FC 所以 DF= AC 在 △DEF和△ABC 因为 AC=DF (已证) 因为 AB=DE (已知) 有因为 DC=EF (已知) 所以△ABC≌△DEF (SSS) 因为∠EFD=∠BCA ( 全等三角形的对应角相等) 这是比较基础的一道几何证明题。。以上证明是用“边边边”来证明的,这是全等三角形证明的最简单的方法。

网友采纳 集体朗读三角形全等判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应相等,那么这两个三角形全等。 展示三角形全等的六种情况: ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) 例1 已知:如图,AB=CB,AD=CD.若P是BD上任意一点求证:(1 )BD是∠ABC的角平分线 。 (2)PA=PC ( 闪烁∠1,∠2,学生证明,然后展示) 证明: 在△ABD和△CBD中, AB=CB(已知), AD=CD(已知), BD=BD(公共边), ∴△ABD≌△CBD(SSS), ( 添加条件: 若P是BD上的任意一点, 增加结论:(2)PA=PC。 展示点P在BD上各点位置时情况,由学生证明) ∠1=∠2(全等三角形的对应角相等)。 在△ABP和△CBP中, AB=CB(已知), ∠1=∠2(已证), BP=BP(公共边), ∴△ABP≌CBP(SAS)∴PA=PC 把“若P是BD上任意一点”改成:“若P是BD延长线上的任意一点”请学生回答结论有无变化,能否说明理由或加以证明?讨论完成 例2 已知:如图,AD=CE,AE=CD(.闪烁AE,CD) B是AC的中点。探索ΔBDE是什么三角形?并加以证明。 证明:在△ACD和△CAE中, AD=CE(已知), AC=CA(公共边), CD=AE(已知), ∴△ACD≌△CAE(SSS), ∠DAC=∠ECA(全等三角形的对应角相等)。 在△ABD和△CBE中, AD=CE(已知), ∠DAB=∠ECB(已证), AB=CB(中点定义), 小结: 本节课我们学习了三角形全等判定定理3以及前两个三角形全等判定定理的综合应用。 在解题过程中,同学们如果一次全等无法证明的话,就应该想法利用两次全等加以证明。 在解题过程中,要注意挖掘隐含条件,如公共边、公共角…等。 练习: 1已知:如图,AB=CD,AD=CB,O是BD的中点,过点O的直线分别交AB,CD于点E,F。求证:OE=OF。 证明:在ΔABD和ΔCDB中, AB =____(____), ____= CB (____), BD =____(____), ∴ΔABD≌ΔCDB(______), ∠1=∠2(___________________). 在ΔBOE和Δ___中, ∠1=∠2 (____), OB = OD (_____________), ∠BOE=_____(__________), ∴ΔBOE≌Δ___(____), OE=OF(______________). 2 已知:如图,A,F,C,D四点在一直线上,AB=DE,BC=EF,AF=CD。 求证:BF=CE 证明:在△ACD和△CAE中,AD=CE(已知),AC=CA(公共边),CD=AE(已知),∴△ACD≌△CAE(SSS),∠DAC=∠ECA(全等三角形的对应角相等)。在△ABD和△CBE中,AD=CE(已知),∠DAB=∠ECB(已证),AB=CB(中点定义)三、练习:四、小结:本节课我们学习了三角形全等判定定理3以及前两个三角形全等判定定理的综合应用。在解题过程中,同学们如果一次全等无法证明的话,就应该想法利用两次全等加以证明。在解题过程中,要注意挖掘隐含条件,如公共边、公共角…等。表示是复制的,抱歉,

向量法研究三角形的性质的论文

证法1先做图,做出过b,c的两条中线,分别交ac于m,交ab于n,所以m,n是ac,ab的中点.连接mn设向量bp=λ向量pm,向量cp=μ向量pn(λ,μ为不等于0的实数)向量bc=向量pc-向量pb=向量bp-向量cp=λ向量pm-μ向量pn,向量nm=向量pm-向量pn,而向量bc=2向量nm所以,λ向量pm-μ向量pn=2向量pm-2向量pn即(λ-2)向量pm-(μ-2)向量pn=o向量因为向量pm与向量pn不共线,所以λ=2,μ=2所以向量bp=2向量pm由此证得两中线交点把bm分成2:1.同理可证另一条中线与bm的交点也有此性质,故三角形的三条中线交于一点,并平分每条比为1:2得证.证法2作出一个三角形abc,设d,e,f分别是bc,ca,ab的中点,在平面上任取一点o,设向量oa=a,向量ob=b,向量oc=c则向量od=1/2(b+c),向量of=1/2(a+b),向量oe=1/2(c+a).再设p为ad上的三等分点,满足向量ap=2向量pd,则向量op=1/3向量oa+2/3od=1/2a+2/3*1/2(a+b)=1/3(a+b+c)同理可证,p也是be,cf的三等分点,因此三条中线交于点p。三角形的3中线交于一点,并平分每条比为1:2 --------------------°.●丫è。为您解答!满意的话请采纳,谢谢o(∩_∩)o...希望带上好评哦~~ ★x5~谢谢~!!

三个向量相乘小于零是钝角三角形 大于零是锐角三角形 等于零 是直角三角形 a ?是不是?我说的对马?如果打对就采纳我得吧 ,我想升级啊?求求你了?——一位小弟弟

对数量积性质的新认识 【摘 要】:教学活动要遵循内在规律,只有当一切外在事实(知识)通过教师的主导作用,最后被主体(学生)认识之后,这外在东西才会为主体真正占有,这种转化只有在参与实践中才能体会并重新构建、形成知识体系。我们的教材中的好多知识表面上是孤立的,若我们的的教师在引领学生认知这些内容的同时,有“意识”的揭示这种“知识链”,内化我们学生的理解,让学生对知识的构建“水到渠成”!这不失为一种有效教学的好途径。【关键词】:数量积 向量 角度 距离作为新课程改革,高中数学教材的两个显著变化就是“向量和导数”的引入。其目的也很明确:为研究函数、空间图形,提供新的研究手段,即充分体现它们的工具性。但这种“工具性”,只有在深刻理解的基础上才能用好,而要想用活,这又需要我们在实践中不断“开发”新的认识,丰富知识网络,形成较完善的“认知模块”、“知识体系”。例如全日制普通高级中学教科书《数学•第二册(下B)》P33¬中,关于空间向量的数量积有这样三条性质:(1) ,(2) ,(3) 。作为“工具性”,性质(2)(3)比较明显,会立即得到充分的应用。可是对于性质(1),当时,在上新授课时我总认为:这条性质没有什么“本质上”的用处,有点像“房间里的摆设”——配角。但是随着时间的推移,笔者发现了她的奥妙之处:在后继的有关空间问题中的“三大角度”和“三大基本距离”的坐标法的研究中有着奇妙无穷的用途,并带来意想不到的“知识链”反应,极大地丰富了关于空间向量的“数量积”这一运算的“认知模块”的内涵。本文便梳理和佐证这一认知,以飨读者。(一)性质的产生与内含已知向量 和轴l, 是l上与l同方向的单位向量,作点A在l上的射影 ,作点B在l上的射影 则 叫向量 在轴l上或在 方向上的正射影,简称射影。 可以证明得, (证明略,图如下所示。)此性质的内含理解有四点:①结果是一个数量(本身含正负号);②其正负号由向量 所成角的范围决定;③加上绝对值 便是一条线段长度(这里 刚好组成一个直角三角形的两条直角边);④可以推广为求一条线段在另一条直线上的正射影(此线段所在直线与已知直线的位置关系可以异面直线)。(二)性质的“知识链”对教材引进空间向量的“坐标法”来解决空间中“三大角”问题,我们的学生可以说是欣喜若狂啊,因为学生觉得这种方法好!可操作性强!(只要能建系,有坐标就行!)但在实际应用中,学生觉得这些结论不易理解,加上这些结论只能逐步形成和完善,靠死记硬背吧,今天记了明天又忘了!等到用时,仍是“生硬、呆板”,甚至张冠李戴。如何突破这一问题?我认为其根本原因是:在学生的认知结构里,这一性质未能如愿地形成“知识链”。那么,这一性质是怎样与相关问题产生“对接或联系”的呢?(1)它是空间三大角(即线线角、线面角、二面角的平面角)用向量法求解的“对接点”。1.1线线角 的求法的新认识:我们把这两条线赋予恰当的两个向量,问题就化归为两个向量的夹角(两个向量所成的角的范围为 ),即 ,我们能否加以重新认识这个公式呢?如图,,此时OB1可以看作是 与 方向上的单位向量 的数量积 ,这就是由数量积这条性质滋生而成的;故此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。1.2线面角 的求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,此时OP又可以看作是 在 上的投影,即 与 方向上的单位向量 的数量积 , ,故 (这里刚好满足三角函数中正弦的定义:对边比斜边)。1.3二面角的平面角 的求法的新认识: = (其中 是两二面角所在平面的各一个法向量)此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。★三大角的统一理解: 、 、 、其从上述梳理完全可以看出其本质特征:这里的“空间角”的求法,完全与直角三角形中的三角函数的“正弦或余弦的定义”发生了对接——对边或邻边就是斜边的向量在此边向量上的投影,即斜边向量与对边或邻边方向上的单位向量的数量积,而理解与掌握这里的“空间角”的直角三角形的构图,学生完全可以达到“系统化”和“自主化”,因为直角三角形中的三角函数定义,他们太熟悉了!即将知识的“生长点”建立在学生认知水平的“最近发展区”,那学习就会水到渠成! (2)它又是空间三大距离(即点线距、点面距、异面直线间距离)用向量法求解的“联系点”。空间中有七大距离(除球面上两点间的距离外)基本上可转化为点点距、点线距、点面距,而点线距和点面距又是重中之重!另外两异面直线间的距离,高考考纲中明确要求:对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。因此对异面直线间的距离的考查有着特殊的身份。教材按排中引进了向量法来解决距离问题,也给问题的解决带来新的活力!不用作出(或找出)所求的距离了。2.1点面距求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,即 在 上的投影,即 与 方向上的单位向量 的数量积 。2.2点线距求法的新认识:1)新认识之一:如图,若存在有一条与l相交的直线时,就可以先求出由这两条相交直线确定的平面的一个法向量 ,则点P到l的距离 。2)新认识之二:若不存在有一条与l相交的直线时,我们可以先取l上的一个向量 ,再利用 来解,即: ,而数量OB可以理解为 在l上的向量 的投影,也即为: 。2.3异面直线间距离求法的新认识: 从这几年的高考《考纲说明》观察,我们不难发现,对异面直线间距离的考查本意不能太难,但若出现难一点的考题,命题者又能自圆其说的新情况。实际上,这种自圆其说法归根到底在于高考考纲中的说法:只要求会计算已给出公垂线或在坐标表示下的距离。那也就是说,在不要作出公垂线(也许学生作不出!)的情况下,也可以求出它们的距离的!那就是用向量法!如图所示:若直线l1与直线l2是两异面直线,求两异面直线的距离。 略解:在两直线上分别任取两点A、C、B、D,构造三个向量 ,记与两直线的公垂线共线的向量为 ,则由 ,得 ,则它们的距离就可以理解为: 在 上的投影的绝对值,即: 。 ★三大距离的统一理解: (点面距)、 (异面距)、 (点线距之一)、 且 (点线距之二)、其本质特征是:一个向量在其所求的距离所在直线的一个向量上的投影,也即数量积此性质的直接应用。由上述的剖析过程不难再看出:空间中的三大角与三大基本距离的计算,都隐藏于这个“特定”的数量积的性质之中,体现在这个公式结构的“统一美”之中,把问题的本质揭示得“淋漓尽致”,而又不失自然!这给“立体几何” 中向量的工具性的体现,增色了几分美感与统一感!(三)性质的应用例1、(2005年山东省(理科)高考第20题)如图,已知长方体 直线 与平面 所成的角为 , 垂直 于 , 为 的中点.(I)求异面直线 与 所成的角;(II)求平面 与平面 所成的二面角;(III)求点 到平面 的距离.解:在长方体 中,以 所在的直线为 轴,以 所在的直线为 轴, 所在的直线为 轴建立如图示空间直角坐标系;由已知 可得 , ,又 平面 ,从而 与平面 所成的角为 ,又 , , ,从而易得 (I) 因为 所以 ,易知异面直线 所成的角为 (II) 易知平面 的一个法向量 ,设 是平面 的一个法向量, 由 即 所以 即平面 与平面 所成的二面角的大小(锐角)为 (III)点 到平面 的距离,即 在平面 的法向量 上的投影的绝对值,所以距离 = 所以点 到平面 的距离为 例2、(2005年重庆(理科)高考第20题)如图,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1,已知AB= ,BB1=2,BC=1,∠BCC1= ,求:(Ⅰ)异面直线AB与EB1的距离;(Ⅱ)二面角A—EB1—A1的平面角的正切值. 解:(I)以B为原点, 、 分别为y、z轴建立空间直角坐标系.由于BC=1,BB1=2,AB= ,∠BCC1= ,在三棱柱ABC—A1B1C1中有B(0,0,0),A(0,0, ),B1(0,2,0),A1(0,2, ) ,设 ; ,则 得, (令y=1),故 =1(II)由已知有 故二面角A—EB1—A1的两个半平面的法向量为 。 。通过上述几个高考题的分析,我们不难看出:立体几何中的几何法的“难在找(或作)所求的角度或距离”,通过这个数量积的性质的转化(方法的转化与知识之间的转化),其“难”渐渐地溶解于“转换与化归”之中及学生的细心地“计算”之中,从而也焕发了数量积这条性质的奥妙之处,也就更体现了“向量”这个工具在立体几何中应用的优越性、工具性。因为”程序化”的计算使我们的学生的“信心”倍增!同时让我们的学生也懂得了“知其所以然”,再也不用为记这一个“好结论”而烦恼了!参考文献:1、2005年普通高等学校招生全国统一考试大纲 (高等教育出版社)2、《浙江省高考命题解析——数学》 (浙江省高考命题咨询委员们编著)3、基础教育课程改革教师通识培训书系第二辑《课程改革发展》(中央民族大学出版社 周宏主编)

设两条中线的交点为O,按一定方向设三角形三边的向量为向量a,b,c,三边中点为D,E,F.假如说取的两条中线是AD和BE,那么,就用a,b,c表示向量CO和OF,就可以发现向量CO和OF平行,因为它们共点O,所以CO和OF在同一条直线上,即三角形的中线CF经过O点.证毕.

  • 索引序列
  • 直角三角形的作用研究论文
  • 关于三角形的研究论文
  • 三角形的毕业论文
  • 全等三角形的应用论文格式
  • 向量法研究三角形的性质的论文
  • 返回顶部