首页 > 学术期刊知识库 > 凸函数的性质与应用毕业论文

凸函数的性质与应用毕业论文

发布时间:

凸函数的性质与应用毕业论文

(1)文献研究法根据所要研究内容 ,通过查阅相关文献获得充足的资料,从而全面地了解所研究课题的背景、历史、现状以及前景。(2)研究项目分析法在进行理论的搜集与分析之后,根据现有的研究项目对宠物进化模型,宠物行为模型模型的整体系统进行分析与设计,实现理论与实践的相结合,使理论有理有据,设计更合理。

论文的研究方法主要有以下几种:

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

5、实证研究法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

论文的研究方法一般从较宽泛的领域看有定性研究与定量研究;从取材方面来看有实证研究(实际调查案例为分析基础)与文献归纳法等;如从分析手法上来看有归纳法、演绎法与比较分析法等等。不过要看你是什么专业,专业不一样运用的研究方法是不一样的。

题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要应运而生的。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既便于开题报告按目填写,避免遗漏;又便于评审者一目了然,把握要点。开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题。 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法。开题报告是由选题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用"德尔菲法"评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告的内容大致如下:课题名称、承担单位、课题负责人、起止年限、报名提纲。报名提纲包括:(1)课题的目的、意义、国内外研究概况和有关文献资料的主要观点与结论;(2)研究对象、研究内容、各项有关指标、主要研究方法(包括是否已进行试验性研究);(3)大致的进度安排;(4)准备工作的情况和目前已具备的条件(包括人员、仪器、设备等);(5)尚需增添的主要设备和仪器(用途、名称、规格、型号、数量、价格等);(6)经费概算;(7)预期研究结果;(8)承担单位和主要协作单位、及人员分工等。同行评议,着重是从选题的依据、意义和技术可行性上做出判断。即从科学技术本身为决策提供必要的依据。 开题报告的格式(通用) 由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题说清楚,应包含两个部分:总述、提纲。 1 总述 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法、必要的数据等等。 2 提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。 3 参考文献 开题报告中应包括相关参考文献的目录 4 要求 开题报告应有封面页,总页数应不少于4页。版面格式应符合以下规定。开 题 报 告 学 生: 一、 选题意义 1、 理论意义 2、 现实意义 二、 论文综述 1、 理论的渊源及演进过程 2、 国外有关研究的综述 3、 国内研究的综述 4、 本人对以上综述的评价 三、 论文提纲 前言、 一、1、2、3、··· ···二、1、2、3、··· ···三、1、2、3、结论 四、论文写作进度安排 毕业论文开题报告提纲一、开题报告封面:论文题目、系别、专业、年级、姓名、导师二、目的意义和国内外研究概况三、论文的理论依据、研究方法、研究内容四、研究条件和可能存在的问题五、预期的结果六、进度安排

凸函数的性质及其应用论文答辩

毕业论文研究方法怎么写,为什么很难下笔

论文的研究方法一般从较宽泛的领域看有定性研究与定量研究;从取材方面来看有实证研究(实际调查案例为分析基础)与文献归纳法等;如从分析手法上来看有归纳法、演绎法与比较分析法等等。不过要看你是什么专业,专业不一样运用的研究方法是不一样的。

凸函数的定义如下:

对于一元函数f(xf(x),如果对于任意tϵ[0,1]均满足:f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2)f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),则称f(x)f(x)为凸函数,同时如果对于任意tϵ(0,1))均满足:f(tx1+(1−t)x2)

函数的特性

1、有界性

设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。

2、单调性

设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

凸函数的性质及其应用如下:

性质:定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭区间,那么f有可能在C的端点不连续。

凸函数是指一类定义在实线性空间上的函数。

注意:中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。Convex Function在某些中国大陆的数学书中指凹函数。Concave Function指凸函数。但在中国大陆涉及经济学的很多书中,凹凸性的提法和其他国家的提法是一致的,也就是和数学教材是反的。

举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。

另外,也有些教材会把凸定义为上凸,凹定义为下凸。碰到的时候应该以教材中的那些定义为准。

判定方法可利用定义法、已知结论法以及函数的二阶导数,对于实数集上的凸函数,一般的判别方法是求它的二阶导数,如果其二阶导数在区间上大于等于零,就称为凸函数。如果其二阶导数在区间上恒大于0,就称为严格凸函数。

凸函数应用毕业论文

题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要应运而生的。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既便于开题报告按目填写,避免遗漏;又便于评审者一目了然,把握要点。开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题。 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法。开题报告是由选题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用"德尔菲法"评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告的内容大致如下:课题名称、承担单位、课题负责人、起止年限、报名提纲。报名提纲包括:(1)课题的目的、意义、国内外研究概况和有关文献资料的主要观点与结论;(2)研究对象、研究内容、各项有关指标、主要研究方法(包括是否已进行试验性研究);(3)大致的进度安排;(4)准备工作的情况和目前已具备的条件(包括人员、仪器、设备等);(5)尚需增添的主要设备和仪器(用途、名称、规格、型号、数量、价格等);(6)经费概算;(7)预期研究结果;(8)承担单位和主要协作单位、及人员分工等。同行评议,着重是从选题的依据、意义和技术可行性上做出判断。即从科学技术本身为决策提供必要的依据。 开题报告的格式(通用) 由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题说清楚,应包含两个部分:总述、提纲。 1 总述 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法、必要的数据等等。 2 提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。 3 参考文献 开题报告中应包括相关参考文献的目录 4 要求 开题报告应有封面页,总页数应不少于4页。版面格式应符合以下规定。开 题 报 告 学 生: 一、 选题意义 1、 理论意义 2、 现实意义 二、 论文综述 1、 理论的渊源及演进过程 2、 国外有关研究的综述 3、 国内研究的综述 4、 本人对以上综述的评价 三、 论文提纲 前言、 一、1、2、3、··· ···二、1、2、3、··· ···三、1、2、3、结论 四、论文写作进度安排 毕业论文开题报告提纲一、开题报告封面:论文题目、系别、专业、年级、姓名、导师二、目的意义和国内外研究概况三、论文的理论依据、研究方法、研究内容四、研究条件和可能存在的问题五、预期的结果六、进度安排

论文的研究方法主要有以下几种:

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

5、实证研究法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

毕业论文研究方法怎么写,为什么很难下笔

论文的研究方法一般从较宽泛的领域看有定性研究与定量研究;从取材方面来看有实证研究(实际调查案例为分析基础)与文献归纳法等;如从分析手法上来看有归纳法、演绎法与比较分析法等等。不过要看你是什么专业,专业不一样运用的研究方法是不一样的。

函数凸凹性应用论文答辩

简单的说,就是在函数的图像上任选两个不同的点连线,如果函数的图像在连线的下方,函数的图像为凹函数,反之为凸函数。

凹凸两种判断方法:1.若f(x)在区间I上有一阶、二阶导数,二阶导数f"(x)>0在区间I内为凹,反之为凸。2.函数f(x)在区间I上连续,如果对I上任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x2)]/2则为凹函数

凸函数的性质及其应用如下:

性质:定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭区间,那么f有可能在C的端点不连续。

凸函数是指一类定义在实线性空间上的函数。

注意:中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。Convex Function在某些中国大陆的数学书中指凹函数。Concave Function指凸函数。但在中国大陆涉及经济学的很多书中,凹凸性的提法和其他国家的提法是一致的,也就是和数学教材是反的。

举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。

另外,也有些教材会把凸定义为上凸,凹定义为下凸。碰到的时候应该以教材中的那些定义为准。

判定方法可利用定义法、已知结论法以及函数的二阶导数,对于实数集上的凸函数,一般的判别方法是求它的二阶导数,如果其二阶导数在区间上大于等于零,就称为凸函数。如果其二阶导数在区间上恒大于0,就称为严格凸函数。

凸函数的一阶导数是减函数,因此其二阶导数小于0;凹函数的一阶导数是增函数,因此其二阶导数大于0;当遇到需要知道二阶导数的正负时,图像的凹凸性就显得很重要。比如运动函数s=f(t),当只知道它的图像而不知道它的解析式子时,要判断其加速度的变化情况时,其图像的凹凸性就显得很重要。

函数凹凸性毕业论文

设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1] f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。如果"<="换成">="就是凸函数。类似也有严格凸函数。[1] 设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)<(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有f((a+b)/2)>(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凸的(或凸弧)几何定义编辑这个定义从几何上看就是:在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1] 直观上看,凸函数就是图象向上突出来的。比如 如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]

设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]  f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。如果"<="换成">="就是凸函数。类似也有严格凸函数。设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)<(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有f((a+b)/2)>(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凸的(或凸弧)很高兴为您解答有用请采纳

凹凸两种判断方法:1.若f(x)在区间I上有一阶、二阶导数,二阶导数f"(x)>0在区间I内为凹,反之为凸。2.函数f(x)在区间I上连续,如果对I上任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x2)]/2则为凹函数

在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。同理可知,如果函数图像在这两点之间的部分总在连接这两点线段的上方,那么这个函数就是凸函数。

例子:设函数 在 上连续。

如果对于 上的两点  ,恒有

1、 ,

2、

那么称第一个不等式中的 是区间  上的凸函数;称第二个不等式中的  为严格凸函数。

同理如果恒有

1、 ,

2、

那么称第一个不等式中的  是区间 上的凹函数;称第二个不等式中的 为严格凹函数。

扩展资料:

不过,在中国数学界关于函数凹凸性定义和国外很多定义是反的。国内教材中的凹凸,是指曲线,而不是指函数,图像的凹凸与直观感受一致,却与函数的凹凸性相反。

但只要记住“函数的凹凸性与曲线的凹凸性相反”就不会把概念搞乱了。

另外,国内各不同学科教材、辅导书的关于凹凸的说法也是相反的。一般来说,可按如下方法准确说明:

1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2) , 即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)

2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2) , 即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)

参考资料:百度百科—函数的凹凸性

  • 索引序列
  • 凸函数的性质与应用毕业论文
  • 凸函数的性质及其应用论文答辩
  • 凸函数应用毕业论文
  • 函数凸凹性应用论文答辩
  • 函数凹凸性毕业论文
  • 返回顶部