• 回答数

    7

  • 浏览数

    186

歪歪悠爱福喔
首页 > 学术期刊 > 函数凹凸性毕业论文

7个回答 默认排序
  • 默认排序
  • 按时间排序

海鲜饭泡粥

已采纳

设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1] f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。如果"<="换成">="就是凸函数。类似也有严格凸函数。[1] 设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)<(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有f((a+b)/2)>(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凸的(或凸弧)几何定义编辑这个定义从几何上看就是:在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1] 直观上看,凸函数就是图象向上突出来的。比如 如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]

284 评论

大南瓜小咪咪

设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]  f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。如果"<="换成">="就是凸函数。类似也有严格凸函数。设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)<(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有f((a+b)/2)>(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凸的(或凸弧)很高兴为您解答有用请采纳

126 评论

初记装饰

凹凸两种判断方法:1.若f(x)在区间I上有一阶、二阶导数,二阶导数f"(x)>0在区间I内为凹,反之为凸。2.函数f(x)在区间I上连续,如果对I上任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x2)]/2则为凹函数

300 评论

亲爱的猫猫99

在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。同理可知,如果函数图像在这两点之间的部分总在连接这两点线段的上方,那么这个函数就是凸函数。

例子:设函数 在 上连续。

如果对于 上的两点  ,恒有

1、 ,

2、

那么称第一个不等式中的 是区间  上的凸函数;称第二个不等式中的  为严格凸函数。

同理如果恒有

1、 ,

2、

那么称第一个不等式中的  是区间 上的凹函数;称第二个不等式中的 为严格凹函数。

扩展资料:

不过,在中国数学界关于函数凹凸性定义和国外很多定义是反的。国内教材中的凹凸,是指曲线,而不是指函数,图像的凹凸与直观感受一致,却与函数的凹凸性相反。

但只要记住“函数的凹凸性与曲线的凹凸性相反”就不会把概念搞乱了。

另外,国内各不同学科教材、辅导书的关于凹凸的说法也是相反的。一般来说,可按如下方法准确说明:

1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2) , 即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)

2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2) , 即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)

参考资料:百度百科—函数的凹凸性

148 评论

lingshan1226

函数的凹凸性指的是:函数图象所表现出来的凹凸性,即函数在二元坐标系表现出的性质。如一元二次函数,其解析式可表示为:y=ax^2+bx+c(a≠0)

当a>0时,二次函数有最小值,所以函数图象表现为凹性,

当a<0时,二次函数有最大值,所以函数图象表现为凸性。

其函数图象表示如下:

总而言之,函数的凹凸性为函数图象的直观表示。

211 评论

clubsummer

简单的说,就是在函数的图像上任选两个不同的点连线,如果函数的图像在连线的下方,函数的图像为凹函数,反之为凸函数。

215 评论

熊猫脸脸鸭二鸭

就是二阶导的问题,图形是(向上)凹的,或图形是(向上)凸的设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。如果"<="换成">="就是凸函数。类似也有严格凸函数。[1]设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)<(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有f((a+b)/2)>(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凸的(或凸弧)这个定义从几何上看就是:在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1]直观上看,凸函数就是图象向上突出来的。比如如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]不过补充一下,中国数学界关于函数凹凸性定义和国外很多定义是反的。ConvexFunction在国内的数学书中指凹函数。ConcaveFunction指凸函数。在国内涉及经济学的很多书中,凹凸性的提法和国外的提法是一致的,也就是和单纯的数学教材是反的。很头大的问题。[1]另外,国内各不同学科教材、辅导书的关于凹凸的说法也是相反的。一般来说,可按如下方法准确说明:1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2),即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)凸/凹向原点这种说法一目了然。上下凸的说法也没有歧义[2]在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式,当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.

239 评论

相关问答

  • 凸函数的证明研究论文

    找任意两点(不重合),连线。比较这两点横坐标的中点在函数上的值与上述连线的中点大小即可得出结论

    土著零食家 5人参与回答 2023-12-10
  • 函数凹凸性毕业论文

    设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1] f(λx1+(1-λ)x2)=0;f(x)在区间I上是凸函数的充要

    歪歪悠爱福喔 7人参与回答 2023-12-10
  • 三角函数性质及应用毕业论文

    开拓学生自主学习的新天地

    princess小姐 2人参与回答 2023-12-07
  • 凸函数的性质及其应用论文答辩

    毕业论文研究方法怎么写,为什么很难下笔

    微微的辣 4人参与回答 2023-12-09
  • 函数单调性毕业论文开题报告

    毕业论文开题报告写法如下: 1. 论题的背景及意义 例:...研究有利于全面...的特点,可以丰富现...的研究。 这一...研究可以弥补......研究的不足

    L张小猛 3人参与回答 2023-12-08