首页 > 学术期刊知识库 > 抗光腐蚀最新研究进展论文

抗光腐蚀最新研究进展论文

发布时间:

抗光腐蚀最新研究进展论文

光催化的原理是利用光来激发二氧化钛等化合物半导体,利用它们产生的电子和空穴来参加氧化—还原反应。 当能量大于或等于能隙的光照射到半导体纳米粒子上时,其价带中的电子将被激发跃迁到导带,在价带上留下相对稳定的空穴,从而形成电子—空穴对。

由于纳米材料中存在大量的缺陷和悬键,这些缺陷和悬键能俘获电子或空穴并阻止电子和空穴的重新复合。这些被俘获的电子和空穴分别扩散到微粒的表面,从而产生了强烈的氧化还原势。

光催化原理是基于光催化剂在光照的条件下具有的氧化还原能力,从而可以达到净化污染物、物质合成和转化等目的。通常情况下,光催化氧化反应以半导体为催化剂,以光为能量,将有机物降解为二氧化碳和水。

因此光催化技术作为一种高效、安全的环境友好型环境净化技术,对室内空气质量的改善已得到国际学术界的认可。

扩展资料:

光催化优点

操作简单、能耗低、无二次污染、效率高。

1、直接用空气中的氧气做氧化剂,反应条件温和(常温 常压) 。

2、可以将有机污染物分解为二氧化碳和水等无机小分子,净化效果彻底。

3、半导体光催化剂化学性质稳定,氧化还原性强,成本低,不存在吸附饱和现象,使用寿命长。

光催化净化技术具有室温深度氧,二次污染小,运行成本低和可望利用太阳光为反应光源等优点,所以光催化特别合适室内挥发有机物的净化,在深度净化方面显示出了巨大的应用潜力。 常见的光催化剂多为金属氧化物和硫化物,其中二氧化钛的综合性能最好,应用最广。

自1972年Fujishima和Honda发现在受辐照的二氧化钛上可以持续发生水的氧化还原反应,并产生氢气以来,人们对这一催化反应过程进行了大量研究。

结果表明,二氧化钛具有良好的抗光腐蚀性和催化活性,而且性能稳定,价廉易得,无毒无害,是目前公认的最佳光催化剂。该项技术不仅在废水净化处理方面具有巨大潜力,在空气净化方面同样具有广阔的应用前景。

参考资料来源:百度百科——光催化原理

喜欢就 关注我们吧,订阅更多最新消息

第一作者及通讯作者:李伟(陕西 科技 大学(西安))

共同通讯作者:王传义(陕西 科技 大学(西安))

通讯单位:陕西 科技 大学

论文DOI:

研究亮点

1. 通过简单可控的方法将单原子Pd成功修饰在了CdS NPs表面。

2. 单原子Pd与CdS NPs表面的S原子形成强配位作用,通过协同金属-半导体配位相互作用促进了光诱导载流子自体相向表面的迁移,抑制了CdS光腐蚀现象,提高了光诱导电子利用效率。

3. 单原子Pd修饰CdS NPs后降低了催化水分解产氢能垒,显著增强了其全分解水产氢活性。

研究背景

随着双碳目标的提出,国家对氢能源的发展做出了重要指导,有效推进氢能源的发展。传统产氢手段能耗高,且伴随有二次污染。由于太阳光能来源广泛、使用方便、绿色可持续性等优点,将太阳能转变为方便使用的高附加值化学能无疑是新能源开发的有效途径,具有潜在应用价值。日光诱导全分解水产氢是一种开发氢能源的潜在技术,然而较低的效率阻碍了该项技术的大规模应用推广。因此,开发高效稳定的全分解水产氢催化剂具有理论与实际研究意义。

硫化镉(CdS)是一种低功函且具有优异可见光响应的过渡金属硫化物,在光催化和电催化领域有着广泛的应用。被用于光催化材料时,长时间光诱导容易导致其结构发生严重光腐蚀,极大地影响其光催化性能。如何在提高CdS基光催化剂催化活性的同时,有效抑制其光腐蚀影响,增强其结构稳定性,是需要研究者不断 探索 和解决的关键科学问题。

拟解决的关键问题

本课题通过一步简单诱导还原策略,将单原子Pd修饰在CdNPs表面,实现了协同的金属-半导体配位相互作用,抑制了载流子复合,提高了催化剂量子产率。更为重要的是,高度缓解了CdS光腐蚀影响,赋予其以长时间光电流稳定性,一定程度上解决了光腐蚀导致其催化剂结构不稳定的科学问题。

成果简介

针对CdS光催化剂在光诱导下光腐蚀严重影响其催化性能的科学问题, 陕西 科技 大学(西安)李伟副教授及王传义教授 等人通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同的半导体-金属配位相互作用,其光响应性及界面电荷传导特性均显著增强,有效抑制了其光腐蚀,增强了催化剂结构稳定性。同时,CdS-Pd催化剂表面全分解水产氢过程能垒相较于纯CdS NPs明显降低,从而在模拟日光诱导下达到了纯CdS纳米催化剂110倍的全分解水产氢活性,且表现出良好的耐光性能。

要点1:CdS-Pd复合光催化剂合成

通过简单的一步诱导还原法将单原子Pd修饰在六方相CdSNPs表面,优化并制备出一种CdS-Pd纳米光催化剂。

图复合光催化剂的合成示意图及结构表征。

要点2:CdS-Pd复合光催化剂结构、组成及形貌表征

通过XRD、Raman、XPS、XAFS和ac-STEM等表征研究发现:贵金属Pd是以单原子状态均匀分布在CdS 纳米催化剂表面,且单原子Pd与CdS 纳米催化剂表面的S原子形成了S-Pd配位作用,这有利于促进光诱导载流子的传导。

图复合光催化剂的形貌、晶型及组成分析。

要点3:CdS-Pd复合催化剂模拟日光诱导产氢活性及稳定性

当反应体系pH = 10时,优化后的CdS-Pd纳米催化剂在模拟太阳光诱导下全分解水析氢速率为 μmol·g -1 ·h -1 ,是纯CdS的110倍。如果进一步加入牺牲剂,其半分解水析氢速率可达到 μmol·g -1 ·h -1 。在λ = 420 nm的光波诱导下,其全分解水和半分解水的表观量子产率分别为和。即使在室外日光辐照下,也可以清晰地观察到大量气泡的产生。以上研究表明单原子Pd修饰后的纳米催化剂模拟日光诱导产氢活性显著提高。另外,通过评价该改性催化剂进行模拟日光诱导催化产氢的持久性及再生性,证明Pd单原子修饰后的CdS纳米催化剂具有稳定的光诱导催化活性和良好的结构稳定性。

图复合光催化剂的催化产氢性能、持久性和重复使用性。

要点4:CdS-Pd复合光催化剂的协同作用增强光-电化学性能及机理分析

通过光-电化学各项表分析可知:Pd单原子修饰后的CdS纳米催化剂表现出良好的电子-空穴对分离特性,且由于协同的半导体(CdS)-金属(Pd)配位相互作用加快了载流子自体相向表面的迁移,有效抑制了CdS的光腐蚀,延长了光生载流子寿命,从而在长时间光诱导下呈现高密度且稳定的光电流信号。

图4. CdS-Pd复合光催化剂的光-电化学性能表征及机理分析。

要点5:CdS-Pd复合光催化剂的DFT计算及催化机制分析

通过DFT计算分析可知:CdS-Pd纳米催化剂表面全分解水产氢能垒相较于纯CdS NPs明显降低,且支撑了S-Pd配位键形成的可能性。最终证明氢气生成的主要活性位点为催化剂表面的S位点,而表面单原子Pd则促进了水分子的分解。综上所述,在模拟日光诱导下,CdS基体生成大量光诱导载流子,并快速迁移至表面。H 2 O分子首先在催化剂表面Pd位点处被分解为氢质子中间体和OH-离子,氢质子进一步在S位点处获得电子被还原成氢气,而OH - 离子则在CdS表面被光生空穴氧化为O 2 分子。由于该催化剂协同的金属-半导体作用机制,O 2 分子与部分光诱导电子作用被快速转化为超氧自由基(O 2 +e - O 2•- ),所以该催化剂更适合于在模拟日光诱导下催化水分解产氢应用。

图5. CdS-Pd复合光催化剂的DFT计算及全分解水机制

小结与展望

综上所述,针对纯CdS半导体光诱导过程中光腐蚀影响导致其结构稳定性较差的科学问题,本研究通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同配位作用,其光响应性及界面电荷传导特性均显著增强,光诱导电子-空穴对复合抑制效果明显。同时,单原子Pd修饰后的纳米催化剂明显降低了全分解水产氢过程的能垒,从而在模拟日光诱导下达到纯CdS纳米催化剂近110倍的全分解水产氢活性,并表现出优良的催化活性与结构稳定性。本研究对于通过简单有效的制备方法合成稳定且高效的全分解水产氢CdS基光催化剂具有理论与实际研究意义。

参考文献

W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, T. Ma, J. Li, C. Wang, Pd single-atom decorated CdS nanocatalyst for highly efficient overall watersplitting under simulated solar light. Appl. Catal. B-Environ . 2021, DOI: .

作者介绍

李伟 ,陕西 科技 大学 化学与化工学院,副教授。从事光催化剂结构设计及合成、光催化污水处理、太阳能光伏氢能源生产相关研究。目前已发表国际SCI论文30余篇,总被引频次1000余次。部分研究被《Appl. Catal. B-Environ.》、《J. Mater. Chem. A》、《Environ. 》、《ACS Sustainable .》、《Chem. Eng. J.》、《ChemCatChem》、《Electrochim. Acta》等期刊报导。

王传义 ,陕西 科技 大学特聘教授。德国洪堡学者、英国皇家化学会会士、国家外专局高端外国专家创新团队负责人、德国洪堡基金会联合研究小组中方负责人、陕西 科技 大学特聘教授、武汉大学兼职教授、博士生导师。应邀担任中国可再生能源学会光化学专业委员会委员、中国感光学会光催化专业委员会委员及中国环境科学学会特聘理事、国家 科技 奖励和国家重点研发计划项目会评专家及国家基金委等机构项目评审专家。从事光催化技术在环境与能源领域的应用研究。

声明

金属耐腐蚀涂层研究进展论文

关于浅谈金属腐蚀与防护方式论文

无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是对某些学术问题进行研究的手段。你所见过的论文是什么样的呢?以下是我整理的关于浅谈金属腐蚀与防护方式论文,仅供参考,欢迎大家阅读。

摘要: 本文简单阐述了金属腐蚀的类别与影响因素,对于腐蚀的防护方式与必要性展开了具体的探究,并同时指明了部分经常使用的化学涂料,对于它们的原理与功能展开了简单的阐释。此外还论证了金属腐蚀的防护方式并非单一的,它是具有多样性的。最终对防护领域进行了忠告,尽可能的降低由于金属腐蚀的因素而引发的恶劣后果。

关键词: 金属腐蚀;因素;防护方式

化学工业、石油化工、原子能等领域中,因为材料腐蚀导致的跑、冒、滴、漏,不但会让社会承受重大的损失,还会导致大量的有害物质甚至是放射性物质外泄对环境造成不可恢复的伤害,继而对人们的身体健康造成威胁,一些物质在短时间内不会消失,会长时间内对环境以及人身造成威胁;同时因为金属腐蚀所引发的灾难性事故会危及人民的生命财产安全,例如氢脆和应力腐蚀断裂等类型的失效事故,一般会导致爆炸、火灾等重大的事故,使人们的生命财产承受巨大的损失。

1、金属腐蚀的类别

金属的腐蚀的发生主要是在环境的影响下所导致的破坏和变质。根据腐蚀过程来划分,主要包含化学腐蚀与电化学腐蚀;根据金属腐蚀破坏的状态与腐蚀区的布局,重点包含全面腐蚀与局部腐蚀;此外根据腐蚀的条件来划分。重点包含高温腐蚀与常温腐蚀;干腐蚀与湿腐蚀等。

2、影响金属腐蚀的因素

①空气相对湿度与金属腐蚀的临界相对湿度。空气内的氧气总是比较充足的,腐蚀反应的速率重点是基于水分的产生,假如到达或者超越特定的相对湿度,锈蚀就会以较快的速度出现和恶化,通常而言,钢铁的临界相对湿度大概是75%。

②空气中污染性物质的影响。通常能够见到的为SO2,CO2,Cl-,灰尘等,多数皆为酸性气体。

③温度。环境温度和变化规律影响金属表面水份凝聚及电化学腐蚀反应速率。

④酸碱盐。重点体现在影响水膜电解质浓度与H+浓度,进而加快腐蚀的速度。

3、防护方式

金属腐蚀的防护方式具有多样性,重点对象为金属本质,将被保护金属和腐蚀介质进行隔离,或者对金属的表面进行操作,改变腐蚀条件和电化学保护等。

改善金属本质

按照差异性的用途采取差异性的材料构成耐蚀合金,或者于金属内加入合金元素,提升它的耐腐蚀性,能够预防或者降低金属腐蚀的速度。比方,于钢内融入镍制成不锈钢能够强化防腐蚀等级。

构成保护层

于金属表面设置各类保护层,将被保护的对象和腐蚀性介质进行隔离,此为预防金属腐蚀的最佳方式。

金属的磷化处理

在钢铁制品去油、除锈操作之后,添加一定组成的磷酸盐溶液中浸泡,就能够在金属表面产生一层不溶于水的磷酸盐薄膜,此类过程即为磷化操作。磷化膜表现为暗灰色到黑灰色,厚度通常是5至20μm之间,于空气内具备较强的耐腐蚀能力。

金属的氧化处理

把钢铁制品融入至NaOH的混合溶液内,加热,在它的'表面就能够产生一层厚是~μm的蓝色氧化膜(主要组分是Fe3O4),来实现钢铁防腐蚀的目标,这个过程就叫做发蓝处理。此类氧化膜具备较强的弹性与润滑度,不会对零件的精度产生任何负面的作用。因此精密仪器与光学元件等通常选择这种操作。

非金属涂层

通过非金属比如油漆、喷漆、沥青等涂抹于金属表层产生保护层,叫做非金属涂层,亦能够实现防腐蚀的目标。比如船身、车厢、水桶等通常选择油漆,车辆的表面经常喷漆等。

金属保护层

其为将一类耐腐蚀能力较大的金属或者合金镀于保护对象的表层上所产生的保护镀层。此镀层的产生,不仅可以通过电镀、化学镀实现,还能够通过热浸镀、渗镀、真空镀等方式实现。

改善腐蚀条件

改善条件对于降低与避免腐蚀具有必要性。比如,能够选择在腐蚀介质内融入可以减小腐蚀速度的物质,也就是缓冲剂,来降低与避免腐蚀的发生。缓冲剂属于一类化学物质,将其适量的融入至腐蚀介质内,即能够大幅度降低金属腐蚀的速度。因为缓冲剂的用量较小,便捷和廉价,因此这也是一类十分重要的防腐蚀方式。

电化学保护法

此类方式为以电化学原理为基础的,于金属设备上进行操作,让其变成腐蚀电池中的阴极,进而成为预防或者减缓金属腐蚀的方式。

阴极保护

此外通过外加电源来保护金属。将保护的对象接于负极,变成阴极防止腐蚀的产生。同时选择部分铁块接于正极,让其变成阳极,使其腐蚀,也就是说牺牲阳极。此类方式重点应用于化工厂的部分酸性溶液贮槽或者管道,地下水管、输油管等。

4、结语

不管是在社会中的哪个领域,金属腐蚀工作皆具有十分重要的意义,对环境、经济、安全皆会产生严重的影响。石油化工设施比方新建油库、管道、大型石化生产设备等,应当采取防腐措施。但防腐蚀的方式具备多样性,其形成的因素也是多种多样的,这对于这个领域中的所有人员都是一个巨大的挑战,值得所有人员做出相应的努力。

表面涂覆技术是指在材料表面涂覆一层新材料的技术,如电镀***或化学镀***、喷漆***或上涂料***、热喷涂和气相沉积技术等等。下面是我精心推荐的一些,希望你能有所感触!

达克罗涂覆工艺及涂层检验要点浅析

【摘要】讲述了达克罗的工艺流程,并简单介绍了达克罗涂层的一些检验方法。

【关键词】达克罗;涂覆工艺;常见缺陷;检验方法

0.前言

达克罗涂层***欧美称DACROMET,日本称DACROTIZED***,是由片状锌粉、铝粉、含铬的金属盐及粘合剂组成的涂液涂覆于零件表面,经烧结而形成的一种全新结构和效能的防护层。该涂层具有无公害、无氢脆、优良的耐蚀性、浸透性、耐热性等特点。作为汽车、铁路、公路交通、电力、建筑、桥梁等行业中小零部件的防腐处理,已在世界范围内得到了广泛的应用。

1.涂层耐蚀效能机理

达克罗处理液主要由铝粒、铬酐和树脂组成,经固化成膜。在成膜过程中,CrO3大部分转化为Cr2O3,生成无定形的Cr2O3·CrO3,它作为粘结剂,将基体与铝粒、铝粒与铝粒粘结起来,其结构科分别表示Fe·***FeO·Cr2O3 ·CrO3·Al2O3***·Al,Al·***Al2O3·Cr2O3·CrO3·Al2O3***·Al。除此之外,树脂固化形成的体型网状结构,使涂层结构更加致密。由于涂层结构独特,其耐蚀机理可作如下分析:

遮蔽作用

涂层一方面通过钝化作用生成复杂化合物,把涂层与基体结合起来,另一方面又通过树脂固化反应,生成体型网状立体结构,把涂层与基体更牢固地粘结在一起。涂层与基体间既存在化学作用,又存在物理作用。这种紧密结合的涂层,起更好的隔离腐蚀介质的作用。

钝化作用

达克罗处理液中,铬酸与铝粒和基体金属发生化学反应,生成致密的铬酸钝化膜,使基体的耐蚀效能大为提高。

电化学保护作用

达克罗涂层实质上采用阴极保护法来提高金属的耐蚀效能。涂层中微细铝粒紧密排列于钢铁表面。铝的电极电位远小于铁的电极电位。当涂层受到区域性破损或有腐蚀介质浸入时,铝作为腐蚀微电池阳极失去电子而被腐蚀,基体金属作为阴极得到完全保护。

2.达克罗工艺

达克罗处理工艺的流程如上图。整个处理过程主要有三个重要的质量控制点,即前处理、涂覆、烘烤。

前处理的目的是除去零部件表面的油污、铁和氧化皮,提高膜层与基体的结合力。前处理的方法较大,如有机溶剂或碱性清洗剂脱脂、抛丸、喷丸、喷砂等。对于较为精密的零部件一般采用有机溶剂或碱性清洗剂脱脂的方法,而对于结构较为复杂的零部件,一般采用喷、抛结合的方式。前处理要尽量避免使用酸洗除锈,以防止产生清脆。

涂覆是用达克罗溶液喷涂或浸渍零件,然后再采用离心甩干、自然垂流、刷等方式除去多于的处理液。一般一涂一烘涂层厚度为3~6μm,二涂二烘为6~9μm,三涂三烘为9~12μm,可根据产品要求进行选择***详见附表一***。在涂覆过程中,有几个工艺引数需要控制:浸渍时间为200~300r/min。另外,对于达克罗溶液的维护也要格外精心,平时不使用时保持其温度在14℃以下,正常工作的温度保持在20±2℃,以保证达克罗溶液的稳定。

烘烤是将金属基体上的达克罗处理液转变成膜层的过程,常在网带式回圈热风烘烤炉中进行。整个过程分为预热区,温度为60~180℃***处理时间为10min左右***,零部件预热要缓慢,让涂层水分逐渐逸出,避免涂层起泡,产生孔隙。然后到达温度为280~330℃的固化区,时间为25~30min,在此区发生一些物理和化学反应。烘烤过程对于达克罗膜层效能的形成十分重要。

3.达克罗涂层的检验

涂覆量

因为零件形状不同,各部位的涂覆量是不相同的,这里指的是平均涂覆量。

中国标准将涂覆量分为70mg/dm2、160mg/dm2、200mg/dm2、300mg/dm2四个级别。

检测方法:将涂覆后的50~100g的零件先称重,然后放在70~80℃的20%氢氧化钠溶液里,直到涂层全部去掉后取出并清洗吹乾,然后再称重,前后两次的质量差再除以零件表面积即为零部件的涂覆量。

涂层厚度

测定涂层厚度可采用磁性测厚仪进行多点测量求平均值的方法,具体按GB/T4956-2003《磁性基体上非磁性覆盖层 覆盖层厚度测量磁性法》要求进行。

附着力

采用宽18mm标准胶带贴在零部件表面,用手指揉擦以排除气泡,在胶带端头和零部件表面成45°角度快速拉开,根据粘附在胶带上的附着物量判断结合力级别,一般3~5级以上为合格。

泛黄试验

泛黄试验是检测涂层烘烤程度的一种简单方法。将1~2滴浓氨水滴在冷却的工件表面,涂层在30~60s内泛黄为合格,涂层烘烤不足时不泛黄。

硝酸铵快速腐蚀试验

由于盐雾试验周期时间长,在生产控制中很难用实现,因此在国内现在经常用硝酸铵快速腐蚀的方法来判断涂层的耐腐蚀效能。

试验方法:用20%的硝酸铵溶液加热到70±2℃,将零件浸渍于溶液内,或部分浸渍于溶液内。

判断方法:基体不允许出现红锈。

盐雾试验

达克罗涂层盐雾试验采用中性连续喷雾试验,具体操作方法按GB/T10125-1997《人造气氛腐蚀试验-盐雾试验》执行。需要注意的是试样应以水平线倾斜60~75°摆放,彼此不接触,而且从上面漏下的溶液不会从一个零件落到另一个零件上。

4.结束语

随着科学技术进步,达克罗处理工艺及检测方法也会有新的技术和方法产生,希望与同仁共同研究、开发,推进达克罗处理技术在我国的广泛应用。[科]

【参考文献】

[1]舒屹,林兵.达克罗涂层的研究.重庆师范学院学报***自然科学版***,.

[2]肖合森.达克罗处理的检测方法.电镀与涂饰,.

[3]邹志武,王红洲.达克罗技术.汽车工艺与材料,2003.

[4]王敏,黄鑫,王家禄,贺子凯.达克罗技术与应用.电镀与涂饰,.

点选下页还有更多>>>

中国抗癌药最新研究进展论文

UNAM大学里的研究人员发现,如果附加了α生育酚和β-胡萝卜素的纳米胶囊用在水果和新切蔬菜上,可分散、均匀地敷上一层薄层,形式灵活地抑制酶促褐变,延长其寿命。“我们设计的这种微小的、用囊包着的产品是一种食品添加剂。类似于在纳米尺寸范围100~500纳米的球状结构之内放置活跃物质,如柠檬油、迷迭香或抗氧化剂α-生育酚、β-胡萝卜素。降出这个区域的活跃物质,使其通过壁迁移到水果实现保护。”这位学术负责人说道。然而,尽管目前在领域内取得了突破性的进展,但现在药物输送系统的精确度仍然达不到,可能的原因有很多,比如人体的复杂程度,再比如标记识别的不准确等,这都会影响药物释放的准确性。华东理工大学的魏红竹和他的团队,对智能药物传递系统进行了概念验证的研究,在肿瘤的识别方便达前所未有的准确性。他们所设计的胶囊具有“逻辑性”,胶囊需要检测出两种不同的癌症信号,并且,还需要在特定的序列中,就会按照正确的顺序释放药物。在这之前,研究人员设计的检测系统也都是能够检测出两种不同的标记系统,但通常两个当中检测到一个就会打开,所以准确率就大大降低了,而华东理工大学的团队所研制的胶囊需要检测到两个标记才能打开,所以准确率就大大增加了。癌症由于高的发病率和致死率,已经成为仅次于心脏病的“人类杀手”。然而,传统的癌症治疗手段包括手术、化疗与放疗虽然可以在一定程度上缓解病情,延长患者生命,却也给患者带来了极大的痛苦。例如手术产生大面积的创伤,化疗与放疗带来的毒副作用,以及多药耐药性导致治疗失败。因此,寻找有效的癌症治疗方法是目前医药领域研究的热点与难点。生物相容性纳米胶囊的出现为癌症的诊断和治疗提供了新的思路。纳米胶囊作为一种新型的药物载体,可以通过包裹疏水性化疗药物从而提高药物的溶解性,也可以包裹核酸提高其稳定性作为基因治疗药物。在载药纳米胶囊表面偶联靶向分子,使胶囊靶向到肿瘤病灶部位进行治疗,可以极大的提高治疗效果并降低对正常组织细胞的杀伤作用,是一种极具潜力的癌症治疗方法。本论文试图利用纳米胶囊(Nanocapsules,NCs)包裹化疗药物紫杉醇(Paclitaxel,PTX),并且在胶囊表面偶联特异识别肿瘤受体并诱导肿瘤细胞凋亡的TRAIL(Tumor necrosis factor-related apoptosis inducing ligand)蛋白构建一种新型纳米胶囊靶向抗癌药物,以克服目前临床抗癌药物的缺陷并为后续抗癌药物开发和肿瘤临床治疗提供技术支持。首先通过薄膜水化法使嵌段共聚物Pluronic(?)F127(PEO10O-PP065-PEO10O)和Pluronic(?)P123(PE020-PP070-PE020)聚合形成纳米胶束,胶束内部负载疏水性抗癌药物紫杉醇,并加入硅烷水解产生二氧化硅沉积在胶束PEO与PPO界面形成硅壳,稳定胶束的结构形成纳米胶囊。随后,通过在胶囊表面偶联具有特异识别并诱导肿瘤细胞凋亡的TRAIL蛋白,为载药纳米胶囊提供靶向性。完成纳米胶囊靶向抗癌药物的制备之后,使用透射电子显微镜和动态光散射表征载药纳米胶囊的形貌与粒径,分光光度计与高效液相色谱测定载药纳米胶囊的载药量与药物缓释曲线。最后通过TRAIL敏感型肝癌细胞株HepG2体内体外实验检测所制备的靶向载药纳米胶囊对肿瘤的治疗效果,并通过TRAIL耐受型乳腺癌细胞株MCF-7的体内体外实验检测纳米胶囊对多药耐药性肿瘤的治疗效果。经过研究和实验,获得如下结论:(1)载药纳米胶囊组装及性能:制备的载药纳米胶囊为澄清液体,在激光照射下可以观察到明显的丁达尔效应。纳米胶囊在透射电子显微镜下呈现明显的壳层结构,胶囊大小均一,壳层厚度为 nm。动态光散射测定载药纳米胶囊的光动力学粒径为24 nm,具有良好的分散性和溶液稳定性。紫杉醇纳米胶囊(PTX-NCs)的载药量为,包封率为,胶囊中紫杉醇浓度为μ g/mL。纳米胶囊内部的紫杉醇稳定并缓慢地释放。在偶联剂EDC和NHS作用下,TRAIL蛋白表面的氨基与胶囊表面的羧基形成酰胺键而使TRAIL蛋白偶联到紫杉醇纳米胶囊表面。偶联产物通过亲和层析获得靶向抗肿瘤纳米胶囊药物 PFPSNT(PTX-F127/P123 silica nanoparticles-TRAIL)。(2)PFPSNT对TRAIL敏感的肝癌HepG2细胞和活体肝癌HepG2肿瘤的抑制效果:采用cck-8法测定纳米胶囊及药物对体外培养的HepG2细胞的抑制效果,结果表明,未负载药物的空胶囊对细胞无明显抑制效果,而实验组PTX、PTX-NCs、TRAIL、TRAIL-NCs以及PFPSNT对HepG2细胞的半致死剂量分别为 μg/ml、 μg/ml、 μg/ml、 g/ml、 μg/ml。PFPSNT 对体外培养的 HepG2 具有良好的抑制作用。使用荧光染料Pyrene代替紫杉醇包裹进纳米胶囊并偶联TRAIL蛋白制备成TRAIL-Pyrene-NCs,与HepG2共孵育后使用荧光显微镜检测,结果显示偶联TRAIL的载荧光染料Pyrene纳米胶囊对HepG2具有明显的靶向作用。将HepG2细胞种植到裸鼠皮下形成种植瘤,建立裸鼠肿瘤模型后分别于腹腔注射PBS、PTX、PTX-NCs、TRAIL、PFPSNT进行治疗。与对照组PBS相比,各实验组肿瘤的增殖均得到不同程度的抑制,其中PFPSNT组肿瘤抑制效果明显强于其它各组。统计学分析显示PFPSNT组肿瘤抑制效果与其它组之间的差异具有明显的统计学意义(P<)。肿瘤组织切片的H&E染色及荧光染色显示PFPSNT治疗组的肿瘤组织内细胞有明显的凋亡和坏死。裸鼠主要器官心肝脾肺肾的H&E染色结果显示,使用PFPSNT不会对裸鼠正常脏器造成明显可见的损伤。(3)PFPSNT对TRAIL-耐受性乳腺癌MCF-7细胞和活体乳腺癌MCF-7肿瘤的抑制效果:采用cck-8和流式细胞仪检测纳米胶囊及药物对体外培养的MCF-7细胞的抑制效果,测得实验组 PTX、PTX-NCs、TRAIL、TRAIL-NCs 以及 PFPSNT 对 MCF-7 细胞的半致死剂量分别为 μg/mL、 μg/mL、 mg/mL、 mg/mL、μg/mL。在细胞的流式分析中,PTX、TRAIL和PFPSNT处理后,死细胞总量为和。两个不同实验的结果均表明MCF-7对TRAIL蛋白具有耐药性,但PFPSNT可以在MCF-7细胞中实现TRAIL与PTX的联合用药并逆转MCF-7细胞对TRAIL的耐药性。在对MCF-7种植瘤的治疗中,PFPSNT对肿瘤的增殖具有显著的抑制效果,肿瘤的体积增长速度以及瘤重均明显低于其余实验组并具有统计学意义(P<)。(4)MCF-7细胞与种植瘤蛋白组差异分析。体外培养的MCF-7细胞对TRAIL蛋白具有明显的耐受性,而种植到裸鼠皮下形成的MCF-7种植瘤对TRAIL敏感。为了弄清这种MCF-7细胞与MCF-7种植瘤之间发生耐受与敏感逆转的原因,使用Laber free法测定MCF-7细胞与种植瘤的蛋白组学差异。结果表明,MCF-7细胞在种植到裸鼠皮下形成肿瘤后,多个代谢通路中的蛋白表达水平发生改变,其中氨基酸的合成、间隙连接、RNA转运以及DNA复制均可能通过不同的机制调控肿瘤细胞的增殖并对其耐药性产生影响。MCF-7种植瘤可能通过这些机制改变了细胞对TRAIL的耐药性。利用纳米胶囊、紫杉醇和TRAIL蛋白构建的纳米胶囊靶向抗癌药物PFPSNT具有较好的稳定性、靶向性、安全性以及包载药物的缓释作用。PFPSNT对TRAIL蛋白敏感或耐受的肿癌均具有较强的杀癌效果,是一种安全、有效、广谱的候选靶向抗癌药物,值得进一步作为临床抗癌药物开发利用。

本文中,我整理了科学家们近年来在抗肿瘤研究中取得的新成果,与大家一起学习!

doi:

近日,一篇发表在国际杂志Nature上的研究报告中,来自德州农工大学的科学家们通过研究发现,人类基因STING(干扰素基因的刺激子)的一小片段或是治疗自身免疫性疾病和癌症的关键。文章中,研究者发现,一种特定的蛋白质基序或能帮助科学家们开发新型药物,来抑制引发自身免疫性障碍的人类机体未知免疫反应。

STING是一种特殊的蛋白质,其能在人类和其它动物机体中发送免疫反应的信号,文章中,研究者们发现了一种名为PLPLRT/SD的蛋白质基序,其是STING蛋白质末端附近的短链氨基酸序列,在开启机体免疫系统功能抵御病毒感染上扮演着至关重要的角色。TBK1是一种与多种疾病发病相关的蛋白激酶,比如额颞叶痴呆、某些癌症和诸如狼疮等自身免疫性疾病,研究者Li表示,我们在蛋白质STING中鉴别出了一种短链序列,其能够招募并激活TBK1,从而开启机体自身的免疫反应。

【2】Sci Rep:重磅!一种新型药物或能调节机体免疫系统来有效抵御肿瘤攻击

doi:

一项发表在国际杂志Scientific Reports上的研究报告中,来自日本庆应大学研究人员通过研究表示,通过刺激患者机体的免疫系统,一种用来治疗血液障碍的药物或有望帮助阻断多种类型实体瘤的生长。这种名为5-aza-CdR的药物当前被用来治疗会诱发白血病的血液障碍,其能抑制DNA甲基化,从而抑制酶类对基因组DNA进行化学修饰,诸如这样的修饰会改变控制多种关键细胞功能的基因的表达,包括细胞生长和生存等。

如今有些研究发现,诸如5-aza-CdR的甲基化抑制剂还能被用来治疗其它类型的癌症,这些效应或许归因于药物能再度激活肿瘤抑制基因的表达,但其中所涉及的具体分子机制研究人员并不是很清楚。这项研究中,研究人员Yoshimasa Saito及其同事开始通过研究阐明药物5-aza-CdR的工作原理,首先他们评估了5-aza-CdR对肠癌小鼠模型的治疗效应,结果发现,该药物能够抑制大约三分之一的肿瘤进行生长,而且接受该药物治疗的小鼠相比没有接受治疗的小鼠而言机体中肿瘤的尺寸趋于更小。

【3】Sci Immunol:新方法或能重新激活T细胞来有效抵御癌症

doi:

近日,来自美国弗吉尼亚大学等机构的科学家们通过研究发现了一种新方法,或能重新激活因抵御癌症而耗尽的T细胞的功能,相关研究刊登于国际杂志Science Immunology上。文章中,研究人员阐明了烯醇化酶1(enolase 1)水平的下降对T细胞所产生的影响,以及如何绕过该影响给机体免疫系统“充电”。

此前研究结果表明,免疫系统有时无法有效抵御癌变的肿瘤组织,因为当肿瘤浸润性的淋巴细胞(TILs)攻击肿瘤组织时常常会失去能量,疲惫的T细胞或许就无法有效杀灭癌细胞,从而就会使得肿瘤组织不断增殖,研究者认为,T细胞或许会因饥饿的肿瘤细胞夺走葡萄糖而变得“无精打采”,这项研究中,他们就找到了一种新方法来克服这种问题,从而让TILs能够有效攻击癌症。

【4】Nat Cell Biol:鉴别出帮助机体抵御癌症的特殊“染色体扫描仪”蛋白

doi:

近日,来自丹麦哥本哈根大学等机构的科学家们通过研究鉴别出了修复人类DNA严重损伤的一种新型机制,相关研究刊登于国际杂志Nature Cell Biology上,研究者指出,细胞中的这种特殊“扫描仪”能够决定无瑕疵的DNA修复过程是否被开启。

对于DNA的严重损伤而言有两种基本的修复系统,但仅有一种修复系统是无瑕疵的,如果该系统无法正常发挥功能就会增加DNA损伤后机体患癌的风险;我们都知道,BRCA基因的突变会诱发遗传性的卵巢癌和乳腺癌。研究者Anja Groth教授表示,我们阐明了细胞开启修复严重DNA损伤的“完美系统”(flawless system)的分子机制,其能够保护机体免于癌症发生。

【5】NEJM:个体化癌症疗法或帮助抵御肿瘤对靶向药物的耐受性

doi:

靶向作用驱动肿瘤生长的遗传突变的药物为多种严重癌症的治疗带来了革命性的变革,但很多时候,肿瘤都会对药物产生耐受性,而且肿瘤经常是通过产生新的突变来促进耐药性的出现,这就需要科学家们不断开发更有潜力的药物来克服耐药性的肿瘤,近日一项发表在NEJM上的研究论文中,来自麻省总医院的研究者就利用多种不同的靶向疗法检测了肺癌患者对药物的耐受性进化情况,当耐受性促进第三代靶向疗法的开发时,新的突变就会恢复癌症细胞对第一代靶向疗法的反应。

Alice Shaw博士说道,对于很多使用第一代抑制剂药物复发的肿瘤患者而言,比如克里唑蒂尼,更多潜在且具有选择性的新一代抑制剂疗法或许对于治疗患者更为有效,然而对新一代抑制剂产生耐药性的癌症经常会对并不是那么强大的抑制剂产生耐受性,而且通常是通过产生新的突变来促进对新一代抑制剂的耐药性,而对老一代的抑制剂变得敏感。

doi:

利用免疫细胞刺激身体攻击肿瘤的癌症疗法,可以通过一种增强其功能的分子得到改善。对老鼠的研究发现,改进后的疗法产生了强大的抗癌免疫反应,导致了肿瘤缩小。初步实验表明,这种分子对人体细胞有类似的作用,并可能促进癌症治疗的成功。这种被称为LL-37的分子是人体对感染的自然反应,有助于杀死有害的细菌和病毒。

近日,来自爱丁堡大学的科学家发现,它还影响免疫细胞,增强它们的功能。特别是这种分子增强了特定细胞的功能,这些细胞负责启动被称为树突状细胞的靶向免疫反应。树突状细胞已被用于癌症治疗,因为它们可以触发其他免疫细胞识别和攻击肿瘤。这种方法通常包括取患者自身细胞的样本,在实验室特殊条件下培养,然后再注入患者体内。这一过程成本高昂,而且由于难以制备足够数量的树突状细胞而受阻,这些细胞具有用于治疗的正确特性。

【7】PNAS:抗肿瘤细胞如何治疗神经胶质瘤?

doi:

胶质母细胞瘤是一种无法治愈的脑肿瘤,通常与表皮生长因子受体(EGFR)的突变有关。在胶质母细胞瘤中发现的主要EGFR突变,称为EGFRvIII,用大约20年前由路德维希癌症研究所开发的抗体mAb806进行治疗,但其作用机制尚不清楚。与斯德哥尔摩大学(瑞典)和加州大学圣地亚哥分校合作,生物医学研究所的研究人员已经揭示了这种抗体如何作用于突变的EGFR,从而大大扩展了它的应用范围。

该研究发表在PNAS期刊上,为癌症的新疗法铺平了道路。该工作的结果表明,与先前认为的相反,mAb806可用于治疗许多携带EGFR突变的肿瘤,而不仅仅用于特定突变。此外,科学家已经证明,即使EGFR未发生突变,也可以对其进行治疗,以使其对mAb806治疗敏感。 “这一发现奠定了抗EGFR联合治疗与抗体和激酶抑制剂的合理基础,而不是”盲目测试“它们,正如迄今为止所做的那样,”IRB巴塞罗那分子模拟和生物信息学实验室负责人Modesto Orozco说。以前的研究报道,mAb806识别通常隐藏的EGFR区域。在携带EGFRvIII的某些肿瘤中,已经除去了一半的受体,使得该区域变得可接近,从而允许抗体的治疗用途。研究人员现已证明,EGFR上的许多不同突变改变了受体的形状,使mAb806能够检测到这个“隐藏”区域。

【8】Nat Commun:诸如苹果和茶叶等富含黄酮类化合物的食物或能保护机体抵御癌症和心脏病发生

doi:

日前,一篇发表在国际杂志Nature Communications上的研究报告中,来自伊迪斯科文大学的科学家们通过研究发现,摄入富含黄酮类化合物的食物(比如苹果和茶叶)或能帮助机体有效抵御癌症和心脏病,尤其是对于吸烟者和重度饮酒者。

这项研究中,研究人员在23年间评估了53048名丹麦人的饮食状况,他们发现,习惯性摄入适量或大量富含黄酮类化合物食物(植物性食物和饮料中的黄酮类化合物)的人群或许并不太会因癌症或心脏病而死亡。研究者Nicola Bondonno博士说道,摄入富含黄酮类化合物食物的人群死亡风险较低,对于那些因吸烟及每天饮用两种以上标准酒精饮料而患慢性疾病风险较高的人群而言,这种保护性效应似乎是最强的。

【9】JEM:首次直观地观察到CAR-T细胞抵御血液癌症的过程

doi:

当癌症从机体免疫系统中逃逸时,我们的防御系统就会变得无能为力无法有效抵御癌症,嵌合抗原受体T细胞(CAR T细胞)或许就能展现出一种潜在的免疫疗法,其能有效应对肿瘤,但某些患者疾病的复发往往给当前的疗法提出了巨大挑战,近日,来自巴斯德研究所等机构的科学家们通过研究鉴别出了CAR T细胞的精确功能,或能优化未来癌症的治疗手段,相关研究刊登于国际杂志The Journal of Experimental Medicine上。

抵御癌症的其中一种策略基于对患者自身的T淋巴细胞进行修饰来使其能够识别肿瘤细胞所表达的CD19靶点分子,从而就能有效清除癌细胞,临床试验证明这种方法是非常有效的,因此这种疗法常常用来治疗成年和儿童血液癌症患者,但其中有些患者的癌症会复发,为了能够改善疗法的有效性,这项研究中研究人员阐明了CAR T细胞的精细化工作机制。

【10】Nat Commun:肠道微生物组或能指挥机体免疫系统抵御癌症

doi:

近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自Sanford Burnham Prebys医学发现研究所的科学家们通过研究阐明了肠道微生物组和机体免疫系统抵御癌症能力之间的因果关联,文章中,研究者鉴别出了11种细菌,其能激活小鼠的机体免疫系统并减缓黑色素瘤的进展,此外研究者还阐明了一种未折叠蛋白反应(UPR,unfolded protein response)的关键作用,UPR是一种能维持蛋白质稳态的细胞信号通路,研究人员在对免疫检查点疗法产生反应的黑色素瘤患者机体中常常能观察到UPR水平的下降,这或许就能揭示对病人分层的潜在标志物。

研究者Thomas Gajewski说道,免疫疗法能够延长很多癌症患者的寿命,通过研究患者对疗法产生反应和耐受的分子机制,我们就能够扩大因化疗而受益患者的数量。这项研究中我们建立了微生物组和抗肿瘤免疫力之间的关联,同时揭示了UPR在这一过程中扮演的关键角色,相关研究结果或能帮助研究人员对接受选择性检查点抑制剂疗法的黑色素瘤患者进行分类。

发光二极管最新研究进展论文

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!

纳米材料综述

【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。

【关键词】 纳米、纳米技术、纳米材料、纳米结构

1 引言

著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]

2 纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料

纳米材料的概念

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

4 纳米材料的应用

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

5 纳米材料的前景

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

6 结束语

纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。

参考文献

[1]孙红庆.科技天地―计划与市场探索[M],2001/05

[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.

[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.

纳米材料与应用

摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。

关键词 :纳米材料 性能 应用

纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。

按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。

悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。

纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。

纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。

来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。

通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。

应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。

纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。

常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。

由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。

参考文献:

[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)

[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)

背景

我们生活中遇到的大多数电子器件,通常都是由无机材料例如硅制成,属于无机半导体器件。可是,由于僵硬、易碎、成本高、工艺复杂、生物相容性差等诸多弊端,传统硅基半导体面临着严峻的挑战。此外,硅基半导体的制造工艺也正在逼近物理极限。

因此,世界各国的科学家们正在研制各种新型电子器件来克服这些弊端,进一步提升电子器件的性能,拓展其应用场景。近年来,一种新型电子器件备受科学家们的追捧,它就是由有机半导体材料制成的有机电子器件。有机电子器件不仅具备良好的柔韧性与透明性,而且超薄、超轻、对环境友好。这些材料可通过简单、环保、低成本的工艺进行加工,例如制作成溶液后大面积打印。

这些更加柔韧、轻薄、便携、透明的有机电子产品,可以应用于诸多领域,例如柔性太阳能电池、柔性显示器、柔性传感器、柔性可穿戴设备、植入式设备等。其中,有机发光二极管(OLED)便是一个成功商用的典型案例,最新一代的智能手机已经开始采用OLED显示屏。

创新

今天,笔者要为大家介绍有机电子领域的一项新进展。

近日,日本东京工业大学材料科学与工程系 Tsuyoshi Michinobu 和 Yang Wang 领导的研究团队,报告了一种具有世界领先的电子迁移率性能的单极n型晶体管。他们采用了一种新方法来提升之前被证明很难优化的半导体聚合物电子迁移率。他们的高性能材料实现了达 cm2 V−1 s−1的电子迁移率,相比于之前可比的成果提升了40%以上。

《Journal of the American Chemical Society》期刊上发表的论文表明,他们专注于提升所谓的“n型半导体聚合物”材料的性能。n型材料以带负电的电子导电为主;相对而言,p型材料以带正电的空穴导电为主。Michinobu 解释道:“因为与带正电的原子团相比,带负电的原子团天生就是不稳定的,所以制造稳定的n型半导体一直是有机电子领域的一个重要挑战。”

技术

然而,这项研究既应对了基本挑战,也满足了实用的需求。Wang 表示,例如,许多有机太阳能电池,就是由p型半导体聚合物和n型富勒烯衍生物制成的。缺点就是,后者成本高,难以合成,不兼容柔性器件。他说:“为了克服这些缺点,高性能的n型半导体聚合物非常有希望能够推进全聚合物太阳能电池方面的研究。”

团队的方法包括采用一系列新型聚合(benzothiadiazole-naphthalenediimide)衍生物,以及微调材料的骨干构象。这种方法可以通过引入“1,2-亚乙烯基桥(vinylene bridges)”来实现。之前的研究表明,这种结构被认为是一种有效的间隔物,而这种间隔物却从来没有在这项研究所关注的聚合物中使用过。它能与相邻的氟原子和氧原子形成氢键。引入这些“1,2-亚乙烯基桥”需要可以优化反应条件的重要技术。

总体来说,生成的材料具有更好的分子包装次序以及更高的强度,这有利于提升电子迁移率。

采用掠入射广角X射线散射(GIWAXS)等技术,研究人员确认他们实现了极短的“π−π堆叠距离(stacking distanc)”,仅为埃米(一埃米为十分之一纳米)。这个距离衡量了在电荷中电荷需要被携带至多远。Michinobu 表示:“对于高迁移率有机半导体聚合物来说,这个距离属于最短的。”

价值

这项成果预示着有机电子将迎来令人振奋的未来,科学家们将开发出创新型的柔性显示器和可穿戴技术。

未来

除此之外,研究人员还面临几项挑战。他说:“我们需要进一步优化骨干结构。同时,侧链基也在决定半导体聚合物的结晶性和包装方向上扮演着重要角色。我们还有改善的空间。”

Wang 指出,对于报告的聚合物来说,最低未占有分子轨道(LUMO)能级在− eV 到 − eV之间。他说:“LUMO能级越深,电子输运就越快越稳定。因此,例如,引入sp2-N、氟原子和氯原子的进一步设计,将有助于实现更深的LUMO能级。”

未来,研究人员们也将打算改善n沟道晶体管的空气稳定性。对于实际应用例如类似互补金属氧化物半导体(CMOS)的逻辑电路、全聚合物太阳能电池、有机光电探测器和有机热电器件来说,空气稳定性是一个非常关键的问题。

参考资料

【1】

【2】

研究生论文提纲格式范文

提纲格式一

摘要 4-6

Abstract 6-8

英文符号与缩略语 15-18

第1章 绪论 18-30

课题研究背景 18-22

太阳能电池的发展 18-19

聚合物太阳能电池的工作原理及性能参数 19-22

聚合物给体材料的研究进展 22-28

聚合物给体材料的发展 22-25

侧链对聚合物给体材料性能的影响 25-27

D-A共聚物光电转换过程的研究现状 27-28

本课题的研究目的和意义 28-29

课题的研究内容 29-30

第2章 一维D-A共聚物PBDTTT的溶液构象和光生电荷动力学 30-60

引言 30-32

PBDTTT溶液的制备与光谱测量方法 32-36

稳态光谱特性 36-42

稳态吸收和发光光谱特性 36-42

PBDTTT溶液极化子吸收的特征光谱 42

(BDT-TT)n单体到四聚体的构型 42-44

PBDTTT溶液极化子吸收在毫秒时间内的复合过程 44-46

飞秒时间分辨吸收光谱 46-59

715nm波长激发时三个激发态产物的原初动力学 46-53

440nm波长激发时三个激发态产物的原初动力学 53-55

激发态产物与分子构型的关系 55-59

本章小结 59-60

第3章 PBDTTT纯膜与PBDTTT:PC61BM共混膜的光生电荷动力学 60-84

引言 60-62

PBDTTT固态膜的制备和形貌、稳态光谱测量 62

PBDTTT器件的伏安曲线与外量子产率 62-63

形貌和稳态光谱特性 63-67

纯PBDTTT薄膜的飞秒时间分辨吸收光谱 67-73

700nm激发时PBDTTT纯膜激子和极化子的原初动力学 67-70

490nm激发时PBDTTT纯膜激子和极化子的原初动力学 70-72

侧链和过剩激发能对纯聚合物薄膜电荷产生机制的影响 72-73

PBDTTT:PC61BM共混膜飞秒时间分辨吸收光谱 73-82

700nm激发时PBDTTT:PC61BM膜ICT与CS的原初动力学 73-77

490nm激发时PBDTTT:PC61BM膜ICT与CS的原初动力学 77-78

侧链和过剩能对聚合物共混膜光生电荷动力学的影响 78-82

本章小结 82-84

第4章 二维D-A共聚物PF(S)DCN在液相和固相中的光生电荷动力学 84-117

引言 84-86

PF(S)DCN溶液与固态膜的制备 86

PFSDCN在液相中的激发态动力学 86-98

稳态光谱特性 86-88

PF(S)DCN单重态激子的衰减动力学 88-90

PFDCN溶液相激发态的原初动力学 90-93

PFSDCN溶液相激发态的原初动力学 93-96

侧链对PF(S)DCN溶液相的激发态性质影响 96-98

PF(S)DCN纯膜和PF(S)DCN:PC71BM共混膜的超快光生电荷动力学 98-115

稳态光谱和形貌特性 98-101

PFDCN和PFDCN纯膜激子和极化子的原初动力学 101-107

PF(S)DCN与PC70BM共混膜激子和极化子的原初动力学 107-111

侧链对PF(S)DCN固相的光生电荷动力学影响 111-115

本章小结 115-117

结论 117-118

创新点 118

展望 118-119

参考文献 119-131

攻读博士学位期间发表的论文及其他成果 131-134

致谢 134-136

个人简历 136

提纲格式二

摘要 4-6

Abstract 6-8

第一章 绪论 12-33

III-V族发光二极管的发展历史 12-18

LED工作原理及结构 18-21

结温对LED性能的影响 21-24

结温测试方法综述 24-31

热阻法 24-25

功率法 25-26

正向电压法 26-28

红外法和拉曼法 28-29

蓝白比法 29-30

峰位移动法 30-31

本论文的目标与工作 31-33

第二章 发光二极管发光及热传递理论基础 33-48

半导体中的光跃迁 33-42

半导体材料的态密度 33-35

载流子的分布 35-36

辐射复合理论 36-40

半导体荧光 40-42

异质结与多量子阱结构 42-44

异质结中的载流子 42-44

热产生、传递与分析 44-48

LED中的热产生 44-45

热传递方式 45-46

热分析 46-48

第三章 发光二极管结温测定系统的设计与实现 48-69

结温测定系统的算法与流程 49-54

LED发光峰位的拟合 49-50

光谱峰位搜索算法 50-52

实验设计与控制流程 52-54

结温测定系统的硬件设计 54-60

温度控制 54-55

驱动脉冲 55

光谱的快速采集 55-56

结温测定系统的实现 56-59

实验参数的确定 59-60

结温测试系统的应用 60-68

结温测定实例 60-64

结温测试系统的推广 64-68

本章小结 68-69

第四章 结温测试系统的测试与验证 69-80

结温测试系统的可靠性验证 69-73

系统的可重复性测量 69-72

系统的可再现性验证 72-73

峰位移动法与正向电压法的对比研究 73-79

不同大功率LED的.定标比较 73-77

不同偏置电流下定标曲线的稳定性 77-78

同一来源样品的定标比较 78-79

本章小结 79-80

第五章 蓝、绿光LED局域态对结温定标曲线的影响 80-102

实验装置和方法 80-81

蓝、绿光LED的光致发光研究 81-89

局域态与QCSE对PL光谱的影响 81-84

铟 含量对PL光谱的影响 84-89

蓝、绿光LED的电致发光研究 89-94

不同注入电流下的EL光谱变化 89-92

温度对EL光谱的影响 92-94

蓝、绿光LED结温定标曲线差异的分析 94-101

铟 含量与局域态的形成与分布 94-99

铟 含量对定标曲线的影响 99-101

本章小结 101-102

第六章 LED灯具热学参数的提取与研究 102-116

LED结温测试系统应用简介 103-108

LED灯具有效散热参数的提取 108-115

理论分析 108-109

实验方法 109-110

灯具有效散热参数与温度的关系 110-113

灯具有效散热参数与电流占空比的关系 113-115

本章小结 115-116

第七章 总结与展望 116-119

总结 116-117

展望 117-119

参考文献 119-132

致谢 132-133

攻读博士学位期间发表的学术论文及专利 133

市场竞争格局:呈金字塔形分布

——上游芯片市场较为集中

LED上游芯片市场被掌握核心技术、拥有较多自主知识产权和知名品牌、竞争力强、产业布局合理的龙头企业所占领,市场集中度较高。根据CSA数据显示,2020年中国LED芯片竞争格局中,三安光电占比,位居首位;其次华灿光电占比。TOP3合计占比超过整体规模的60%;TOP6合计占比超过80%。

——中游LED封装市场格局初定

目前我国LED 封装行业格局初定,近年来LED封装行业由于产能扩张经历了价格战后,部分中小厂商被淘汰,行业集中度逐渐提高,行业整合趋于完成。目前国内LED封装行业主要厂商有聚飞光电、芯瑞达、木林森、国星光电、瑞丰光电、万润科技、穗晶光电等。

——下游应用市场格局分散

LED下游应用领域涵盖通用照明、景观照明、显示、背光、汽车、信号等领域,行业进入门槛低,市场竞争较为激烈,市场集中度较低。其中,通用照明是LED应用最广泛的领域。从LED通用照明市场竞争格局来看,目前LED通用照明领域主要分为三大派系:海外照明品牌、国内一线品牌、国内其他品牌。其中海外老牌照明品牌的主要优势在于高端产品的研发能力以及多年的品牌影响力;国内一线品牌的优势在于国内广泛的销售网络和品牌影响力;而国内其他品牌的优势在于制造能力。

——行业整体竞争格局呈金字塔分布

总体来看,LED产业链各环节参与企业数量与市场集中情况呈金字塔型分布。上游衬底制作、外延生长和芯片制造具有技术和资本密集的特点,参与竞争的企业数量相对较少,企业资源比较集中;中游LED封装环节具有技术与劳动密集型特点,参与企业数量较多,近年来LED封装行业由于产能扩张经历了价格战后,部分中小厂商被淘汰,行业集中度逐渐提高;下游应用的进入门槛相对较低,劳动密集的特点更为突出,参与其中的企业数量最多,行业集中度较低,竞争激烈。

区域竞争格局:集中于珠三角、长三角

中国的LED产业可以划分为长三角经济区,环渤海经济产业区,珠三角经济产业区,闽赣经济产业区和中西部经济产业区五大主要经济产业区。从区域分布情况来看,珠三角和长三角是国内LED产业最为集中的地区,上中下游产业链比较完整,集中了全国80%以上的相关企业,也是国内LED产业发展最快的区域,产业综合优势比较明显,与LED有关的设备及原材料供应商纷纷在这两个区域落户。

根据企查猫数据显示,从中国LED行业企业分布图中可以看出,目前中国LED行业主要聚集在长三角、珠三角地区,具体集中省份为广东、江苏省、浙江省和福建省等。

—— 以上数据参考前瞻产业研究院《中国LED行业市场前瞻与投资战略规划分析报告》

抗生素替代品研究最新进展论文

这个世界是辨证的世界,抗生素有副作用,但是它们的确救了不计其数的人的性命.

据韩国主流媒体MBC报道,韩国U1大学朴教授团队针对龙宫伊莱特对生物体造成的影响进行的试验发现,其在对改善家畜肠道环境、抑制肠道有害菌、增强动物免疫力和消化功能等方面有显著效果。

抗菌药物一般包括抗生素(微生物发酵或后经半合成)和人工合成抗菌药(全部人工合成)。因此抗生素的最佳替代品是人工合成抗菌药,比如喹诺酮、磺胺、硝基呋喃类、硝基咪唑类等,不过值得注意的是其毒副作用不会比抗生素低。不得不承认,具有清热解毒的中药确实有抑菌作用,实验已经证明了。但是在严重细菌感染时应用中药,无异于杯水车薪。

现在只说要合理应用抗生素,我们必须知道是为什么.这并不是因为它的副作用或者不良反应,更不是因为有人对它过敏,而是因为现在,我们大家有事没事都用抗生素,得了病,不管感冒咳嗽,抗生素先招呼上了,结果造成了我们整个人种的耐药性,而且一代人传一代人.一个新药,国家投入人力物力,耗费10年20年工夫研究出,才用了2到3年,就因为我们的耐药,被淘汰了,好多以前很普通的病菌感染,因为我们的耐药,变的没药可救了.想想当年的青霉素,肺结核都能治好,现在呢,剂量比以前强了几百倍,可嗓子疼都没人吃它了,嫌它档次低.普通抗生素可以用中药代替,针剂的抗生素,永远无法用中药代替,如果有人说古代都用中药,那大家想想,古代人寿命长还是现代人寿命长,何况,古代哪有外科手术啊,防止术后感染不用抗生素还能用什么.吃药要权衡利弊,小病吃小药,大病吃大药,这需要我们自己控制,也需要广大医务人员把握,如果因为怕副作用不吃抗生素,才真是因噎废食呢,用鲁迅的话说,昏蛋一个.

  • 索引序列
  • 抗光腐蚀最新研究进展论文
  • 金属耐腐蚀涂层研究进展论文
  • 中国抗癌药最新研究进展论文
  • 发光二极管最新研究进展论文
  • 抗生素替代品研究最新进展论文
  • 返回顶部