yk小康哥
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!
纳米材料综述
【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。
【关键词】 纳米、纳米技术、纳米材料、纳米结构
1 引言
著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]
1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]
2 纳米技术
纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。
3 纳米材料
纳米材料的概念
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。
纳米材料的分类
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
(1)纳米粉末
纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。
(2)纳米纤维
纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。
(3)纳米膜
纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。
(4)纳米块体
纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。
4 纳米材料的应用
由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。
5 纳米材料的前景
纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。
21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。
6 结束语
纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。
参考文献
[1]孙红庆.科技天地―计划与市场探索[M],2001/05
[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.
[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.
纳米材料与应用
摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。
关键词 :纳米材料 性能 应用
纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。
按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。
悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。
纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。
纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。
来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。
通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。
应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。
纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。
常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。
由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。
目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。
近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。
参考文献:
[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)
[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)
tobyzhao520
背景
我们生活中遇到的大多数电子器件,通常都是由无机材料例如硅制成,属于无机半导体器件。可是,由于僵硬、易碎、成本高、工艺复杂、生物相容性差等诸多弊端,传统硅基半导体面临着严峻的挑战。此外,硅基半导体的制造工艺也正在逼近物理极限。
因此,世界各国的科学家们正在研制各种新型电子器件来克服这些弊端,进一步提升电子器件的性能,拓展其应用场景。近年来,一种新型电子器件备受科学家们的追捧,它就是由有机半导体材料制成的有机电子器件。有机电子器件不仅具备良好的柔韧性与透明性,而且超薄、超轻、对环境友好。这些材料可通过简单、环保、低成本的工艺进行加工,例如制作成溶液后大面积打印。
这些更加柔韧、轻薄、便携、透明的有机电子产品,可以应用于诸多领域,例如柔性太阳能电池、柔性显示器、柔性传感器、柔性可穿戴设备、植入式设备等。其中,有机发光二极管(OLED)便是一个成功商用的典型案例,最新一代的智能手机已经开始采用OLED显示屏。
创新
今天,笔者要为大家介绍有机电子领域的一项新进展。
近日,日本东京工业大学材料科学与工程系 Tsuyoshi Michinobu 和 Yang Wang 领导的研究团队,报告了一种具有世界领先的电子迁移率性能的单极n型晶体管。他们采用了一种新方法来提升之前被证明很难优化的半导体聚合物电子迁移率。他们的高性能材料实现了达 cm2 V−1 s−1的电子迁移率,相比于之前可比的成果提升了40%以上。
《Journal of the American Chemical Society》期刊上发表的论文表明,他们专注于提升所谓的“n型半导体聚合物”材料的性能。n型材料以带负电的电子导电为主;相对而言,p型材料以带正电的空穴导电为主。Michinobu 解释道:“因为与带正电的原子团相比,带负电的原子团天生就是不稳定的,所以制造稳定的n型半导体一直是有机电子领域的一个重要挑战。”
技术
然而,这项研究既应对了基本挑战,也满足了实用的需求。Wang 表示,例如,许多有机太阳能电池,就是由p型半导体聚合物和n型富勒烯衍生物制成的。缺点就是,后者成本高,难以合成,不兼容柔性器件。他说:“为了克服这些缺点,高性能的n型半导体聚合物非常有希望能够推进全聚合物太阳能电池方面的研究。”
团队的方法包括采用一系列新型聚合(benzothiadiazole-naphthalenediimide)衍生物,以及微调材料的骨干构象。这种方法可以通过引入“1,2-亚乙烯基桥(vinylene bridges)”来实现。之前的研究表明,这种结构被认为是一种有效的间隔物,而这种间隔物却从来没有在这项研究所关注的聚合物中使用过。它能与相邻的氟原子和氧原子形成氢键。引入这些“1,2-亚乙烯基桥”需要可以优化反应条件的重要技术。
总体来说,生成的材料具有更好的分子包装次序以及更高的强度,这有利于提升电子迁移率。
采用掠入射广角X射线散射(GIWAXS)等技术,研究人员确认他们实现了极短的“π−π堆叠距离(stacking distanc)”,仅为埃米(一埃米为十分之一纳米)。这个距离衡量了在电荷中电荷需要被携带至多远。Michinobu 表示:“对于高迁移率有机半导体聚合物来说,这个距离属于最短的。”
价值
这项成果预示着有机电子将迎来令人振奋的未来,科学家们将开发出创新型的柔性显示器和可穿戴技术。
未来
除此之外,研究人员还面临几项挑战。他说:“我们需要进一步优化骨干结构。同时,侧链基也在决定半导体聚合物的结晶性和包装方向上扮演着重要角色。我们还有改善的空间。”
Wang 指出,对于报告的聚合物来说,最低未占有分子轨道(LUMO)能级在− eV 到 − eV之间。他说:“LUMO能级越深,电子输运就越快越稳定。因此,例如,引入sp2-N、氟原子和氯原子的进一步设计,将有助于实现更深的LUMO能级。”
未来,研究人员们也将打算改善n沟道晶体管的空气稳定性。对于实际应用例如类似互补金属氧化物半导体(CMOS)的逻辑电路、全聚合物太阳能电池、有机光电探测器和有机热电器件来说,空气稳定性是一个非常关键的问题。
参考资料
【1】
【2】
燕yan燕yan
研究生论文提纲格式范文
提纲格式一
摘要 4-6
Abstract 6-8
英文符号与缩略语 15-18
第1章 绪论 18-30
课题研究背景 18-22
太阳能电池的发展 18-19
聚合物太阳能电池的工作原理及性能参数 19-22
聚合物给体材料的研究进展 22-28
聚合物给体材料的发展 22-25
侧链对聚合物给体材料性能的影响 25-27
D-A共聚物光电转换过程的研究现状 27-28
本课题的研究目的和意义 28-29
课题的研究内容 29-30
第2章 一维D-A共聚物PBDTTT的溶液构象和光生电荷动力学 30-60
引言 30-32
PBDTTT溶液的制备与光谱测量方法 32-36
稳态光谱特性 36-42
稳态吸收和发光光谱特性 36-42
PBDTTT溶液极化子吸收的特征光谱 42
(BDT-TT)n单体到四聚体的构型 42-44
PBDTTT溶液极化子吸收在毫秒时间内的复合过程 44-46
飞秒时间分辨吸收光谱 46-59
715nm波长激发时三个激发态产物的原初动力学 46-53
440nm波长激发时三个激发态产物的原初动力学 53-55
激发态产物与分子构型的关系 55-59
本章小结 59-60
第3章 PBDTTT纯膜与PBDTTT:PC61BM共混膜的光生电荷动力学 60-84
引言 60-62
PBDTTT固态膜的制备和形貌、稳态光谱测量 62
PBDTTT器件的伏安曲线与外量子产率 62-63
形貌和稳态光谱特性 63-67
纯PBDTTT薄膜的飞秒时间分辨吸收光谱 67-73
700nm激发时PBDTTT纯膜激子和极化子的原初动力学 67-70
490nm激发时PBDTTT纯膜激子和极化子的原初动力学 70-72
侧链和过剩激发能对纯聚合物薄膜电荷产生机制的影响 72-73
PBDTTT:PC61BM共混膜飞秒时间分辨吸收光谱 73-82
700nm激发时PBDTTT:PC61BM膜ICT与CS的原初动力学 73-77
490nm激发时PBDTTT:PC61BM膜ICT与CS的原初动力学 77-78
侧链和过剩能对聚合物共混膜光生电荷动力学的影响 78-82
本章小结 82-84
第4章 二维D-A共聚物PF(S)DCN在液相和固相中的光生电荷动力学 84-117
引言 84-86
PF(S)DCN溶液与固态膜的制备 86
PFSDCN在液相中的激发态动力学 86-98
稳态光谱特性 86-88
PF(S)DCN单重态激子的衰减动力学 88-90
PFDCN溶液相激发态的原初动力学 90-93
PFSDCN溶液相激发态的原初动力学 93-96
侧链对PF(S)DCN溶液相的激发态性质影响 96-98
PF(S)DCN纯膜和PF(S)DCN:PC71BM共混膜的超快光生电荷动力学 98-115
稳态光谱和形貌特性 98-101
PFDCN和PFDCN纯膜激子和极化子的原初动力学 101-107
PF(S)DCN与PC70BM共混膜激子和极化子的原初动力学 107-111
侧链对PF(S)DCN固相的光生电荷动力学影响 111-115
本章小结 115-117
结论 117-118
创新点 118
展望 118-119
参考文献 119-131
攻读博士学位期间发表的论文及其他成果 131-134
致谢 134-136
个人简历 136
提纲格式二
摘要 4-6
Abstract 6-8
第一章 绪论 12-33
III-V族发光二极管的发展历史 12-18
LED工作原理及结构 18-21
结温对LED性能的影响 21-24
结温测试方法综述 24-31
热阻法 24-25
功率法 25-26
正向电压法 26-28
红外法和拉曼法 28-29
蓝白比法 29-30
峰位移动法 30-31
本论文的目标与工作 31-33
第二章 发光二极管发光及热传递理论基础 33-48
半导体中的光跃迁 33-42
半导体材料的态密度 33-35
载流子的分布 35-36
辐射复合理论 36-40
半导体荧光 40-42
异质结与多量子阱结构 42-44
异质结中的载流子 42-44
热产生、传递与分析 44-48
LED中的热产生 44-45
热传递方式 45-46
热分析 46-48
第三章 发光二极管结温测定系统的设计与实现 48-69
结温测定系统的算法与流程 49-54
LED发光峰位的拟合 49-50
光谱峰位搜索算法 50-52
实验设计与控制流程 52-54
结温测定系统的硬件设计 54-60
温度控制 54-55
驱动脉冲 55
光谱的快速采集 55-56
结温测定系统的实现 56-59
实验参数的确定 59-60
结温测试系统的应用 60-68
结温测定实例 60-64
结温测试系统的推广 64-68
本章小结 68-69
第四章 结温测试系统的测试与验证 69-80
结温测试系统的可靠性验证 69-73
系统的可重复性测量 69-72
系统的可再现性验证 72-73
峰位移动法与正向电压法的对比研究 73-79
不同大功率LED的.定标比较 73-77
不同偏置电流下定标曲线的稳定性 77-78
同一来源样品的定标比较 78-79
本章小结 79-80
第五章 蓝、绿光LED局域态对结温定标曲线的影响 80-102
实验装置和方法 80-81
蓝、绿光LED的光致发光研究 81-89
局域态与QCSE对PL光谱的影响 81-84
铟 含量对PL光谱的影响 84-89
蓝、绿光LED的电致发光研究 89-94
不同注入电流下的EL光谱变化 89-92
温度对EL光谱的影响 92-94
蓝、绿光LED结温定标曲线差异的分析 94-101
铟 含量与局域态的形成与分布 94-99
铟 含量对定标曲线的影响 99-101
本章小结 101-102
第六章 LED灯具热学参数的提取与研究 102-116
LED结温测试系统应用简介 103-108
LED灯具有效散热参数的提取 108-115
理论分析 108-109
实验方法 109-110
灯具有效散热参数与温度的关系 110-113
灯具有效散热参数与电流占空比的关系 113-115
本章小结 115-116
第七章 总结与展望 116-119
总结 116-117
展望 117-119
参考文献 119-132
致谢 132-133
攻读博士学位期间发表的学术论文及专利 133
霸气Annie姐
市场竞争格局:呈金字塔形分布
——上游芯片市场较为集中
LED上游芯片市场被掌握核心技术、拥有较多自主知识产权和知名品牌、竞争力强、产业布局合理的龙头企业所占领,市场集中度较高。根据CSA数据显示,2020年中国LED芯片竞争格局中,三安光电占比,位居首位;其次华灿光电占比。TOP3合计占比超过整体规模的60%;TOP6合计占比超过80%。
——中游LED封装市场格局初定
目前我国LED 封装行业格局初定,近年来LED封装行业由于产能扩张经历了价格战后,部分中小厂商被淘汰,行业集中度逐渐提高,行业整合趋于完成。目前国内LED封装行业主要厂商有聚飞光电、芯瑞达、木林森、国星光电、瑞丰光电、万润科技、穗晶光电等。
——下游应用市场格局分散
LED下游应用领域涵盖通用照明、景观照明、显示、背光、汽车、信号等领域,行业进入门槛低,市场竞争较为激烈,市场集中度较低。其中,通用照明是LED应用最广泛的领域。从LED通用照明市场竞争格局来看,目前LED通用照明领域主要分为三大派系:海外照明品牌、国内一线品牌、国内其他品牌。其中海外老牌照明品牌的主要优势在于高端产品的研发能力以及多年的品牌影响力;国内一线品牌的优势在于国内广泛的销售网络和品牌影响力;而国内其他品牌的优势在于制造能力。
——行业整体竞争格局呈金字塔分布
总体来看,LED产业链各环节参与企业数量与市场集中情况呈金字塔型分布。上游衬底制作、外延生长和芯片制造具有技术和资本密集的特点,参与竞争的企业数量相对较少,企业资源比较集中;中游LED封装环节具有技术与劳动密集型特点,参与企业数量较多,近年来LED封装行业由于产能扩张经历了价格战后,部分中小厂商被淘汰,行业集中度逐渐提高;下游应用的进入门槛相对较低,劳动密集的特点更为突出,参与其中的企业数量最多,行业集中度较低,竞争激烈。
区域竞争格局:集中于珠三角、长三角
中国的LED产业可以划分为长三角经济区,环渤海经济产业区,珠三角经济产业区,闽赣经济产业区和中西部经济产业区五大主要经济产业区。从区域分布情况来看,珠三角和长三角是国内LED产业最为集中的地区,上中下游产业链比较完整,集中了全国80%以上的相关企业,也是国内LED产业发展最快的区域,产业综合优势比较明显,与LED有关的设备及原材料供应商纷纷在这两个区域落户。
根据企查猫数据显示,从中国LED行业企业分布图中可以看出,目前中国LED行业主要聚集在长三角、珠三角地区,具体集中省份为广东、江苏省、浙江省和福建省等。
—— 以上数据参考前瞻产业研究院《中国LED行业市场前瞻与投资战略规划分析报告》
经济论文的写作,是对经济学专业的学生所学的知识结论性 总结 。下面是我带来的关于经济学论文的内容,欢迎阅读参考!经济学论文篇1:《“经济学基础”教学环境的革
光催化的原理是利用光来激发二氧化钛等化合物半导体,利用它们产生的电子和空穴来参加氧化—还原反应。 当能量大于或等于能隙的光照射到半导体纳米粒子上时,其价带中的电
论文题目同时应鲜明醒目,能吸引读者,向读者提供最直接的信息和对论文主题作准确的说明。下面我给大家带来医学相关专业硕士 毕业 论文题目参考,希望能帮助到大家!
糖尿病与青光眼之间的存在着错综复杂的关系,此类青光眼的发病原因也各不相同:糖尿病可引起前房角小梁网硬化,房水外流不畅,眼压升高而发生原发性开角型青光眼;糖尿病患
二极管是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。