首页 > 学术期刊知识库 > 煤油渗透检测焊缝论文

煤油渗透检测焊缝论文

发布时间:

煤油渗透检测焊缝论文

应该可以。因为,煤油有极强的渗透性,如果焊缝有细缝可以渗到另一面。希望,能够帮到你,再会。如若认同,请采纳。谢谢!

是的。煤油渗透试验主要用于大型常压容器焊缝的密封性检验。

煤油也可以用于检测焊缝是否漏水,但是没得油的比重比较轻,最好用水来检测,如果水检测不漏,因为水的比重大于油的比重,结果的保证率更高。

可以的,煤油有不易挥发的特性,而且又有容易渗透的特性,因此,在没有X光为焊缝探伤的情况下,采用煤油涂抹焊缝,而焊缝如果有孔隙,煤油就会渗透到另一面,这样就可以检测焊缝是否密实不渗漏。

磁粉检测和渗透检测论文

有一种用于金属设备,准确的说是压力容器“无损检测技术”[论文关键词]压力容器 无损检测 新技术 [论文摘要]介绍当前压力容器制造和使用过程中所采用的无损检测技术,包括射线、超声、磁粉、渗透等常规技术和声发射、磁记忆等新技术,并论述他们的工作原理、优缺点和应用范围。 一、引言 随着现代工业的发展,对产品质量和结构安全性,使用可靠性提出越来越高的要求,由于无损检测技术具有不破坏试件,检测灵敏度高等优点,所以其应用日益广泛。目前对压力容器的检测方法有多种,本文主要介绍无损检测的常用技术如射线、超声、磁粉和渗透及新技术如声发射、磁记忆等。 二、无损检测方法 现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法。 (一)射线检测 射线检测技术一般用于检测焊缝和铸件中存在的气孔、密集气孔、夹渣和未融合、未焊透等缺陷。另外,对于人体不能进入的压力容器以及不能采用超声检测的多层包扎压力容器和球形压力容器多采用Ir或Se等同位素进行γ射线照相。但射线检测不适用于锻件、管材、棒材的检测。 射线检测方法可获得缺陷的直观图像,对长度、宽度尺寸的定量也比较准确,检测结果有直观纪录,可以长期保存。但该方法对体积型缺陷(气孔、夹渣)检出率高,对体积型缺陷(如裂纹未熔合类),如果照相角度不适当,容易漏检。另外该方法不适宜较厚的工件,且检测成本高、速度慢,同时对人体有害,需做特殊防护。 (二)超声波检测 超声检测(Ultrasonic Testing,UT)是利用超声波在介质中传播时产生衰减,遇到界面产生反射的性质来检测缺陷的无损检测方法。 超声检测既可用于检测焊缝内部埋藏缺陷和焊缝内表面裂纹,还用于压力容器锻件和高压螺栓可能出现裂纹的检测。 该方法具有灵敏度高、指向性好、穿透力强、检测速度快成本低等优点,且超声波探伤仪体积小、重量轻,便于携带和操作,对人体没有危害。但该方法无法检测表面和近表面的延伸方向平行于表面的缺陷,此外,该方法对缺陷的定性、定量表征不准确。 (三)磁粉检测 磁粉检测(Magnetic Testing,MT)是基于缺陷处漏磁场与磁粉相互作用而显示铁磁性材料表面和近表面缺陷的无损检测方法。 在以铁磁性材料为主的压力容器原材料验收、制造安装过程质量控制与产品质量验收以及使用中的定期检验与缺陷维修监测等及格阶段,磁粉检测技术用于检测铁磁性材料表面及近表面裂纹、折叠、夹层、夹渣等方面均得到广泛的应用。 磁粉检测的优点在于检测成本低、速度快,检测灵敏度高。缺点在于只适用于铁磁性材料,工件的形状和尺寸有时对探伤有影响。 (四)渗透检测 渗透检测(PenetrantTest,PT)是基于毛细管现象揭示非多孔性固体材料表面开口缺陷,其方法是将液体渗透液渗入工件表面开口缺陷中,用去除剂清除多余渗透液后,用显像剂表示出缺陷。 渗透检测可有效用于除疏松多孔性材料外的任何种类的材料,如钢铁材料、有色金属材料、陶瓷材料和塑料等材料的表面开口缺陷。随着渗透检测方法在压力容器检测中的广泛应用,必须合理选择渗透剂及检测工艺、标准试块及受检压力容器实际缺陷试块,使用可行的渗透检测方法标准等来提高渗透检测的可靠性。该方法操作简单成本低,缺陷显示直观,检测灵敏度高,可检测的材料和缺陷范围广,对形状复杂的部件一次操作就可大致做到全面检测。但只能检测出材料的表面开口缺陷且不适用于多孔性材料的检验,对工件和环境有污染。渗透检测方法在检测表面微细裂纹时往往比射线检测灵敏度高,还可用于磁粉检测无法应用到的部位。 (五)声发射检测 声发射(Acoustic Emission,AE)是指材料或结构受外力或内力作用产生变形或断裂,以弹性波形式释放出应变能的现象。而弹性波可以反映出材料的一些性质。声发射检测就是通过探测受力时材料内部发出的应力波判断容器内部结构损伤程度的一种新的无损检测方法。 压力容器在高温高压下由于材料疲劳、腐蚀等产生裂纹。在裂纹形成、扩展直至开裂过程中会发射出能量大小不同的声发射信号,根据声发射信号的大小可判断是否有裂纹产生、及裂纹的扩展程度。 声发射与X射线、超声波等常规检测方法的主要区别在于它是一种动态无损检测方法。声发射信号是在外部条件作用下产生的,对缺陷的变化极为敏感,可以检测到微米数量级的显微裂纹产生、扩展的有关信息,检测灵敏度很高。此外,因为绝大多数材料都具有声发射特征,所以声发射检测不受材料限制,可以长期连续地监视缺陷的安全性和超限报警。 (六)磁记忆检测 磁记忆(Metal magnetic memory, MMM)检测方法就是通过测量构件磁化状态来推断其应力集中区的一种无损检测方法,其本质为漏磁检测方法。 压力容器在运行过程中受介质、压力和温度等因素的影响,易在应力集中较严重的部位产生应力腐蚀开裂、疲劳开裂和诱发裂纹,在高温设备上还容易产生蠕变损伤。磁记忆检测方法用于发现压力容器存在的高应力集中部位,它采用磁记忆检测仪对压力容器焊缝进行快速扫查,从而发现焊缝上存在的应力峰值部位,然后对这些部位进行表面磁粉检测、内部超声检测、硬度测试或金相组织分析,以发现可能存在的表面裂纹、内部裂纹或材料微观损伤。 磁记忆检测方法不要求对被检测对象表面做专门的准备,不要求专门的磁化装置,具有较高的灵敏度。金属磁记忆方法能够区分出弹性变形区和塑性变形区,能够确定金属层滑动面位置和产生疲劳裂纹的区域,能显示出裂纹在金属组织中的走向,确定裂纹是否继续发展。是继声发射后第二次利用结构自身发射信息进行检测的方法,除早期发现已发展的缺陷外,还能提供被检测对象实际应力---变形状况的信息,并找出应力集中区形成的原因。但此方法目前不能单独作为缺陷定性的无损检测方法,在实际应用中,必须辅助以其他的无损检测方法。

我所说的有两种,一种是便携式X光检测仪(常用于工业管道、壳罐焊接检测),二种是磁粉探伤。不知道你所说的管道类型及使用部位,所以不知道是否适用。 另外,如果磨损造成的损伤会出现表面裂纹时,采用着色渗透探伤法也很简便。

磁粉探伤与渗透探伤都是无损检测材料表面裂纹缺陷的方法。磁粉检测适用范围:

磁粉检测的局限性:

渗透探伤的优点:

渗透检测存在一定的局限性,主要是以下四点:

超声检测焊缝论文

超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是我为大家整理的超声波检测技术论文,仅供参考!

关于超声波无损检测技术的应用研究

摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。

关键词:超声波无损检测;脉冲反射式技术;检测技术

中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02

超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。

1 超声波无损检测技术的发展趋势和主要功能

超声波无损检测技术的发展趋势

在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。

超声波无损检测技术系统的主要功能

目前,我国超声波无损检测主要应用的技术是脉冲反射式的检测方法,这种技术的应用可以准确的定位缺陷出现的位置和形式,具有非常高的灵敏度,简化了技术人员检查缺陷的工作,完善了技术标准。脉冲反射式的检测技术还具有非常高的灵活性和适用性,可以适应超声波无损检测的要求,并实现一台仪器检测多种波形的检测工作。根据脉冲反射式的检测技术要求,可以实现缺陷检查的功能、操作界面切换显示的功能、显示日历时钟的功能,在实际的检测过程中功能键的使用也非常方便,简化了技术人员的操作过程,并且脉冲反射式技术具有灵敏度高的功能,使其可以及时的发现检测过程中出现的缺陷,有利于技术人员进行检修的工作,提高了检测工作的工作效率。

系统主要功能的技术指标

脉冲反射式技术在使用的过程中有很多的要求,其中要满足功能使用的技术指标,从而实现规范化的操作标准。反射电压的电量要控制在400伏,实现半波或者射频的检波方式,检测的范围要在4000-5000毫米之间,只有满足了这些技术标准才能合理的设置出技术应用的框架。同时在超声波无损检测技术应用的过程中有严格要求的电路设计,如果不能满足技术的指标要求,那么在实际检测的过程中,会存在很大的风险,会对技术人员造成严重的生命安全威胁。所以在检测工作实施之前,必须要按照相关的技术指标来合理的构建检测的环境,提高检测工作的安全性,保障检测工作可以顺利的进行。

2 超声波无损检测技术检测的方法和缺陷的显示

超声波无损检测技术检测的主要应用方法

超声波无损检测技术的检测方法按照具体的分类可以分为很多种,从检测的原理进行分析,超声波无损检测技术应用的主要方法是穿透法、脉冲反射法、共振法,按照检测探头来分类,检测的主要方法有单探头法、双探头法、多探头法,按照检测试件的耦合类型来分类,检测的主要方法有液浸法、直接接触法。这些具体的方法可以满足很多情况下的检测工作,并且提高了检测结果的准确性,完善了超声波无损检测技术的检测要求,所以技术人员要根据具体的检测环境和试件的类型来选择正确的检测方法,通过方法的应用要提高检测工作的效率,降低缺陷出现的可能。随着我国现代化科学技术的不断发展,人们对检测技术的应用也提出了更高的要求,检测工作的检测范围也越来越广,同时要求在对试件检测的过程中,不可以损坏试件的质量和性能,同时还要保准检测结果的准确性,所以技术人员要严格的按照检测标准,完成检测的工作,要对检测的方法进行改善,使其可以满足时代发展的要求。

缺陷的显示

在超声波无损检测技术检测的过程中,会出现不同类型的缺陷,主要分为A、B、C三种类型的显示,在工业检测的过程中,A类显示是应用最广泛的一种类型,在显示器上以脉冲的形式显示出来,对显示器上的长度和宽度进行标记,从而当超声波返回缺陷信号时,可以在屏幕上明确的显示出缺陷出现的位置。B类显示是通过回波信号来完成显示的过程,回波信号发出时会点亮提示灯,通过显示器的显示可以观察到缺陷出现的水平位置,这种类型的显示比较直观,有利于技术人员的观察和分析。C类显示是通过反射的回波信号来调制显示的内容,通过亮灯和暗灯来显示接收的结果,检测到缺陷时会出现亮灯,因此技术人员只需要观察灯的变化,就可以判断缺陷出现的情况。所以在实际检测的过程中,技术人员一定要认真观察缺陷出现的位置和内容,从而制定出科学合理的改善方案,来降低缺陷出现的可能,提高超声波无损检测技术检测的效果。

缺陷的定位

对于脉冲反射式超声检测技术来说,显示器的水平数值变化就是缺陷出现的位置,这时技术人员要对缺陷出现的位置进行定位,从而可以分析在检测过程中出现缺陷的环节。根据反映出的缺陷声波,经过计算,得出准确的缺陷产生的位置。

3 结语

科学技术的发展会带动我国的生产力水平的提高,同时也会促进技术的研发,超声波无损检测技术就是因为科学技术的不断发展,才实现了检测的目标,在检测的过程中,可以结合现代化的技术来提高检测的效率和结果的准确性。超声波无损检测技术实现了无损试件的检测要求,提高了检测的质量和水平,应该得到社会各界的关注,扩大检测的范围。

参考文献

[1] 耿荣生.新千年的无损检测技术――从罗马会议看无损检测技术的发展方向[J].无损检测,2010,23(12):152-156.

[2] 中国机械工程委员会无损检测分会编.超声波检测第二版(无损检测Ⅱ级培训教材)[M].北京:机械工业出版社,2012.

[3] 李洋,杨春梅,关雪晴.基于AD603的程控直流宽带放大器设计[J].重庆文理学院学报(自然科学版),2010,29(16):202-203.

[4] 段灿,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报(自然科学版),2012,28(12):320-325

[5] 张梅军,石文磊,赵亮.基于小波分析和Kohonen神经网络的滚动轴承故障分析[J].解放军理工大学学报,2011,12(10):14-15.

作者简介:李新明(1992―),男,湖北人,大连理工大学学生。

长输管道超声波内检测技术现状

【摘要】超声波内检测技术是长输管道的主要检测技术。本文介绍了长输管道超声波内检测的技术优势、国内外的发展现状,以供参考。

【关键词】长输管道 超声波 内检测 优势 现状

一、前言

长输管道是石油、天然气重要的运输手段,要保证管道的稳定运行,就要加强日常的检测和维护,及时发现问题,防止重大事故发生。

二、管道内检测主要技术及优势

管道内检测是涵盖检测方案决策、管道检测、检测数据解释分析和管道安全评价等过程的系统工程。利用智能检测器进行管线内检测是目前较为普遍的方式,该方法是通过运行在管道内的智能检测器收集、处理、存储管道检测数据,包括管道壁厚、管道腐蚀区域位置、管道腐蚀程度、管道裂纹和焊接缺陷,再将处理数据与显示技术结合描绘管道真实状况的三维图像,为管道维护方案的制定提供决策依据。超声波内检测技术和漏磁检测技术是现在最常用的海管内检测技术。

超声波内检测技术是在检测器中心安放一个水平放置的超声波传感器,传感器沿着平行于管壁的方向发射声波,声波沿着平行于管壁的方向行进直至被一个旋转镜面反射后,垂直穿透管道壁,声波触碰管道外壁后按照原路径反射回传感器,计算机计算声波发射及反射回传感器的时间,该时间就被转换为距离及管道壁厚的测量值。声波反射镜面每秒旋转2周,检测器每米可以采集3万个左右的测量值。超声波内检测技术可以原理简单,数据准确可靠,该方法可以精确测量管道的壁厚,不仅可以测量金属管线,对于非金属管线,如高密度聚乙烯管也能够有效测量,并且可测管道管径的尺寸范围较大,甚至能够测量壁厚等级80以上的大壁厚管道,对于变径管道同样适用。

管道漏磁检测技术利用磁铁在管壁上产生的纵向回路磁场来探测管道内外壁的金属损失以及裂纹等缺陷,确定上述缺陷的准确位置,检测器所带磁铁将检测器经过的管壁饱磁化,使管壁周圈形成磁回路。若管道的内壁或外壁有缺陷,围绕着管道缺陷,管道壁的磁力线将会重新进行分布,部分磁力线会在这个过程中泄露从而进入到周围的介质中去,这就是所谓的漏磁场。磁极之间紧贴管壁的探头检测到泄漏的磁场,检测到的信号经过滤波、放大、转换等处理过程后会被记录到存储器中,通过数据分析系统的处理对信号进行判断和识别。管道的漏磁检测技术具有准确性高的优点,通过在气管线中低阻力和低磨损的设计取得较高质量的数据,可以在没有收球和发球装置的情况下完成检测,对于路径超过200公里的长输管道能够以每分钟200米左右的速度进行检测。

三、长输管道建设工艺技术发展现状

1、管道焊接

管道焊接是管道建设的最重要的一个方面,现场焊接的效率高,安全性和可靠性在每个管道的建设是重要的角色。从国内长途管道工程在1950年的第一条运输管道建设以来,管道现场焊接施工在我国发展的半个世纪里主要经历了有四个发展过程,分别是:手工电弧焊上向焊、手工电弧焊下向焊、半自动焊和自动焊。

(1)手工电弧焊上向焊和手工电弧焊下向焊。90年代初手工电弧焊下向焊和手工电弧焊下向焊作为当时国内传输管道的一种焊接方法,得到了广泛的应用,突出的优点是高电流、焊接速度高,根焊接速度可达20到50厘米/分钟,焊接效率高。目前在进行焊接位置相对困难的位置和焊接设备难进入的位置时采用手工电弧焊焊接。

(2)半自动焊。电焊工通过半自动焊枪进行焊接,由连续送丝装置送丝焊接的一种方式叫做半自动焊。半自动焊是长输管道焊接的主要方式,因为在焊接送丝比较连续,就省了换焊条和其他辅助工作时间,同时熔敷率高、减少焊接接头,减少焊接电弧,电弧焊接缺陷、焊接合格率提高,

(3)自动焊。自动焊方法使整个焊接过程自动化,人工主要从事监控操作。国内开始从西到东的天然气管道项目,就是大面积的自动焊接的应用程序。自动焊接技术在新疆,戈壁等地区比较适合。

2、非开挖穿越施工技术

遇到埋管道的建设,跨越河流,道路,铁路等障碍时,有许多问题如果使用传统开挖方法则会比较难实施,而“非开挖”铺设地下管道是当前国际管道项目进行了先进的施工方法,已广泛应用于这个国家。我国近年来建设大量的长输管道采用了盾穿越技术,有许多大河流使用了盾构穿越。顶管穿越通过短距离管道穿越技术在1970年代后期开始得到使用。传统意义上的顶管施工是以人工开采为主。后来当使用螺旋钻开采和输送管顶土,后来又派生出了土压力平衡方法,泥水平衡方法,通过顶管技术,可以达到超过1千米以上的距离。通过液压以控制管切割前方的覆土,以保证顶管的方向正确,和顶采用继电器,激光测距,头部方位校正方法顶推的施工工作,长距离顶管的问题和方向问题得到了解决。

3、定向穿越技术

我国从美国引进的定向钻是在1985年首次应用于黄河的长输管道建设。在过去的20年里,非开挖定向穿越管道技术在我国得到了迅速的发展。定向钻井在非开挖管道穿越技术已广泛应用于管道业。定向钻用于铺设管道取得了巨大的成就。我国在2002年2月以2308米和273米直径的长度穿越了钱塘江,是世界上最长的穿越长度,被载入吉尼斯世界纪录。定向穿越管道施工技术是一个多学科,多技术,根据于一体的系统工程,任何部分在施工过程中存在的问题的设备集成,并可能导致整个项目的失败,造成了巨大的损失。而被广泛使用,由于定向钻井,通过建设,使技术已经取得了长足的进步和发展的方向。硬石国际各种施工方法,如泥浆马达,震荡的顶部,双管钻进的建设。广泛采用PLC控制,电液比例控制技术,负荷传感系统,具有特殊的结构设计软件的使用。

四、管道超声内检测技术现状

1、相控阵超声波检测器

美国GE公司研制的超声波相控阵管道内检测器于2005年开始应用于油气管道内检测,目前已检测管道长度4700km,该检测器包括两种不同的检测模式:超声波壁厚测量模式和超声腐蚀检测模式,适用于管径610~660mm的成品油管道。该检测器有别于传统检测器的单探头入射管道表面检测的方法,采用探头组的形式来布置探头环,几个相邻并非常靠近(间距左右)的探头组成一个探头组,一个探头组内的探头按照一定的时间顺序来激发并产生超声波脉冲,而该激发顺序决定了产生的超声波脉冲的方向和角度,因此控制一个探头组内不同探头的激发顺序就可以产生聚焦的超声波脉冲。检测器包括3个探头环、44个探头组,每个探头环提供一种检测模式,可根据不同的管道检测需求来确定探头环。

该检测器与其他内检测器相同,包括清管器、电源、相控阵传感器、数据处理和储存模块4部分。清管器位于整个检测器的头部并装有聚氨酯皮碗,一方面负责清管以确保检测精度,另一方面起密封作用,使得检测器可以在前后压力差的作用下驱动前进。探头仓由3个独立的探头环组成,每个探头环的探头布置都能实现超声波信号周向全覆盖。检测器能够实现长25mm、深1mm的裂纹检测,检测准确率超过90%;最小检测腐蚀面积10×10mm ,检测精度大于90%。

2、弹性波管道检测器

安桥管道公司管理着世界上最长和最复杂的石油管道网络。其研发的内检测器已经在超过15000km的管道中开展检测。其中基于声波原理的检测器主要有弹性波检测器和超声波管道腐蚀检测器。弹性波检测器的弹性波信号可以在气体管道中传播,主要用于检测管道的焊缝特征,尤其是对长焊缝和应力腐蚀裂纹有较好的检测效果。最新的MKIII弹性波检测器最多可以装备96个超声波传感器,用于在液体祸合条件下发射接收超声波信号,进行管道检测。MKIII弹性波检测器的最大运行距离为150km,相对于二代产品的45km有了很大程度的提高。

五、结束语

综上所述,随着科技水平的快速发展和进步,超声波内检测技术也将更加完善,对于长输管道的检测也将更加准确,为管道的正常使用和安全运行发挥更大的作用。

参考文献

[1]宋生奎,宫敬,才建,等.油气管道内检测技术研究进展[J].石油工程建设,2013,31(2):10-14.

[2]石永春,刘剑锋,王文军.管道内检测技术及发展趋势[J].工业安全与环保,2012,32(8):46-48

[3]丁建林.我国油气管道技术和发展趋势.油气储运,2013,22(9):22-25.

[4]宋生奎,宫敬,才建等.油气管道内检测技术研究进展.石油工程建设,2014,31(2):11-13.

[5]高福庆.管道内检测技术及发展.石油规划设计,2010,11(1):78

煤矿机械轴类超声检测技术应用论文

1超声检测(UT)

超声检测是无损检测技术的一种,是通过超声波进入物体遇到缺陷时,一部分声波会产生反射,接收器接收反射波,并对反射波进行分析,精确地测出缺陷,并能确定缺陷位置和大小的一种检测技术。超声检测适用于探测被检物内部的面积型缺陷。超声检测的优点是穿透力强、设备轻便、检测成本低、检测效率高,能即时得到检测结果,又能实现自动化检测,在缺陷检测中对危害性较大的裂纹类缺陷特别敏感等。

2煤矿机械运行现况

煤矿采用的大部分机械设备都在粉尘、潮湿、有害气体等恶劣的环境中运行,时常会受到巨大冲击载荷,且长期处于高强度运转状态。高速运行、重载的工作环境所产生的交变载荷,非常容易使材料的内部缺陷或主轴加工过程中因加工工艺产生的缺陷扩大,形成危险性裂纹。还有司机操作不当、设计安装、主轴锻造等带来的缺陷,主轴本身在运行过程中材质强度和刚度发生变化等产生疲劳裂纹,如果这些危险性裂纹不能及时被发现,就有可能导致机械主轴突然断裂,引发重大安全事故,将给矿方带来不必要的损失。

3煤矿需要检测机械主轴

需要检测的主要主轴有:主通风机主轴、提升机滚筒主轴、天轮主轴、输送带机滚筒主轴、罐笼或箕斗提升主轴、架空乘人装置驱动轮与迂回轮主轴等。上述主轴由于受到组装在轴上的结构件约束或覆盖,这些部件所在轴上的部位正是应力集中、易产生表面或内部裂纹的区域,如采用其他无损检测方法检测,需把这些组装部件全部从主轴上分解拆卸下来,这样做不但浪费大量的人力物力财力,而且直接影响煤矿正常生产。为解决这一难题,更好地为煤矿机械设备运行提供条件,采用超声检测对主轴进行不解体检测,效果会更好些。

4机械主轴超声检测技术

准备工作

掌握被检机械主轴现实状况检测人员到达检测现场后,首先与矿方沟通,索要有关机械主轴的基本资料,根据提供的资料掌握主轴采用的材质、热处理状态、几何形状、尺寸、组装件结构及数量、受力状态,现场检测条件及环境等现实状况,为超声检测提供条件。其次,根据掌握的资料情况,与矿方制定检测计划。

超声检测部位的选择根据主轴的传动结构,受力状况,应力集中的程度选择主轴的联轴器变径部位、滚筒与主轴连接部位,主轴与电机固定端的变径部位、键槽的根部等作为重点超声检测部位。

超声检测面清理在选定的检测部位用棉纱清理污染物、用砂纸打磨锈蚀处等。

探头和标准试块选择超声检测时,根据被检主轴的材质晶粒度状态选择探头,一般超声波检测选用的探头即可。标准试块根据被检主轴的形状、长度选用CS-I、CS-2C、CSK-ⅢA、CSK-ⅡA、RB-2等型号标准试块作为超声检测灵敏度校验。

仪器灵敏度调节检测仪器灵敏度通过调节超声波探伤仪上的[增益]、[衰减器]、[发射强度]等旋钮来实现。径向检测时采用直探头检测方法,直探头灵敏度调节有工件底波调节法和对比试块法。当径向主轴长度S≤3N(近场区)时采用试块对比法,S>3N(近场区)的主轴采用大平底底波调整法调整检测灵敏度。斜探头检测灵敏度调整是利用CSK-IIA或者RB-2试块将检测系统灵敏度调整为2或3水平。

耦合剂的选择超声波检测中常采用机油、变压器油、甘油、水、水玻璃作为耦合剂。

主轴超声检测方法

主轴超声检测采用直探头和斜探头两种探头,直探头主要检测主轴的裸露部位,斜探头主要检测主轴的联轴器变径部位、滚筒与主轴连接部位,主轴与电机固定端的变径部位、主轴与风机扇叶连接部位、键槽的根部等。

直探头扫查

1)径向扫查:让矿方用扳手打开主轴端盖,在主轴端部涂上耦合剂,将纵波直探头放置主轴端面以压力为~1kg、20~50mm/s速度做100%扫查,扫查过程中要用探头呈“W”型重叠扫查。探头扫查的同时,应随时观察仪器屏幕的波形变化并对有关显示的信息逐一判断。

2)周向扫查:在主轴裸露部位涂上耦合剂,用直探头以同样的压力和速度做100%扫查周向的全方位扫查。直探头扫查的同时,并随时观察仪器屏幕的波形变化,对有关显示的信息逐一判断。

斜探头扫查主轴的联轴器变径部位、滚筒与主轴连接部位,主轴与电机固定端的变径部位、键槽的根部等未裸露部位采用横波斜探头检测技术,以~1kg的压力、20~50mm/s的速度沿主轴径向100%扫查。

5缺陷定位、定量、评定

缺陷定位

缺陷定位就是根据探伤仪器示波屏上缺陷回波的水平刻度值与扫描速度来对缺陷进行定位。直探头纵波检测时,仪器时基线扫描线按照1︰n的比例调整好以后,从仪器水平刻度上缺陷波的位置,可以直接得到缺陷离探测面的距离。例如:时基线按声程的1︰2比例调节,主轴底波应在10格出现,当在6格处出现缺陷波时,那么该缺陷离开探测面距离为:2×60=120mm。横波斜探头检测主轴时,缺陷位置可由折射角(β)和声程x来确定(极坐标系),也可由缺陷的水平距离L和深度来确定(直角坐标系)。

缺陷的'定量

缺陷的定量是指在检测中测定的缺陷大小、数量、长短、面积等。缺陷定量的准确与否,直接关系到测试成败。只有准确确定缺陷大小才能让矿方及时采取更换或维修等措施,避免出现重大事故及时消除潜在隐患。目前主轴缺陷的定量法当量法和测长法。主轴横向疲劳裂纹深度的测定采用当量法,对裂纹长度的测定采用测长法。当量法在主轴探伤中常用当量试块比较法和底波高度(dB)相对对比法。

缺陷的评定

检测完成后,根据缺陷波长短、数量、波形特征,按照GB/T6402-2008《钢锻件超声检测方法》、JB/T1581-2014《汽轮机、汽轮发电机转子和主轴锻件超声波探伤方法》等标准要求给出缺陷准确的评定,矿方才能依据缺陷性质,决定是否需要采取措施来解决存在的缺陷,也可以决定在使用过程中密切关注的缺陷发展程度。总之,超声检测技术可以在不破坏构件的条件下,检测机械主轴结构件的内部缺陷,不但可以进行定性评价,还可以对缺陷的大小和位置等进行定量,并给出评价结果,为煤矿机械设备的正常运行提供可靠的保证,也为煤矿企业的安全生产提供了可靠的保障。

超声波焊接是利用超声波频率(超过20000赫兹)的机械振动能量,连接同种或异种金属、半导体、塑料及金属陶瓷等材料的特殊焊接方法。这是我为大家整理的超声波焊接技术论文,仅供参考!

超声波焊接的研究与展望

摘要:超声波焊接的节能、环保、操作方便等突出优点,越来越受到人们的重视。超声波焊接已广泛应用在众多领域。本文简单介绍了超声波焊接的基本原理。概述了超声波焊接的国内发展现状,并对超声波焊接的发展做了展望。

关键词:超声波 焊接 研究现状

0 引言

1950年美国人发明了超声波焊接技术,该技术作为特种连接技术,在工业生产中得到广泛应用。另外,超声波焊接技术还广泛应用于电子工业、电器制造、新材料的装备、航空航天及核能工业、食品包装盒、高级零件的密封技术等方面。超声波焊接的优点主要表现为:节能、环保、操作方便,这种技术对我国建设资源节约型、环境友好型的社会起着很大的促进作用。

1 超声波焊接原理及特点[1]

超声波焊接作为一种特殊焊接方法,通常情况下是指利用超声波频率(大于16KHZ)的机械振动能量,将同种或异种金属、半导体、塑料及金属陶瓷等进行连接。通过超声波对金属进行焊接时,一方面不需要向工件输送电流,另一方面没有将高温热源引入工件,在焊接过程中,在静压力的作用下,将弹性震动能量转变为工件间的摩擦功、形变能,以及有限的温升等。在母材不发生熔化的情况下,实现接头间的冶金结合,因此,超声波焊接属于固态焊接。

工频电流在超声波发生器的作用下,进一步转变为超声波频率(15~16KHZ)d的振荡电流。通过磁致收缩效应,换能器将电磁能转换成弹性机械振动能。放大器的作用是对振幅进行放大,同时借助耦合杆和上声极与并工件进行耦合。如果换能器、放大器、耦合杆和上声极的自振频率相互一致,在这种情况下,系统将会产生谐振,从而将弹性振动能传递给静压力F的工件。两种薄材工件通过此种能量之间的转换被粘接在一起。

2 国内研究现状

超声波金属焊接的研究现状

崔岩[2]研究超声波焊在坦克铝件焊修中的应用,对铝及铝合金的焊接性进行了详尽的分析,认为保证焊点质量稳定的重要因素是谐振频率的精度。在超声波焊接过程中,由于机械负荷是多变的,失谐现象会随机出现,进而使得焊点质量不稳定。根据超声波焊的特点,制订相应的焊接规范。大量实验证明:通过超声波对铝及铝合金进行焊接,金属表面致密的氧化膜可以有效地去除,进而保证了焊接质量。

华南理工大学杨圣文等人[3]推导了铜片-铜管太阳能集热板超声波焊接接头区域理论区域温度公式,并利用人工热电偶法测得焊接区域温度,分析了实测温度偏差产生的原因,结合焊接接头的扫描电镜(SEW)图片进行对比分析,研究了铜片-铜管超声波焊接接头的形成机理。结果表明:超声波焊接是基于接头区域微齿顶端处高温、纯净金属发生塑性变形后表面充分贴合两个因素基础上的金属键合和机械嵌合而形成接头的物理冶金过程。

南京航空航天大学机电学院的张秋峰[4]研究了1Cr18Ni9Ti与TC4异种金属的固态扩散焊接工艺,在现有的基础上采用超声波加载固态扩散焊的工艺。金相试验分析结果表明:采用超声波加载扩散焊接工艺,使不锈钢和钛形成了良好的连接。

哈尔滨工业大学的闫久春、孙小磊[5]等,在敞开环境下研究了一种适合复杂结构,并且能够进行可靠连接的“超声波振动辅助钎焊技术”原理,同时对铝基复合材料、铝合金、陶瓷/铝、玻璃/铝焊接的初步试验结果进行了描述。焊接结果表明:在钎焊过程中,通过施加适当的超声波振动,母材表面氧化膜可以有效地去除,进一步促进了母材与钎料的润湿。在低温、大气环境下,获得了具备微观组织结构和力学性能良好的连接接头。

南昌大学的朱政强等人[6]用电子背散射衍射(EBSD)方法来研究超声波焊接下铝合金AA6061的微观组织变化,从微观角度里加深对超声波金属焊接的理解。通过实验,得到原始铝箔和焊接后铝箔的品粒取向差分布图。通过分析品粒取向、晶粒结构和晶界特征了解超声波焊接对铝合金组织和结构的影响。

超声波非金属焊接的研究现状

郭毓峰[7]对12μm聚对笨二甲酸乙二醇酯(PET)/30μm聚乙烯(PE)薄膜超声波焊接工艺进行了研究,发现焊接振幅在2-10μm,对焊接接头热合强度的影响不大;在焊接振幅4-7μm出现了焊接接头的热合强度最大值。焊接接头的热合强度随着焊接时间的延长和焊接压力的增大表现出先增大后减小的变化规律。通过对不同工艺参数下焊接区域的结晶程度进行分析,其结果显示,接头的结晶程度影响着PET/PE薄膜焊接接头热合强度,焊接区域试样的结晶程度随着焊接时间、焊接振幅、焊接压力增加先减小后增大,焊接接头的热合强度先升高后降低。

赵钢[8]等人研究超声波焊接在汽车传感器封装中的应用。讲述了通过对材料、焊接方法的选择和焊口及工装设计与制造过程设计,来实现汽车传感器封装的方法。

赵仕彬[9]研究了超声波焊接在连接器中的应用。简明扼要地介绍了超声波焊接的原理,结合面的设计方法、设计要点,以及在连接器中的具体应用和使用范围。

西北工业大学的聂中明[10]研究了高电阻CdZnTe半导体(简称CZT)接触电极与引线的超声波焊接。认为:CZT晶片经机械抛光表面处理后,通过离子溅射法制备的金电极与外引线间具有较高的超声波焊合率,能获得最佳焊点质量的电极厚度为180nm。此外,确定CZT接触电极制备工艺后,楔入压力成为影响CZT接触电极与引线超声波焊接质量的主要因素,焊接功率则为次要因素。

3 总结

目前,对超声波金属的焊接机理认识不足,超声金属焊接作为一种固相焊接方法,或者说是金属间的“键合”过程,在焊接过程中,是否无金属熔化还有待进一步研究。还有在材料焊接中应用超声波,虽然焊接效果比较好,但是对于由超声波发生器、声学系统与机械系统相结合的整个系统来说,在稳定性、可操作性、可靠性等方面依然存在问题,所以声学系统的设计,以及声学系统与试件之间的连接方式等都非常重要。另外,从微观力学的角度研究超声波振动对晶粒和织构的影响也是未来研究的重要方向。

参考文献:

[1]李小明,李彦生,韩景芸.基于超声波焊接技术的快速成型方法研究[J].机床与液压,2007,35(3):4-6.

[2]崔岩.超声波焊在坦克铝件维修中的应用[J].工业技术经济,2000,19(3):114-116.

[3]杨圣文,吴泽群,陈平池.铜片-铜管太阳能集热板超声波焊接试验研究[J].焊接,2005(9):32-35.

[4]张秋峰.钛与不锈钢的超声波扩散焊接[J].机械工程与自动化,2008(1):125-127.

[5]闫久春,孙小磊.超声波振动辅助钎焊技术[J].焊接,2009(3):6-12.

[6]朱政强,马国红,.铝合金AA6061超声波焊接下组织演变分析[A].第七届中国机器人焊接学术与技术交流会议文集[C],2008:107-110.

[7]郭毓峰.聚对苯二甲酸乙二醇酯/聚乙烯薄膜的超声波焊接[J].宇航材料工艺,2010(4):53-55.

[8]赵钢,曹智,董双辉.超声波焊接在汽车传感器封装中的应用[J].沈阳航空工业学院学报,2007(4):25-28.

[9]赵仕彬.超声波焊接在连接器中的应用[J].机电元件,2006(4):36-39.

[10]聂中明,傅莉,任洁,查钢强.CdZnTe接触电极与引线的超声波焊接[J].中国有色金属学报,2009,19(5):919-923.

超声波焊接技术在工业产品设计中的应用探索

【摘 要】本文通过对超声波焊接技术原理的阐述及对超声波影响因素的探究,分析超声波焊接技术的优劣,结合笔者的设计实践,探索超声波焊接技术的发展,抛砖引玉,就基于超声波焊接技术未来的应用领域进行探索。

【关键词】超声波;焊接技术;工业产品

Ultra-sonic Welding Technology in the Application of Industrial Product Design’s Exploration

HE Jun-hua1 MA Wen-juan2 LV Shuang-shuang3 WENG Mao-hong1 GUAN Jun1 GONG Yun1

( of Engineering, Zhejiang A&F University, Lin’an Zhejiang, 311300, China;

of Agricultural and Food Science, Zhejiang A&F University, Lin’an Zhejiang, 311300, China;

of Landscape Architecture and Architecture, Zhejiang A&F University, Lin’an Zhejiang, 311300, China)

【Abstract】The article through to the illustration of the principle of ultra-sonic welding and the affecting factors of ultra-sonic probe, analyseing the advantages and disadvantages of ultra-sonic welding technology, combined with the author’s design practice, explore the development of ultrasonic welding technology, topic and is based on the exploration on the application felid of ultra-sonic welding technology in the future.

【Key words】Ultra-sonic; Welding technology; Industrial product

在工业产品制作中,经常会用到一些工业材料,像塑料、金属、木材等一些其他工业材料。在日常生活中我们经常会看到某件产品不只用一种材料来制作;我们也经常看到一件产品由多个部分组成、并且各部分之间还会产生空隙,这不仅会影响产品的质量,还会影响产品的美观度。这就要求把它们彼此之间焊接起来。随着技术的发展,人们对焊接技术的要求越来越高,目前传统的焊接技术不但成本较高,而且焊接的质量不高,往往会产生细小的缝隙。因此人们希望运用新的焊接技术来提高产品的质量。

1943年,在总结前人理论和实践的基础上,美国的Behl发明了超声波焊,从此推动了超声波焊接技术的发展。由于超声波焊接技术具有节能、无须装配散烟散热装置、焊接时无须焊接附件、成本低、效率高、密封性好、易实现自动化生产等优点,超声波焊接技术发展的越来越快。

1 超声波焊接技术在工业产品中的应用现状

像在航空航天、核能工业、电子工业等这样一些精度要求很高的工业产品领域中,使用传统的焊接技术很难达到技术要求,而且成本高、效率低。目前,超声波焊接技术在各行各业都有广泛的应用,像医疗机械、包装、五金等行业;能焊接的产品也很多,像汽车零部件、光学镜头、U盘等。

2 超声波焊接技术的原理和特点

超声波是一种频率高于20000赫兹的声波,因此能量大。超声波焊接是利用超声波频率(超过20000赫兹)的机械振动能量,连接同种或异种金属、半导体、塑料及金属陶瓷等材料的特殊焊接方法[1]。超声波作用于热塑性的塑胶表面时,会产生每秒上万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声波能量传到焊区,又由于焊区即两个焊接的交界面处声阻比较大,因此会产生局部高温。又由于塑料制品导热性差,一时还不能及时散发出聚集的能量,因此能量就会聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定的压力后,就会使其融合成为一体。当超声波停止作用后,让压力再持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,从而达到焊接的目的。在对金属进行超声波焊接时,既不向工件输送电流也不向工件施以高温热源,只是在静压力作用之下,将弹性振动能量转变为工件界面间的摩擦功、形变能及有限的温升,使得焊接区域的金属原子被瞬间激活,两相界面处的分子相互渗透,最终实现金属焊件的固态连接。其焊接原理示意图如图1所示[2]。

超声波焊接技术的优点

与传统焊接技术相比较,超声波焊接技术有如下优点:(1)焊接速度快、焊接精度高、焊接焊点强度高;(2)焊接范围广、稳定性好、被焊接后的工件变形很小;(3)焊接物表面清洁美观、平整光滑;(4)焊接时,不需添加焊接剂,对被加工物不产生污染、不产生有害气体,因此是一种环保的焊接方法;(5)焊接时,只需提供较小的动力即可进行焊接,耗能低;(6)操作简单、成本低、效率高、密封性好。

图1 超声波金属焊接原理示意图

超声波焊接技术的缺点

尽管超声波焊接技术有很多的优点,但也存在不足之处,因此不得不加以重视。超声波焊接技术有如下缺点:(1)对超声波焊接机理的认识还不够全面;(2)对金属进行焊接时,焊件不能太厚;(3)对超声波焊接技术的影响因素比较多,不易进行把握分析和总结;(4)制造一些大功率的超声波焊接机成本高、而且比较困难;(5)对焊接好后的工件进行焊接处质量检测比较困难,因此给大批量生产带来阻碍。 3 影响超声波焊接质量的因素

虽然超声波焊接技术有众多优点,但其焊接质量与熔融量、材料的材质等因素有关,概括起来主要包括以下几方面的因素,如图2所示。

图2 影响超声波焊接质量的因素

(1)焊接材料的材质:一般来说焊接质量与材料的物性和材料的改性有关。材料的物性包括材料的弹性模量、摩擦系数、热导率、熔点等。物件的焊接质量与材料的弹性模量、摩擦系数、热导率成正比,与其密度、熔点成反比。材料的改性指的是在适宜的工艺条件下加入一些填料以改善材料的原有性能,使其满足客户的使用要求。在适宜的工艺条件下加入一些性能相近的材料,可以提高焊接接头强度。

(2)焊头与焊件的接触面:焊接面的清洁度、材料表面的粗糙度会影响焊件的焊接质量。增加材料的表面粗糙度可以提高焊接质量;焊接面的清洁度越高,焊接质量也越高。

(3)其他因素:焊接技术的工艺参数、焊接件的结构、连接形式、焊接时的熔融量、超声波的功率等。为达到最佳的焊接效果,在产品研发阶段,要对这些因素进行综合考虑。

4 超声波焊接技术在工业产品设计中的应用案例

正如以上所述,基于超声波焊接技术的产品研发,先要进行综合考虑影响焊接质量的因素,然后结合产品的市场前景,产品的成本,生产技术要求等条件,合理生产设计要素。

下面仅就一个设计案例――美国苹果公司发明的超声波塑料与金属焊接专利技术进行解读,从实践的角度来理解超声波焊接技术在实际中的应用。原有技术的不足:在还没有发明这项专利技术之前,所有的便携式设备(如手机)不能将金属与塑料进行融合,因此某些部件不能用塑料部件来代替,这样生产出来的手机不仅厚重、外形呆板而且缺少个性,设计上也不够自由、缺少灵活性。并且制作成本高、操作复杂、使用不方便,按键操作过多时,会接触不灵。解决案例:采用全新的超声波塑料与金属焊接技术,在手机内部某些部件使用塑料材质,减轻了手机的重量的同时也减少了金属的使用量。在壳体方面采用一次成型工艺,使外壳更加简约、流畅,操作简单,设计灵活,给人一种高端、大气的感觉。先进的超声波焊接技术一般还要使用多种材料融合的技术工艺,设计更加的自由和灵活,设计线条采用极简主义的风格,色彩上运用浅色,给人轻松、愉悦的感觉。在结构上更符合超声波焊接工作原理,使焊接质量更佳。

5 针对超声波焊接技术应用的案例得出的结论和展望

通过这次调研,作者通过对超声波焊接技术的了解,对超声波焊接技术应用进行研究,由于条件有限,在调查研究过程中还有不足之处,在此将在调研过程中涉及到的问题及解决办法总结一下,为后面进一步研究做铺垫。针对焊接质量的问题,我们得出在焊接时应保持接触面清洁和材料表面的粗糙度。要了解用户需求,针对特定的用户进行设计,设计出多种不同的外观形态,为不同的客户量身打造;在设计时还应该考虑情趣化的问题,设计出更加有情趣化的产品,营造轻松愉悦的环境。针对超声波焊接技术在产品设计中的展望,作者经过探索发现可以在工作时增加音乐播放功能,使焊接过程轻松、愉快。未来的超声波焊接技术也将更加的人性化。

【参考文献】

[1]关长石,费玉石.超声波焊接原理与实践[J].机械设计与制造,2004(6).

[2]朱政强,吴宗辉,范静辉.超声波金属焊接的研究现状与展望[J].焊接技术,2010,39(12).

焊缝超声检测论文

钢结构的焊接技术的好坏,在一定程度上会影响到建筑本身的质量。下面我整理了钢结构焊接技术论文,欢迎大家阅读!钢结构焊接技术论文篇一:《钢结构安装焊接施工技术》 摘要:某工程塔楼为全钢结构,焊接工作量大,且大部分为全熔透焊缝,质量要求高,构件板厚最大达到85mm,焊接难度大。工程开始前进行了工艺评定。 关键词:钢结构;焊接;全熔透焊;工艺评定 1工程概况 某工程位于湖南长沙,为全钢结构,地上35层,钢柱锚入地下一层,高150m.南北立面为双曲面,外围钢柱以每4层为一折线点。核心筒共31根钢柱,外围钢框架柱共23根。钢柱主要为箱形柱,钢梁为轧制、焊接H形梁。钢结构总重量约14000t。 钢材 本工程钢柱使用的钢材为高层建筑结构用钢板Q345GJC,大于40mm厚钢板为Q345GJC-Z15,产地为舞阳钢铁厂,主梁使用钢材为Q345C,钢支撑采用Q235C,产地为武汉钢铁厂。 构件 钢柱长12m,构件单件最重,钢柱板厚28、34、40、55、70、85mm,典型截面600×600×70,钢梁翼缘板厚16、24、28、40mm,典型截面700×240×14×28。由于钢板厚度大,因此焊接难度大,焊接质量要求高。 节点形式与焊缝检测 按照设计,现场安装柱与柱之间的对接为全熔透焊,钢梁与钢柱牛腿上、下翼缘为全熔透焊,钢梁腹板大部分为高强螺栓连接,双剪连接板与钢柱为角焊缝。 由于钢板厚度大,焊缝又多数是全熔透焊缝,所以对本工程的全熔透焊缝实施B级超声波检测,100%超声波探伤。现场探伤工作中,由现场焊接员填写检测委托单,检测单位按照填写的检测部位进行探伤。如发现焊接缺陷,检测单位填写质量返修单,通知焊接负责人,进行返修重焊后,再进行超声波探伤。本工程委托单位为冶金院检测所,采用的仪器为CTS-2000,选用斜探头进行超声波探伤。探伤 报告 必须明确探伤部位、缺陷的位置和大小、评定级别,并判定合格或不合格;返修部位严格按照焊接工艺评定的参数进行焊接,返修不得超过二次。 2典型焊接节点概况 钢柱对接焊缝。 3焊接准备 焊接吊篮与平台 焊接设备和焊接材料 4焊接施工劳动力安排 高层钢结构焊接工程专业性很强,劳动强度大,专业管理人员和焊工都要求有较好的技术素质。本工程现场焊工均持有钢结构焊接CO2气体保护焊合格证,在正式施工前,在业主、监理等各单位的监督下进行了现场附加考试。 5焊接施工顺序和工艺 焊接顺序 根据本工程平面和立面形状,结构形式等,塔楼分东西两区组织施工。当钢结构安装完成三个及以上单元的校正和高强螺栓的终拧后,从平面中心选择四面都有焊接梁的柱子作为基准柱,并以此作为垂偏测量基准,并首先安排其四侧都有抗弯焊接的梁、然后向四周扩展施焊。随安装滞后跟进。采取结构对称、节点对称和全方位对称焊接的原则。 栓-焊混合节点中,设计要求梁的腹板上的高强度螺栓先初拧70%后→焊接梁的下、上翼缘板→终拧梁腹板上的高强度螺栓至100%施工扭矩值。 竖向上的焊接顺序: (1)地下一柱一层梁的焊接顺序: 上层框架梁→柱脚板部位的焊接→支撑→焊接检验。 (2)地上及以上一柱二层梁的焊接顺序: 上层框架梁→压型金属板支托→下层框架梁→压型金属板支托→上柱与下柱焊接→焊接检验(也可先焊柱—柱节点→上层框架梁→下层框架梁→焊接检验)。 (3)地上及以上一柱三层的焊接顺序: 上层框架梁→压型金属板支托→下层框架梁→压型金属板支托→中层框架梁→压型金属板支托→上柱与下柱焊接→焊接检验,(但也可先焊柱—柱节点→上层框架梁→下层框架梁→中层框架梁→焊接检验)。 柱—梁节点上对称的两根梁应同时施焊,而一根梁的两端不得同时施焊作业。 柱—柱节点焊接时,箱形柱的对称两面应由两名焊工相对依次逆时针焊接。 梁的焊接应先焊下翼缘,后焊上翼缘,以减少角变形。 安装焊接工艺 安装焊接前的准备工作 本工程使用的高层建筑结构用钢板在国内应用并不多,针对其中数量较多且具有代表性的接头形式进行了相应焊接 方法 的工艺评定试验。试验钢材包括Q345GJC-Z15(壁厚70mm)、Q345GJC-Z15(壁厚40mm)、Q345C(翼缘厚28mm),焊接位置为柱—柱横焊、柱—梁平焊(包括桁架梁上下翼缘平焊)、T型角立焊。坡口形式及尺寸按设计要求。焊后外观及超声波检查合格后取样进行了力学和物理试验。试验结果接头的抗拉强度达到母材抗拉强度标准值,接头弯曲180°无裂纹。采用的焊接材料和焊接设备技术条件应符合国家标准,性能优良。清渣、气刨、焊条烘干保温等装置应齐全有效。 手工电弧焊及CO2气保焊焊材和设备 (1)焊条应在高温烘干箱中150℃烘干2小时,且焊条烘干次数不得超过两次。 (2)焊丝包装应完好,如有破损而导致焊丝污染或弯折、紊乱时应部分弃之。 (3)CO2气体纯度应不低于(体积比),含水量应低于(重量比),瓶内高压低于1MPa时应停止使用。 (4)焊机电压应正常,地线压紧牢固,接触可靠,电缆及焊钳无破损,送丝机应能均匀送丝,气管应无漏气或堵塞。 安装焊接程序及一般规定 焊接的一般顺序为:焊前(装配)检查→装焊垫板和引弧板→除锈预热→焊接→检验(返修,不得超过二次), 焊前检查坡口角度、钝边、间隙及错边量(小于规范要求),坡口内和两侧的锈斑、油污、氧化铁皮等应清除干净。 装焊垫板及引弧板,其表面清洁程度要求与坡口表 面相 同,垫板与母材应贴紧,引弧板与母材焊接应牢固。 预热。焊前用气焊或特制烤枪对坡口及其两侧各100mm范围内的母材均匀加热,并用表面测温计测量温度,防止温度不符合要求或表面局部氧化,预热温度。 钢结构焊接技术论文篇二:《钢结构的安装焊接施工技术》 摘要:本文简要分析了厂房钢结构焊接施工的主要工艺及保障焊接质量的主要方法,并提出了控制焊接质量的主要对策,以供与大家交流学习。 关键词:厂房;钢结构;焊接技术 1、工程概述 某装焊厂房位于某工程有限公司内,建筑面积为22000平方米,为单层工业厂房,主体钢结构为门式钢架结构,轴线位置编号见图纸,为三跨结构,单跨跨度为32米,柱距为8米,共有116根主钢柱,203根主钢梁,336根吊车梁。门式钢架梁、柱及吊车梁钢材均采用Q345B,钢梁钢柱连接用高强螺栓均采用大六角级,摩擦面做喷砂处理。钢结构主构件采用抛丸除锈。该工程设计使用年限50年,结构安全等级为二级,抗震设防烈度为7度。焊接部位包括有:(1)上节柱与下节柱的对接接头;(2)钢梁与钢柱的对接接头。(3)钢梁上的栓钉焊接。 2、钢结构安装焊接前的准备 本工程使用的钢板在国内应用并不多,针对其中数量较多且具有代表性的接头形式进行了相应焊接方法的工艺评定试验。试验钢材包括Q345GJC-Z15(壁厚70mm)、Q345GJC-Z15(壁厚40mm)、Q345C(翼缘厚28mm),焊接位置为柱—柱横焊、柱—梁平焊(包括桁架梁上下翼缘平焊)、T型角立焊。坡口形式及尺寸按设计要求。焊后外观及超声波检查合格后取样进行了力学和物理试验。试验结果接头的抗拉强度达到母材抗拉强度标准值,接头弯曲180°无裂纹。采用的焊接材料和焊接设备技术条件应符合国家标准,性能优良。清渣、气刨、焊条烘干保温等装置应齐全有效。 手工电弧焊及CO2气保焊焊材和设备:(1)焊条应在高温烘干箱中烘干,焊条烘干次数不得超过两次。 (2)焊丝包装应完好,如有破损而导致焊丝污染或弯折、紊乱时应部分弃之。(3)CO2气体纯度应不低于(体积比),含水量应低于(重量比),瓶内高压低于1MPa时应停止使用。(4)焊机电压应正常,地线压紧牢固,接触可靠,电缆及焊钳无破损,送丝机应能均匀送丝,气管应无漏气或堵塞。 3、安装焊接程序及注意的规定要点 焊接的一般顺序为:焊前检查 →预热除锈 → 装焊垫板和引弧板→ 焊接 → 检验 具体来说:(1)同一节柱上的梁,先焊上层梁,后焊下层梁。(2)柱两侧对称的梁应同时焊接,同一根梁的两端不能同时焊接。(3)同一根梁的上下翼板应先焊下翼板,后焊上翼板。(4)从中部柱开始焊接,对称向外围焊接。(5)上下节柱的对接接头采用对称焊接,施焊时,应两人同时对称焊接一个接头,防止焊接变形引起柱弯曲。对称的两面先焊至1—3层,然后将另外对称的两个面焊满,再将未焊满的焊缝焊满。 规定与注意:(1)焊前检查坡口角度、钝边、间隙及错口量,坡口内和两侧的锈斑、油污、氧化铁皮等应清除干净。(2)预热。焊前用气焊或特制烤枪对坡口及其两侧各100mm范围内的母材均匀加热,并用表面测温计测量温度,防止温度不符合要求或表面局部氧化,预热温度。(3)重新检查预热温度,如温度不够应重新加热,使之符合要求。(4)装焊垫板及引弧板,其表面清洁程度要求与坡口表面相同,垫板与母材应贴紧,引弧板与母材焊接应牢固。(5)焊接:第一层的焊道应封住坡口内母材与垫板的连接处,然后逐道逐层累焊至填满坡口,每道焊缝焊完后,都必须清除焊渣及飞溅物,出现焊接缺陷应及时磨去并修补。(6)一个接口必须连续焊完,如不得已而中途停焊时,应进行保温缓冷处理,再焊前,应重新按规定加热。(7)遇雨、雪天时应停焊,构件焊口周围及上方应有挡风、雨棚,风速大于5m/s时应停焊。环境温度低于零度时,应按规定采取预热和后热 措施 施工。(8)碳素结构钢应在焊缝冷却到环境温度、低合金结构钢应在完成24h以后,进行焊缝探伤检验。(9)焊工和检验人员要认真填写作业记录表。 4、焊接施工中的重要工艺参数 4、1典形节点的焊接顺序和工艺参数 主要是:(1)上下柱无耳板侧由两名焊工在两侧对称焊至板厚的1/3处时,切去耳板。(2)然后在切去耳板侧由两名焊工在两侧对称焊至板厚的1/3处。(3)再由两名焊工分别承担相邻两面的焊接。(4)每两层之间焊道的接头应相互错开,两名焊工焊接的焊道接头也要注意每层错开,焊接过程中要注意检测层间温度。(5)焊接工艺参数,如下: 1)CO2气保焊:焊丝直径Φ,电流280~320A,焊速350~450mm/min 2)焊丝伸出长度:约20mm,气体流量25~80L/min, 3)电压:29~34V,层间温度120~150℃ 4、2柱—梁、梁—梁节点的处理 主要是:(1)先焊梁的下翼缘,梁腹板两侧的翼缘焊道要保持对称焊接。(2)待下翼缘焊完,然后焊接上翼缘。(3)如翼缘板厚大于30mm时,宜上下翼缘轮换施焊。(4)焊接工艺参数,如下: 1)CO2气保焊:焊丝直径φ,电流280~360A,焊速300~500mm/min 2)焊丝伸出长度:约20 mm,气体流量20~80L/mm 3)电压:30~38V,层间温度120~150℃ 5、结束语 钢结构安装焊接质量控制是一项综合技术,焊接质量受材料性能、工艺方法、设备、工艺参数、气候和焊工技术及情绪的影响。施工前根据工艺评定编制操作指导书,便于每个焊接人员明确操作要领、材料的使用和质量要求。施工过程中焊工做好焊前和焊接的记录,焊接工程师检查时逐条焊缝检查验收、做好记录,确保实体工程的安全使用。在该厂房主体工程竣工后,根据国家、行业相关要求对该工程进行了钢结构主体工程的鉴定,鉴定依据:(1)《钢结构工程施工质量验收规范》GB50205-2001;(2)《建筑结构检测技术标准》GB/T50344-200;(3)《建筑工程施工质量验收统一标准》GB50300-2001;(4)《建筑钢结构焊接规程》JGJ81-2002;(5)《钢焊缝手工超声波探伤方法和探伤结果分级》GB11345-1989;(6)某装焊车间厂房设计图纸。实际证明,该钢结构主体工程的施工安装质量符合GB50205-2001技术标准及设计要求,可以交付使用。 参考文献 1、陈海波。某装焊厂房钢结构工程鉴定[J],建筑科技与管理,2009年第11期 2、杨凌川,杨文柱。高层建筑钢结构安装焊接施工质量控制,重庆建筑大学学报[J],增刊2000,22:208-211 钢结构焊接技术论文篇三:《试谈建筑钢结构低温焊接施工技术》 摘 要:通过对低温环境条件下管道焊接施工措施的研究,并经工程实验,得出在低温环境条件下,影响焊接质量的因素更多的在于施工机具、焊接设备的适应性、焊工劳动防护措施的保暖性和轻便性等因素。 关键词:低温焊接;预热温度;焊后保温 随着焊接环境温度的降低,焊缝金属的硬度值增大。采取有效的预热、层间温度和焊后缓冷措施以降低焊缝金属的冷却速度,从而改善焊缝金属的硬度值。热温度不足的情况下,根焊缝产生裂纹的倾向性增加,但增加预热温度和改进预热方式,可明显提高焊缝质量。创造适合的施工环境和焊接条件,保证焊工劳动防护措施的保暖性和轻便性,焊接过程中使用自制的可移动式保温防风棚和管端封堵器等。 1.低温焊接时的施工工艺 由于是在低温环境中进行焊接作业,所以为了更好的完成焊接任务,应该尽量选取氢含量较低的焊接材料,并且对焊接材料进行必要的 烘焙 以及保温措施。为了达到尽量减少热量的损失,可以在进行焊接作业的地方构建相应的保护房,从而形成相对密闭的空间。如果条件不允许构建防护房,也可以采取其他一些措施来起到防护热量损失的作用。在进行一些气体保护焊接操作时,气瓶也要进行必要的保温措施。预热和层间温度。相比较于常温条件下的焊接预热,低温焊接时的预热温度要稍高,并且需要预热的区域范围较大,通常情况下是焊接点周围大于等于两倍钢厚度的范围,并且这一范围不小于100mm。焊接层的温度通常要高于预热温度,或者是不低于相应规定中的最低温度20℃,二者之间取较高温度者;采用合理的焊接方法。尽量使用窄摆幅,多层多道焊,严格控制层间温度;焊接后热及保温。焊接后及时对焊接接头进行后热保温处理。利于扩散氢气的逸出,防止因冷速过快而引起的冷裂纹,同时适当的后热温度还可以适当降低预热温度。 2.钢结构的焊接施工技术 焊接施工流程 施焊人员必须要熟悉图纸,做好焊接工艺技术交底,确保施焊人员执证上岗,明确焊工的焊接任务,然后进行现场验电,预热,后热温度试验确定等作业准备。然后选择合适的焊接工艺以及合适的焊接参数,并通过焊接实验验证。焊接工作开始,对焊口进行清理,检查坡口等是否符合要求,检查定位焊是否牢固,焊缝周围是否有油污和锈污。对焊材进行预热和保温,然后按照既定的焊接参数进行焊接,焊接完成后,对焊缝周围进行清渣处理,做好焊后保温工作,焊接完成。 焊材的选择和与钢材的匹配 与钢材的规定最低标准相比,焊材的金属强度,坚韧性,可塑性都要明显高于钢材本身,而且,在焊接接头的地方,各种基本性能指标都要与钢材规定的最低标准等同或比之更高;要保证焊缝的可塑性,钢材较厚时,要根据厚度选择合的焊材;选择合适韧性的焊材,韧性好的焊材可以提高焊缝和热影响区的韧性,使之能够满足钢结构的受力要求。 焊接质量控制 对输入的热和焊接冷却速度进行控制:通过控制焊接电压,焊接电流,接速度以及熔融金属的冷却速度等来对焊接质量进行控制。控制焊缝内元素组成进行控制:选择高质量的焊材,操作人员高超的操作手法和技巧,保证焊缝外观质量。选择能量密度高的,输入热量低的焊接方法,对焊接应力与变形进行控制。从钢材料的出发,考量各项技能的标准要求,选择合适的焊材以及评估焊接质量的试验方法,得出适合生产的焊接工艺,在焊接时,注意层间温度的控制,防止出现焊接接头弱化的现象。总之,尽量在最低成本的原则下,完成高质量的焊接任务。焊工须持双证上岗,即安全上岗证、焊工合格证。且具有相应的施焊资历。 3.高强钢焊接的施工工艺 焊接材料的选择及匹配 强节点弱杆件,即与母材规定的最低标准相比,焊接材料熔敷金属在强度、韧性、塑性等方面要明显高于标准;并且焊接接头位置的各种基本的性能指标至少要与母材料规定的最低标准相匹配;在进行厚板焊接时,应该根据厚度效应后的强度来选择适当的焊材,通常当节点的拘束度比较大的时候,可以在1/4 板厚以后选择强度稍低的焊材;对焊材韧性的选择是一项非常重要的工作,好韧性的焊材能够使焊缝以及热影响区的韧性满足钢结构的规定标准。比如在焊接无裂纹钢种的时候,可以选取低H 或者超低H 的焊接材料,同时,在钢板厚度低于50mm 或者温度在0℃以上的时候,可以不对钢结构进行预热。这一方法的明显优势就是它的力学指标突出,尤其是在区强比的冲击性能方面更显优越。 确定最低预热温度的常用方法 通过裂纹实验来进行控制,即通过进行斜Y 坡口试样抗裂方面的试验对最低的预热温度进行确认;通过硬度控制预热温度,通常采用的方法是根据一定碳含量的钢材,其不同板厚T 形接头角焊缝热影响区硬度达到350HV 对应的冷却速度(540℃时),查表确定焊接线能量;根据裂纹敏感指数、板厚范围、拘束度等级、熔敷金属扩散氢含量确定最低预热温度;根据接头热输入、冷却时间和钢材的特定曲线□确定最低预热温度。 对焊接质量的控制方法 对热输入以及冷却速度进行控制。此方法主要是通过对焊接时的电压、电流以及焊接时的焊接速度和熔敷金属在800℃~500℃区间内的冷却时间的控制,进而完成焊接质量的控制;对焊缝中各种元素的质量百分比进行必要的控制,主要是指碳、硫、磷、氢、氧等。为了达到这一目的,除了要选择质量优越的低氢焊接材料外,还要求操作人员拥有较好的操作手法,从而对熔池金属进行很好的保护;应力与变形控制。选用高能量密度、低热输入的焊接方法。 4.结束语 最后得到适合于生产的焊接工艺,起到相应的指导生产的要求。在进行这一钢材的焊接时,为了避免其产生冷裂现象,应该注意采取相应的措施。同时为了出现接头弱化的现象,焊接时应该对层间温度以及焊接线能量进行较为严格的筛选和控制。总的原则还是应该在较低的成本下,尽可能完成高质量的焊接任务。 参考文献: [1]姚晋勇.论钢结构焊接现场施工工艺[J].科技情报,2012 [2]徐鹏毅.钢结构焊接现场施工工艺探讨[J].中国地产,2013 猜你喜欢: 1. 电焊工个人简历模板 2. 钢结构安全管理论文 3. 钢结构施工管理论文范文 4. 钢结构职称论文 5. 锅炉焊接技术论文

超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是我为大家整理的超声波检测技术论文,仅供参考!

关于超声波无损检测技术的应用研究

摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。

关键词:超声波无损检测;脉冲反射式技术;检测技术

中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02

超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。

1 超声波无损检测技术的发展趋势和主要功能

超声波无损检测技术的发展趋势

在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。

超声波无损检测技术系统的主要功能

目前,我国超声波无损检测主要应用的技术是脉冲反射式的检测方法,这种技术的应用可以准确的定位缺陷出现的位置和形式,具有非常高的灵敏度,简化了技术人员检查缺陷的工作,完善了技术标准。脉冲反射式的检测技术还具有非常高的灵活性和适用性,可以适应超声波无损检测的要求,并实现一台仪器检测多种波形的检测工作。根据脉冲反射式的检测技术要求,可以实现缺陷检查的功能、操作界面切换显示的功能、显示日历时钟的功能,在实际的检测过程中功能键的使用也非常方便,简化了技术人员的操作过程,并且脉冲反射式技术具有灵敏度高的功能,使其可以及时的发现检测过程中出现的缺陷,有利于技术人员进行检修的工作,提高了检测工作的工作效率。

系统主要功能的技术指标

脉冲反射式技术在使用的过程中有很多的要求,其中要满足功能使用的技术指标,从而实现规范化的操作标准。反射电压的电量要控制在400伏,实现半波或者射频的检波方式,检测的范围要在4000-5000毫米之间,只有满足了这些技术标准才能合理的设置出技术应用的框架。同时在超声波无损检测技术应用的过程中有严格要求的电路设计,如果不能满足技术的指标要求,那么在实际检测的过程中,会存在很大的风险,会对技术人员造成严重的生命安全威胁。所以在检测工作实施之前,必须要按照相关的技术指标来合理的构建检测的环境,提高检测工作的安全性,保障检测工作可以顺利的进行。

2 超声波无损检测技术检测的方法和缺陷的显示

超声波无损检测技术检测的主要应用方法

超声波无损检测技术的检测方法按照具体的分类可以分为很多种,从检测的原理进行分析,超声波无损检测技术应用的主要方法是穿透法、脉冲反射法、共振法,按照检测探头来分类,检测的主要方法有单探头法、双探头法、多探头法,按照检测试件的耦合类型来分类,检测的主要方法有液浸法、直接接触法。这些具体的方法可以满足很多情况下的检测工作,并且提高了检测结果的准确性,完善了超声波无损检测技术的检测要求,所以技术人员要根据具体的检测环境和试件的类型来选择正确的检测方法,通过方法的应用要提高检测工作的效率,降低缺陷出现的可能。随着我国现代化科学技术的不断发展,人们对检测技术的应用也提出了更高的要求,检测工作的检测范围也越来越广,同时要求在对试件检测的过程中,不可以损坏试件的质量和性能,同时还要保准检测结果的准确性,所以技术人员要严格的按照检测标准,完成检测的工作,要对检测的方法进行改善,使其可以满足时代发展的要求。

缺陷的显示

在超声波无损检测技术检测的过程中,会出现不同类型的缺陷,主要分为A、B、C三种类型的显示,在工业检测的过程中,A类显示是应用最广泛的一种类型,在显示器上以脉冲的形式显示出来,对显示器上的长度和宽度进行标记,从而当超声波返回缺陷信号时,可以在屏幕上明确的显示出缺陷出现的位置。B类显示是通过回波信号来完成显示的过程,回波信号发出时会点亮提示灯,通过显示器的显示可以观察到缺陷出现的水平位置,这种类型的显示比较直观,有利于技术人员的观察和分析。C类显示是通过反射的回波信号来调制显示的内容,通过亮灯和暗灯来显示接收的结果,检测到缺陷时会出现亮灯,因此技术人员只需要观察灯的变化,就可以判断缺陷出现的情况。所以在实际检测的过程中,技术人员一定要认真观察缺陷出现的位置和内容,从而制定出科学合理的改善方案,来降低缺陷出现的可能,提高超声波无损检测技术检测的效果。

缺陷的定位

对于脉冲反射式超声检测技术来说,显示器的水平数值变化就是缺陷出现的位置,这时技术人员要对缺陷出现的位置进行定位,从而可以分析在检测过程中出现缺陷的环节。根据反映出的缺陷声波,经过计算,得出准确的缺陷产生的位置。

3 结语

科学技术的发展会带动我国的生产力水平的提高,同时也会促进技术的研发,超声波无损检测技术就是因为科学技术的不断发展,才实现了检测的目标,在检测的过程中,可以结合现代化的技术来提高检测的效率和结果的准确性。超声波无损检测技术实现了无损试件的检测要求,提高了检测的质量和水平,应该得到社会各界的关注,扩大检测的范围。

参考文献

[1] 耿荣生.新千年的无损检测技术――从罗马会议看无损检测技术的发展方向[J].无损检测,2010,23(12):152-156.

[2] 中国机械工程委员会无损检测分会编.超声波检测第二版(无损检测Ⅱ级培训教材)[M].北京:机械工业出版社,2012.

[3] 李洋,杨春梅,关雪晴.基于AD603的程控直流宽带放大器设计[J].重庆文理学院学报(自然科学版),2010,29(16):202-203.

[4] 段灿,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报(自然科学版),2012,28(12):320-325

[5] 张梅军,石文磊,赵亮.基于小波分析和Kohonen神经网络的滚动轴承故障分析[J].解放军理工大学学报,2011,12(10):14-15.

作者简介:李新明(1992―),男,湖北人,大连理工大学学生。

长输管道超声波内检测技术现状

【摘要】超声波内检测技术是长输管道的主要检测技术。本文介绍了长输管道超声波内检测的技术优势、国内外的发展现状,以供参考。

【关键词】长输管道 超声波 内检测 优势 现状

一、前言

长输管道是石油、天然气重要的运输手段,要保证管道的稳定运行,就要加强日常的检测和维护,及时发现问题,防止重大事故发生。

二、管道内检测主要技术及优势

管道内检测是涵盖检测方案决策、管道检测、检测数据解释分析和管道安全评价等过程的系统工程。利用智能检测器进行管线内检测是目前较为普遍的方式,该方法是通过运行在管道内的智能检测器收集、处理、存储管道检测数据,包括管道壁厚、管道腐蚀区域位置、管道腐蚀程度、管道裂纹和焊接缺陷,再将处理数据与显示技术结合描绘管道真实状况的三维图像,为管道维护方案的制定提供决策依据。超声波内检测技术和漏磁检测技术是现在最常用的海管内检测技术。

超声波内检测技术是在检测器中心安放一个水平放置的超声波传感器,传感器沿着平行于管壁的方向发射声波,声波沿着平行于管壁的方向行进直至被一个旋转镜面反射后,垂直穿透管道壁,声波触碰管道外壁后按照原路径反射回传感器,计算机计算声波发射及反射回传感器的时间,该时间就被转换为距离及管道壁厚的测量值。声波反射镜面每秒旋转2周,检测器每米可以采集3万个左右的测量值。超声波内检测技术可以原理简单,数据准确可靠,该方法可以精确测量管道的壁厚,不仅可以测量金属管线,对于非金属管线,如高密度聚乙烯管也能够有效测量,并且可测管道管径的尺寸范围较大,甚至能够测量壁厚等级80以上的大壁厚管道,对于变径管道同样适用。

管道漏磁检测技术利用磁铁在管壁上产生的纵向回路磁场来探测管道内外壁的金属损失以及裂纹等缺陷,确定上述缺陷的准确位置,检测器所带磁铁将检测器经过的管壁饱磁化,使管壁周圈形成磁回路。若管道的内壁或外壁有缺陷,围绕着管道缺陷,管道壁的磁力线将会重新进行分布,部分磁力线会在这个过程中泄露从而进入到周围的介质中去,这就是所谓的漏磁场。磁极之间紧贴管壁的探头检测到泄漏的磁场,检测到的信号经过滤波、放大、转换等处理过程后会被记录到存储器中,通过数据分析系统的处理对信号进行判断和识别。管道的漏磁检测技术具有准确性高的优点,通过在气管线中低阻力和低磨损的设计取得较高质量的数据,可以在没有收球和发球装置的情况下完成检测,对于路径超过200公里的长输管道能够以每分钟200米左右的速度进行检测。

三、长输管道建设工艺技术发展现状

1、管道焊接

管道焊接是管道建设的最重要的一个方面,现场焊接的效率高,安全性和可靠性在每个管道的建设是重要的角色。从国内长途管道工程在1950年的第一条运输管道建设以来,管道现场焊接施工在我国发展的半个世纪里主要经历了有四个发展过程,分别是:手工电弧焊上向焊、手工电弧焊下向焊、半自动焊和自动焊。

(1)手工电弧焊上向焊和手工电弧焊下向焊。90年代初手工电弧焊下向焊和手工电弧焊下向焊作为当时国内传输管道的一种焊接方法,得到了广泛的应用,突出的优点是高电流、焊接速度高,根焊接速度可达20到50厘米/分钟,焊接效率高。目前在进行焊接位置相对困难的位置和焊接设备难进入的位置时采用手工电弧焊焊接。

(2)半自动焊。电焊工通过半自动焊枪进行焊接,由连续送丝装置送丝焊接的一种方式叫做半自动焊。半自动焊是长输管道焊接的主要方式,因为在焊接送丝比较连续,就省了换焊条和其他辅助工作时间,同时熔敷率高、减少焊接接头,减少焊接电弧,电弧焊接缺陷、焊接合格率提高,

(3)自动焊。自动焊方法使整个焊接过程自动化,人工主要从事监控操作。国内开始从西到东的天然气管道项目,就是大面积的自动焊接的应用程序。自动焊接技术在新疆,戈壁等地区比较适合。

2、非开挖穿越施工技术

遇到埋管道的建设,跨越河流,道路,铁路等障碍时,有许多问题如果使用传统开挖方法则会比较难实施,而“非开挖”铺设地下管道是当前国际管道项目进行了先进的施工方法,已广泛应用于这个国家。我国近年来建设大量的长输管道采用了盾穿越技术,有许多大河流使用了盾构穿越。顶管穿越通过短距离管道穿越技术在1970年代后期开始得到使用。传统意义上的顶管施工是以人工开采为主。后来当使用螺旋钻开采和输送管顶土,后来又派生出了土压力平衡方法,泥水平衡方法,通过顶管技术,可以达到超过1千米以上的距离。通过液压以控制管切割前方的覆土,以保证顶管的方向正确,和顶采用继电器,激光测距,头部方位校正方法顶推的施工工作,长距离顶管的问题和方向问题得到了解决。

3、定向穿越技术

我国从美国引进的定向钻是在1985年首次应用于黄河的长输管道建设。在过去的20年里,非开挖定向穿越管道技术在我国得到了迅速的发展。定向钻井在非开挖管道穿越技术已广泛应用于管道业。定向钻用于铺设管道取得了巨大的成就。我国在2002年2月以2308米和273米直径的长度穿越了钱塘江,是世界上最长的穿越长度,被载入吉尼斯世界纪录。定向穿越管道施工技术是一个多学科,多技术,根据于一体的系统工程,任何部分在施工过程中存在的问题的设备集成,并可能导致整个项目的失败,造成了巨大的损失。而被广泛使用,由于定向钻井,通过建设,使技术已经取得了长足的进步和发展的方向。硬石国际各种施工方法,如泥浆马达,震荡的顶部,双管钻进的建设。广泛采用PLC控制,电液比例控制技术,负荷传感系统,具有特殊的结构设计软件的使用。

四、管道超声内检测技术现状

1、相控阵超声波检测器

美国GE公司研制的超声波相控阵管道内检测器于2005年开始应用于油气管道内检测,目前已检测管道长度4700km,该检测器包括两种不同的检测模式:超声波壁厚测量模式和超声腐蚀检测模式,适用于管径610~660mm的成品油管道。该检测器有别于传统检测器的单探头入射管道表面检测的方法,采用探头组的形式来布置探头环,几个相邻并非常靠近(间距左右)的探头组成一个探头组,一个探头组内的探头按照一定的时间顺序来激发并产生超声波脉冲,而该激发顺序决定了产生的超声波脉冲的方向和角度,因此控制一个探头组内不同探头的激发顺序就可以产生聚焦的超声波脉冲。检测器包括3个探头环、44个探头组,每个探头环提供一种检测模式,可根据不同的管道检测需求来确定探头环。

该检测器与其他内检测器相同,包括清管器、电源、相控阵传感器、数据处理和储存模块4部分。清管器位于整个检测器的头部并装有聚氨酯皮碗,一方面负责清管以确保检测精度,另一方面起密封作用,使得检测器可以在前后压力差的作用下驱动前进。探头仓由3个独立的探头环组成,每个探头环的探头布置都能实现超声波信号周向全覆盖。检测器能够实现长25mm、深1mm的裂纹检测,检测准确率超过90%;最小检测腐蚀面积10×10mm ,检测精度大于90%。

2、弹性波管道检测器

安桥管道公司管理着世界上最长和最复杂的石油管道网络。其研发的内检测器已经在超过15000km的管道中开展检测。其中基于声波原理的检测器主要有弹性波检测器和超声波管道腐蚀检测器。弹性波检测器的弹性波信号可以在气体管道中传播,主要用于检测管道的焊缝特征,尤其是对长焊缝和应力腐蚀裂纹有较好的检测效果。最新的MKIII弹性波检测器最多可以装备96个超声波传感器,用于在液体祸合条件下发射接收超声波信号,进行管道检测。MKIII弹性波检测器的最大运行距离为150km,相对于二代产品的45km有了很大程度的提高。

五、结束语

综上所述,随着科技水平的快速发展和进步,超声波内检测技术也将更加完善,对于长输管道的检测也将更加准确,为管道的正常使用和安全运行发挥更大的作用。

参考文献

[1]宋生奎,宫敬,才建,等.油气管道内检测技术研究进展[J].石油工程建设,2013,31(2):10-14.

[2]石永春,刘剑锋,王文军.管道内检测技术及发展趋势[J].工业安全与环保,2012,32(8):46-48

[3]丁建林.我国油气管道技术和发展趋势.油气储运,2013,22(9):22-25.

[4]宋生奎,宫敬,才建等.油气管道内检测技术研究进展.石油工程建设,2014,31(2):11-13.

[5]高福庆.管道内检测技术及发展.石油规划设计,2010,11(1):78

试验研究 残余应力的超声检测方法 徐春广,宋文涛,潘勤学,李骁,靳鑫,刘海洋()北京理工大学机械与车辆学院,北京100081 摘要:建立超声应力检测与校准系统,分别利用该系统和X射线应力分析仪对Q235钢、685钢、铝合金等试样进行残余应力检测,通过对比研究表明两种方法的应力检测值并不相45号钢、同,但是应力趋势基本相同。利用超声法对焊缝、平板类零件、轴类零件、管类内壁、螺栓、涂覆层下、玻璃及陶瓷等的残余应力分布进行检测,取得较好的应用效果。 关键词:残余应力;无损检测;超声波;X射线 ()TG115.28文献标志码:A文章编号:10006656201407002507中图分类号:--- ResidualStressNondestructiveTestinMethodUsinUltrasonicgg ,,,,,uaninanXUChunSONGWentaoPANxueLIXiaoJINXinLIUHai----ggQyg (,,)SchoolofMechanicalEnineerinBeiinInstituteofTechnoloBeiin100081,Chinaggjggyjg :A,aAbstractsstemofultrasonicstresstestinandcalibrationwasestablishedndresectivelusintheygpyg,,,andXrastressanalzertodetecttheresidualstressinsecimenofQ235steel685steel45#steelandsstem-yypy,aluminumallo.Thecomarativestudshowsthatthedetectedstressvaluesofthetwomethodsaredifferentbutypy,,stresstrendisalmostthesame.Finallthrouhusinultrasonicmethodweobtainsatisfiedalicationresultontheyggpp,,,,,,theresidualstresstestinofweldointflatartsshaftartsthetubeinnerwallboltcoatinartslassandgjppgpg,ceramiccomonentandsoon.p :;;U;KewordsResidualstressNondestructivetestinltrasonicX-Ragyy 残余应力是材料内部不均匀塑性变形引起的 自身保持平衡的弹性应力。根据德国学者Mach-(马赫劳赫)博士于1erauch973年提出的内应力模1] ,可将残余应力分为三类。第Ⅰ类内应力是材型[ 料中晶粒之间的平均应力,作用范围是毫米级;第各晶粒之间因弹性Ⅱ类内应力作用在单个晶粒内,和塑性各向异性而不同;第Ⅲ类内应力存在于晶粒中,其本质上是由晶粒内存在的位错和其它缺陷造第Ⅱ类和成的。第Ⅰ类内应力称为宏观残余应力,第Ⅲ类内应力统称为微观应力。通常检测到的是宏观残余应力。 残余应力的产生主要源于不均匀的弹塑性变形、不均匀的温度变化以及不均匀的相变。在很多情况下,残余应力的产生是以上三种因素综合作用 2] 。加工制造过程中,的结果[残余应力不可避免,其 影响有利有弊,一方面希望消除残余拉应力,另一方面希望预置残余压应力。如对于大型拼焊构件,焊接残余应力可能导致构件变形或开裂,造成早期失效;而对于轧辊、齿轮、轴承、弹簧、曲轴、身管之类的零部件,主要考虑如何通过施加残余压应力来 3] 。提高零件的疲劳强度[ 为了有效地控制和利用残余应力,需要准确地检测出残余应力值,并对其状态进行合理的评估。目前残余应力检测的方法有很多,如X射线法、盲孔法、巴克豪森法等。2意大利R012年,ossini教授对比分析各种检测方法后认为,超声波法是残余应 3] 。力的无损检测发展方向上最有前途的技术之一[ 收稿日期:20131119-- );基金项目:国家自然科学基金资助项目(国家重大科51275042和科技部国际合作专项资助项目技工程专项(2011ZX04014081)-()S2012ZR0084 ,作者简介:徐春广(男,博士,教授,主要从事超声无损1964-)测量与计量技术的研究。检测与控制, 超声波应力检测是基于超声波波速与材料应力间的线性关系,这个关系即为在材料弹性极限内表现 2014年第36卷第7期 25 徐春广等:残余应力的超声检测方法 出的声弹性效应,该效应表明了声时与应力的线性相关。笔者首先介绍了残余应力超声临界折射纵波法的基本原理;然后搭建了超声应力检测与校准分别利用超声临界折射纵波法和X射线衍射系统, 铝合金等试样进行残余应力法对Q235钢、45号钢、检测,并对比研究不同方法检测的结果;最后,利用建立的超声应力检测与校准系统,应用到对焊缝、平板类零件、轴类零件、管类内壁、螺栓、涂覆层下、玻璃及陶瓷等的残余应力分布检测中。 图1LCR波的激励与被测残余应力区域 在残余应力检测过程中,环境温度造成的检测误差不可忽视,尤其是在户外长期作业时。研究表明,对于普通钢材,1℃的温度变化平均可以引起 [] 必须在检测系75MPa左右的应力变化9。因此, 统中引入温度补偿。系统通过理论分析和温度时 1超声检测基本理论 经研究发现,沿应力方向传播临界折射纵波 ]5-7 (:波速与应力之间的关系如下[LCR) 2(4104m)+2lv=2λ+λ+λ+0μ+ρμ+3+2λμμ ()1 ] 得到温度与声时的关系表达式,然后编入差试验, 由系统软件根据采集的温度数值自动消系统软件, 除温度造成的误差。 为了确保检测值准确(精度始终维持在其误差范,围之内)需要定期对残余应力超声检测系统进行校准。图2是利用微机控制拉伸机进行绝对校准的流程图,图3是对685钢拉伸试样进行校准时的声时-应力曲线图,从图中看出,校准后的曲线更接近实际加载应力曲线,满足检测精度在-20~20MPa范围之内 。 式中:v为有应力情况下LCR波的传播速度;0为被ρ测材料的密度;l和λ和μ为材料的二阶弹性常数;正值表示拉应力,负σ为应力值,μ为三阶弹性常数;值表示压应力。 )对式(两边分别求导得出声速的变化量与应1力的变化量之间的关系: ()=22=v0dσ2 式中:ddv为Lσ为应力的改变量;CR波传播速度的改变量;vK为0为零应力条件下纵波的传播速度;声弹性常数。 )由式(可得,在固定传播距离内,应力与声速2的关系可以简化为: dtσ=K0d ()3 ;为应力常数;为零应力条件下式中:K0=K0t0 Kt0 LCR波传播固定距离所需要的时间。 )由式(可知,通过精确测量L3CR波传播的声时或声时差,就可以计算得到对应的应力值。 2超声应力检测与校准系统 基于S采用一发一收模式,利用第一临nell定律,界角加工出有机玻璃透声楔,激励出的超声临界折射纵波可检测工件表面以下一定深度的残余应力值,渗透深度是其频率的函数,如图1所示。通常情况下频 ]8 ,在较薄构件中容易激发出导波[同时对应率太低, 图2系统绝对校准流程图 系统适用材料范围为金属、玻璃、陶瓷等,适用工件类别为平板、轴类、盘类、管道、螺栓、涂覆层下等;检测范围(为-σσs为被测材料屈服强度)s~;;检测误差为-2温度范围为0~Pa0~20MPaσsM 力敏感度降低;频率太高,渗透深度太浅,表面粗糙度同时波形衰减很严重 。对测试结果影响增大, 26 2014年第36卷第7期 徐春广等:残余应力的超声检测方法 3.2685钢定值试块 采用喷丸工艺制作残余压应力定值试块,试块材料为6表面粗糙度Ra不大于3.85钢,2μm。喷 加热到4丸前对试块进行退火处理(50℃保温2h,,然后再随炉冷却)以消除初始应力。热处理后,对工件表面氧化膜进行清理,然后对试块采用单个喷嘴进行喷丸处理。将试块放入保温箱(温度在18~ 图3系统绝对校准的声时-应力曲线 ,以防止长时间昼夜温差大造成试块应力自22℃) 然释放。 对6mm厚和20mm厚定值试块的残余应力分别采用超声法与X射线法进行长期监测。超声即利用法零应力标定采用不同厚度分开标定,6mm厚经退火处理而未喷丸的试块标定6mm厚定值试块零应力,20mm厚经退火处理而未喷丸的试块标定20mm厚定值试块零应力。定值试块的监测区域如图5所示 。 检测深度为0.每个检测点的时30℃;5~150mm; 间为0.5~2min。 3残余应力检测对比试验 X射线检测设备采用日本Riaku公司生产的g管MSF3M射线应力分析仪。其主要参数分别是:- ;电压为3固定)管电流为0.连续0kV(5~10mA(;;;可调)靶材为C有效聚焦为X射线类型为Kar ;4mm×4mm;240°70°θ测角范围为1~1ψ测角范。围为0°5°~4 试验前,确保X射线应力分析仪的检测精度,利用X射线应力分析仪对零应力铁粉进行检测,结满足精度要求。果在-2.74~1.5MPa范围内,3.1Q235钢 选用Q试样表面粗糙度Ra不大于235钢,分为A、每组6块,3.2μm。试样共12块,B两组, 按顺序编号。 对A、B两组试样分别采用超声和X射线应力超声检测前需要进行零应力标定,取每进行检测, 组的编号1试样作为零应力标定,每个试样都重复检测直至稳定。由于残余应力在不同方向上具有一定的差异,所以在用X射线法检测残余应力时,应保证其检测方向与超声检测方向相同。使用的超声应力传感器两个换能器的间距为5在超0mm,每次利用X射线检声检测区域选取3个等分区域, 测其中一个区域,每个试样都检测3次,如图4所示 。 图5685钢喷丸定值试块残余应力长期监测区域 3.345钢C形环 加工一4试样表面粗糙度Ra不5号钢C形环,大于3.调节C形环的径向压2μm。通过旋动螺母, 缩量,从而实现应力加载。分别采用超声法和X射线法检测加载的应力,超声法零应力标定在径向压缩量为0mm时,检测的现场和检测区域如图6所示 。 图645号钢C形环应力检测区域示意图 3.4铝合金 对L试样分别采用超声与X射线Y12铝合金:图7进行残余应力检测。试样表面经过精磨加工,为铝合金试样的检测区域示意图,其中超声检测区 图4Q235钢超声与X射线检测区域示意图 域为5个长方形区域,从左到右依次编号;X射线检测区域为1即每个超声检测区域对应5个方形区域, 2014年第36卷第7期 27 徐春广等:残余应力的超声检测方法 3个X射线区域。超声检测的零应力标定等方法与3.1中Q235钢的试验方法相同 。 图7铝合金超声与X射线检测区域示意图 4试验结果 4.1Q235钢 将A、B两组的检测均值绘制成对比折线图如图8,9 。 图1120mm厚定值试块超声与射线监测结果对比 4.345钢C形环 将C形环应力加载试验的两种方法检测值绘制成对比折线图如图12 。 图8Q235钢A 组试样超声与射线检测结果对比 图12C形环两次应力加载的超声与射线检测结果对比 4.4铝合金 将铝合金试验检测均值绘制成对比折线图如图13所示 。 图9Q235钢B组试样超声与射线检测结果对比 4.2685钢定值试块 对6mm厚685钢定值试块的残余应力长期监测结果如图1对20;0mm厚定值试块的残余应力长期监测结果如图11 。 图13铝合金超声与射线检测结果对比 5讨论 综合对Q铝合金等材235钢、685钢、45号钢、超声法残余料的超声与X射线检测结果可以看出, 应力检测值和X射线法应力检测值并不相同,这是因为超声法检测的面积和深度与X射线法不同,但是应力趋势基本相同,尤其是从4.3中对C形环应力加载后的应力折线图可以看出。 由此可见,超声法与X射线法都可以反应构件 图106mm 厚定值试块超声与射线监测结果对比残余应力状态和趋势,其理论上应该有一定的对应 28 2014年第36卷第7期 徐春广等:残余应力的超声检测方法关系,但是目前缺乏确切的理论依据。 各国都有其X射线法的理论与应用都较为完善, 检测标准。超声波法是近几年才发展起来的新技术,因此暂无可执行的标准。据此,北京理工大学检测与——残余应力的超声临无损检测—控制研究所拟定了《 界折射纵波无损检测方法》的国家标准,该标准已于2013年11月通过国家标准化管理委员会的初步审定。该团队通过对标准总则的进一步完善以及制定最终形成一整残余应力超声检测的校准和试块标准,套的超声残余应力检测标准体系。 6.2平板焊缝残余应力分布 焊接残余应力的分布不均,会导致车辆在服役过程中重要部位会发生弯曲变形,甚至产生裂纹,最终开裂。利用该装置先后对内蒙古一机集团和北方重工集团的车辆焊缝及母材的残余应力进行如图1了超声无损检测适应性研究,6所示。该材料为6焊接工艺为氩弧焊 。85钢, 6工程应用 6.1管焊缝残余应力分布 在我国“西气东输”工程中,为提高输气速度与须提高输送压力。然而由于管道焊缝残余输气量, 应力的影响,压力提高后,焊缝附近很容易因残余拉应力而出现裂纹,进而导致爆管事故。 利用残余应力超声检测与校准系统,对新疆克拉玛依“西气东输”管道焊缝残余应力进行现场检测,评如图1该管道材料为X估其危险区域,4所示,70钢,焊接工艺为手工电弧焊。为了说明评估结果的准确性,将危险段切下进行打压爆管试验,结果如图15所爆破处与评估得出的危险区域基本相符 。示, 图16焊接残余应力检测 图1是焊缝7是针对其中一条焊缝的检测结果,与理论应力状两侧区域残余应力声时差分布情况,态相符 。 图17焊缝两侧焊接残余应力分布 6.3轴类零件残余应力分布 车辆扭力轴为承力部件,容易失效。如果在加 图14 管道焊缝残余应力检测现场图 工制造过程中,扭力轴产生较大残余拉应力,则会加快扭力轴的疲劳断裂。因此,需要在使用前对扭力轴的残余应力进行评估。试验针对某一型号的,,扭力轴,沿着扭力轴0和2四条母线方°90°180°70°向,每移动5将0mm进行一次超声残余应力检测,数据绘制成应力云图如图18所示。从图中可看出,扭力轴整体应力为残余压应力,局部地区有50MPa左右的拉应力。 6.4管类内壁残余应力分布 通常身管内壁要人为产生自紧应力层,但是,往往由于自紧应力层应力分布不均会引起弯曲变形。无损地检测出身管自紧应力分布状况并及时 图15管道爆管试验验证 采取修正措施,可以提高管类构件的生产质量和使 2014年第36卷第7期 29 徐春广等:残余应力的超声检测方法 图18扭力轴残余应力的分布云图 用寿命。图1这是国际上首次检9为试验研究结果,测到身管内部的残余应力分布状态,与实际结果吻合 。 图20 螺栓轴向应力测量 图19身管自紧应力分布云图 6.5螺栓轴向应力分布 利用超声波横纵波探头,对3种不同材料(奥氏体不锈钢、低碳钢、碳钢)的螺栓进行轴向)应力检测,如图2所示,应力加载试验在拉伸0(a将螺帽处铣削平整,保证横机上进行。试验前, 达到理想耦合效果。纵波探头与螺栓良好接触, )图2为奥氏体不锈钢螺栓的加载应力与超声0(b波检测对比图,试验结果表明,检测平均误差在10%以内。 6.6涂覆层下残余应力分布 对于含有较薄防腐层的构件,超声波可以渗透防腐层,对构件涂覆层下的残余应力进行检测。图21是对涂有漆膜的铝合金试件进行残余应力超声 利用超声波法,铝板涂覆检测的现场。试验表明, 层下的表面应力分布可以较好的检测出来,但是对于漆膜内部以及漆膜与铝板之间的粘接层应力大小还无法检测。 6.7玻璃与陶瓷残余应力分布 很早人们就发现玻璃、液晶平板等材料中的应严重时会降低玻璃制品的力分布通常是不均匀的, 强度和热稳定性,影响制品的安全使用,甚至会发考虑到检测的效率和准确性,生自裂现象。然而, 玻璃的应力检测一直没有较好的手段 。 图21涂有漆膜的铝合金试件残余应力检测 对6mm×120mm×120mm的平板玻璃采用超声残余应力检测。检测前,对玻璃中部区域进行,然后风冷到室温,从而人加热处理(100~150℃)为预置一定残余应力。残余应力检测结果如图22所示,从图中看出,通过加热处理后,平板玻璃产生最大16MPa的残余应力 。 图22玻璃表面残余应力分布云图 7结论 ()采用斜入射一发一收模式,激励出的超声1 30 2014年第36卷第7 期 徐春广等:残余应力的超声检测方法 临界折射纵波(可检测工件表面以下一定深LCR波)度(与换能器的频率有关)的残余应力值,实现对残余应力的快速无损检测。 ()对比超声法与X射线法的试验结果表明,2 两种方法的检测值并不相同,这是因为超声法检测的面积和深度与X射线法不同,但是应力趋势基本相同。超声法与X射线法都可以在一定程度上反其理论上应该有一定应构件残余应力状态和趋势,的对应关系。 ()对比超声法与X射线法的优缺点可以看3出,超声法具有普遍使用、非常快速、低成本、较佳手持式、无辐射污染等诸多优的分辨率和渗透力、 点,具有广阔的发展空间。但是目前还没有相关的国际和国家标准,阻碍了技术的推广。目前,研究——残余应力的超声临无损检测—团队已经拟定了《 界折射纵波无损检测方法》的国家标准,并已于2013年11月通过国家标准化管理委员会的初步审定。 ()通过将超声应力检测与校准技术应用到焊4 平板类零件、轴类零件、管类内壁、螺栓、涂覆层缝、 玻璃及陶瓷等的残余应力分布检测中,说明了下、 残余应力超声临界折射纵波检测方法的准确性、实用性以及应用领域的广泛性。参考文献: [1]CHERAUCHE,WOHLFAHRTH,WOLFSMA- ]TIEGU,etc.DefinitionVonEiensannunen[J.gpg,echn.Mitt.1973,28:201211.Harterei-T- []2IKTORH.StructuralandresidualstressanalsisbVyy :Enondestructivemethods[M].Netherlandslsevier,Press1997. []任学冬,乔海燕,等.铁磁性材料表面残余应力3王树志, ]:巴克豪森效应的评价[无损检测,J.2013,35(6)2628.- [4]OSSININS,DASSISTIM,BENYOUNISKY,R etc.Methodsofmeasurinresidualstressesincom-g[],onentsJ.Mater.andDes.2012,35:572588.-p []5ANQX,LIY,BAIXG,etc.InsectininteritPpggy [//lateresidualstressofbultrasonicwaveC]andpyProceedinsf011Internationalonferenceno2Cog,MechatronicsandAutomation2011:11371141.- [],VAG6SHARJELISP,MEHDIAN.UsinLYAgCR ultrasonicmethodtoevaluateresidualstressindis-[]similarweldedJ.InternationalJournalofInies-pp,2:novationManaementandTechnolo013(4)ggy170174.- [][7OSEJL.UltrasonicwavesinsolidmediaM].Cam-R :,brideCambrideUniversitPress1999.ggy []8ADEGHIS,NAJAFABADIMA,JAVADIY,etc.S Usinultrasonicwavesandfiniteelementmethodtogevaluatethrouhthicknessresidualstressesdistribu--glatestioninthefrictionstirweldinofaluminumpg[],J.MaterialsandDesin2013,52:870880.-g []9ONGWT,PANQX,XUCG,etc.BenchmarkofS stressforultrasonicnondestructivetestinresidualg[//C]2013FarEastForumonNondestructiveEvalu-/:N,ationTestinewechnololicationTggypp&A2013,7376.- 欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂欂 2014全国特种设备安全与节能学术会议暨展览会征文与招展通知 由国家质量监督检验检疫总局科技委特种设备安全与节能专业技术委员会和特种设备科技协作平台共同主办、中国特检院等50多家特种设备检验检测机构支持的2014全国特种设备安全与节能科技活动周将于2014年11月20-30日期间在广东举行。本届科技活动周将有来自全国特种设备行业的8其主题是“推进科技创00到1000人参加活动,,新,引领特检未来”旨在交流最新特检科技成果,培育科技创新环境,不断促进特检科技进步。 本届科技活动周期间将举办2014全国特种设备安全与节能学术会议和全国特种设备科技成果与仪器展。征文内容为在国内外杂志和学术会议上未发表的有关锅炉、压力容器、压力管道、电梯、起重机械、客运索道、大型游乐设施、场(厂)内专用机动车辆、大型常压储罐和大型钢结构等设备的设计、制造、安装、检验检测、使用、安全监察和节能监管等环 节的安全和节能技术研究和应用方面的论文。展览会招展范围为有关锅炉、压力容器、压力管道、电梯、起重机械、客运大型游乐设施、场(厂)内专用机动车辆、大型常压储罐索道、 和大型钢结构等设备的设计、制造、安装和检验检测等方面的新成果、新技术、新产品和先进的检验检测仪器设备等。 本次活动周是2014年度我国特种设备行业一次盛大的活动,真诚邀请您踊跃投稿和参展,详细信息请登陆中国特。种设备科技协作平台门户网站www.set.or.cnpg 会议和展览秘书处联系方式: 地址:北京市朝阳区和平街西苑2号楼;邮政编码:,吴茉,张硕;电话:100013联系人:0105906830259068108;-;传真:电子邮箱:学术01059068113an_set63.com(-qyjp@1:_会议)科技成果展)kczset63.com(@1jgp (中国特种设备科技协作平台) 2014年第36卷第7期 31

煤岩渗透率研究的论文

翟雨阳1 胡爱梅1 王芝银2 段品佳2 张冬玲3

(1.中联煤层气国家工程研究中心有限责任公司 北京 100095 2.中国石油大学城市油气输配技术北京市重点实验室 北京 102249 3.中石油煤层气有限责任公司 北京 100028)

摘要:韩城地区煤层属低渗透率煤层气藏,且地质条件复杂,煤岩结构及力学性能差。在煤层气开采初期,井筒内的液柱重力在井底流压中占很大的比例,而井底流压与井周煤岩的应力状态变化规律密切相关。排采降压过程中,过小的动液面高度使煤层处于进一步压密状态,并导致渗透率降低,而过大的动液面高度使井底压力过大进而引起井周岩石产生较大软化破碎区,形成煤粉堵塞渗流通道。因此,研究煤层气动液面高度的合理区间及降低速率对开采过程中有效保持井周应力的合理分布,维持或提高储层渗透率,具有十分重要的意义。本文以韩城示范区为例,利用韩城3#,5#煤层的岩石力学试验,分析了煤岩应力状态与渗透率的关系,通过井周弹塑性应力分析,建立了不同应力状态下保持或提高绝对渗透性的合理动液面高度区间和降低速率。利用所建立的模型对韩城地区WL1,WL2井组进行计算分析,获得了韩城煤层气井开采过程中动液面高度的合理变化区间和排采速率的合理值。本论文研究成果为韩城煤层气井排采强度定量化控制提供了重要的指导意义和借鉴方法。

关键词:煤岩 应力 动液面 渗透率 排采速率

基金项目: “十一五”国家科技重大专项项目 38———煤层气排采工艺及数值模拟技术 ( 2009ZX05038) 资助。

作者简介: 翟雨阳,男,1973 年生,博士,主要从事常规油气、煤层气排采及数值模拟研究工作,通讯地址:北京市海淀区地锦路 5 号中关村环保科技示范园 7 号楼,E mail: zhaiyy@ nccbm. com. cn

Discussion on Control Method to Reasonable Height of Dynamic Liquid Level for CBM Well

ZHAI Yuyang1,HU Aimei1,WANG Zhiyin2,DUAN Pinjia2,ZHANG Dongling3

( 1. China United Coalbed Methane National Engineering Research Center Co. Ltd. ;2. Beijing KeyLaboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum,Beijing 102249,China;3. PetroChina CBM Company Limited,Beijing,100028,China)

Abstract: In China,Coal is of low permeability,complex geological conditions,and weak petrographical structure and mechanical performance. In the initial stage of the recovery,the gravity of the liquid column takes a large proportion in bottom-hole pressure ( BHP) ,and the stress state of surrounding rock are closely related with BHP. Thus,in the process of recovery,too small height of the dynamic liquid level makes coal seam be further compacted and leads to permeability reducing; reversely,too much height of dynamic liquid level easily causes BHP too large and induces the surrounding rock breaking in soften,and produces the coal powder and blocks the seepage channels. Therefore,the study on the rational range of dynamic liquid level and the reducing rate have the vital significance to effectively maintain the reasonable distribution of stress state of surrounding rock and increase reservoir permeability. Based on the 3#,5#coal rock mechanical experiments in Han-cheng,this paper analyses the relationship of the stress state and permeability of coal rock. Through the elastic-plastic stress analysis to the surrounding rock of well,the mathematical model is established,which is about the reasonable range and depres- surization rate of dynamic liquid level to maintain and improve the absolutely permeability. The established models are applied to calculate and analyze the field data of WL1 and WL2 Wells in Han-Cheng. Finally,the reasonable variations of dynamic liquid level are obtained. The researching results provide important instructions and refer- ences to the reasonable recovery control of the coal bed methane in Han-cheng.

Keywords: coal rock; stress; dynamic liquid level; permeability; depressurization rate

引言

煤层气作为非常规能源,对其有效的开采不但可以缓解我国能源短缺的问题,还可以提高煤炭资源的开采效益,并且能够减少对环境(温室效应)的影响。煤层气的有效开采受多种因素的影响,如地质构造特征、煤岩结构、煤阶、渗透率、含气量、解吸吸附特征和开采工艺等[1~5]。因此,煤层气的开采与常规油气开采相比既有相似之处,同时又存在着较大的差异。其中,应力敏感性问题在煤层气工程中表现的尤为显著[6~7]。煤岩储层的渗流能力受孔隙压力变化、煤层气解吸引起的基质收缩作用和滑脱效应的综合影响[8~10]。加载速率和加载方式的不同对煤岩的力学特性和破坏特征有较大的影响,如果加载速率较快,煤岩将呈脆性粉碎性破坏,抗压强度略有提高;相反若加载速率较低,则煤岩抗压强度偏低,延性增大。在煤层气工程实际中,煤岩结构复杂,裂隙(面割理和端割理)十分发育,随着排采的进行煤岩的应力状态将不断发生变化,导致煤岩的裂隙开始发生闭合,然后产生开裂,最终会发生破碎的过程,进而引起储层的渗流系统发生改变,而排采过程中渗透率的变化规律决定着煤层气是否能够高效的开采[11~12]。目前国内外煤层气行业在制定排采工作制度方面主要依靠经验及井筒液面变化来定性确定,这往往导致排采制度不合理,对储层造成伤害,影响开发效益。本文探讨如何通过排采过程中控制煤层气井的合理动液面高度变化规律提高煤层气效益,为煤层气排采强度定量控制提供了科学的理论依据。

1 韩城地区煤岩物理力学特性

试验测试

煤岩力学特性是反映和研究储层力学行为和应力敏感性的基础数据。利用RW2000岩石三轴压缩试验机对高径比为2∶1的煤岩心试件进行实验,测定了韩城3#,5#和11#煤岩的抗压强度和抗拉强度等参数。其中,抗压强度、弹性模量、泊松比由单轴压缩试验测得;抗拉强度由劈裂试验测得;内摩擦角、粘聚力、残余粘聚力和残余内摩擦角通过三轴压缩强度试验获得,试验结果见表1和表2。

表1 韩城煤岩单轴抗压抗拉强度及变形参数

表2 韩城煤岩三轴抗压强度试验结果

由表1和表2中的实验测试资料可见,韩城煤岩力学特性较差,抗压强度均在10MPa以下。三类煤岩比较而言,3#和5#煤的物理力学特性要比11#煤强,11#煤的残余强度非常低。因此,在煤层气工程中必须注意煤岩力学特性对排采强度控制的影响。

煤岩应力状态影响渗透率变化机理

基于对韩城主力产气煤层煤岩(3#,5#和11#煤)进行的室内试验和应力应变全曲线下煤岩应力状态对渗流能力影响关系研究表明,煤岩的绝对渗透率在初始弹性变形阶段是随有效应力的增加而减小,但减小的幅度并不大;当有效应力接近煤岩的峰值强度时,由于原有裂隙的开裂和新裂隙的出现导致渗透率缓慢增加当超过峰值强度后,渗透率迅速增大;但当有效应力接近煤岩的残余强度时,渗透率逐渐趋于稳定。

其中,煤岩弹性极限点为原生裂隙开裂、新裂纹开始萌生的临界点。

2 合理动液面高度的确定

在煤层气开采过程中,随着动液面的降低,储层煤岩应力状态不断发生变化,导致煤岩的结构特征和孔隙率等物理力学特性发生改变,因而影响了储层的渗流能力。在此过程中,储层渗透率的变化规律与煤岩的力学特性和煤岩的应力状态变化规律密切相关。根据煤岩应力状态对绝对渗透率的影响关系,考虑煤层气井井周具有破碎区的弹塑性应力状态,则可以通过对井周围岩进行应力状态变化规律分析,另由煤层气生产不同阶段井周应力分布与井底流压及套压和液柱高度之间的关系,忽略气柱摩擦阻力,推导得出保持储层处于塑性裂隙发育阶段的液柱高度合理区间为

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

则,动液面高度为h'w=H-hw

另由工程实际分析可知,井底流压的上限值不超过储层原始压力pe。式中:H为储层埋深;pe,pc,p0分别表示为储层压力,套管压力和原岩平均水平应力;c,φ,cr,φr,St分别表示煤岩的粘聚力,内摩擦角,残余粘聚力,残余摩擦角和抗拉强度;ρg表示液柱重度。

因此,要想提高渗透率,应控制合理的动液面高度变化范围,以保持井周应力状态为弹塑性状态,以在井周形成割理或裂隙贯通的流体运移通道,且随着开采过程中塑性区的发展,在井周出现塑性软化区或破碎区,但需防止井周出现过大塑性软化区。

合理的动液面高度变化范围与煤岩的力学性质、储层埋深密切相关,尤其是受内摩擦角影响较大。由于储层的软化区受煤粉的影响会使渗透率受到抑制,因此,在煤层气开采过程中需根据储层的力学特性及埋深来合理控制动液面高度,尽量避免软化区大范围产生,以免造成储层伤害而影响煤层气的进一步开采。

3 动液面合理降低速率

由煤岩的加载速率效应可知,加载速率对煤岩的强度呈正相关影响,同时煤岩脆性亦增强。对于各向异性的煤岩介质,过快的加载速率不利于煤岩中的原始裂隙裂缝的稳定扩展和煤层气的渗透的提高。同理,对于煤层气工程排采过程中的动液面降低速率对井周储层煤岩具有类似的影响机理,如果动液面降低速率过快,将会使储层煤岩有效应力快速增大,最终不合理的动液面降低速率导致煤岩出现脆性破碎并有大量煤粉产生,对储层造成巨大的伤害。所以,煤层气开采不同阶段需控制动液面降低速率在合理值域内。

当储层煤岩处于初始弹性应力状态下时,

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

当储层煤岩处于裂隙扩展的塑性阶段,即动液面高度满足(1)式时,

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

式中:h'w表示动液面降低速率;ωcr、ωce为塑性软化阶段和弹性阶段的动液面降压速率上限值,可通过试验和现场数据综合分析确定。

4 韩城地区工程应用

韩城地区煤层气为多煤层储层联合排采,煤岩力学特性较差,合理的动液面变化规律对煤层气的高效排采具有很大的意义。根据韩城煤岩的试验力学参数和合理动液面高度变化规律的确定方法(见式1~3),对韩城地区WL1和WL2的3#和5#煤联合开采的典型煤层气井排采数据进行了统计计算分析,结果见表3。

表3 合理动液面高度降低速率上限值

通过拟合分析可得:

在开采初期的弹性阶段,3#、5#煤联合开采井的动液面近似合理降低速率上限值h'w(m/d)随储层埋深h(m)的变化规律分别为:h'w≤~;当井周煤岩处于塑性阶段,3#,5#煤联合开采井的动液面合理降低速率上限值h'w(m/d)随储层埋深h(m)的变化规律为:h'w≤~。

开采过程中无论是初始弹性阶段或塑性破坏阶段,动液面降低速率上限值与储层埋深均近似呈线性递增的规律。煤岩力学特性对开采过程中降液速率影响较大,因此对于力学特性较差的储层,需控制好降液速率才能维持较高的排采能力。初始弹性阶段的降液速率比中期塑性阶段的降液速率一般高4~5倍,这也恰好与室内强度实验曲线峰值前后稳定加载的速率值相同。考虑到工程实际中的安全因素,建议取的安全系数。

5 结论

(1)本文基于煤岩试验揭示了煤层气开采过程中井周煤岩应力状态对渗透率影响的力学机理;储层有效应力随着压降漏斗不断扩展而不断增大,煤岩从原岩区到井壁处,由原始的弹性状态进入塑性状态,在井壁处出现张拉破坏区,此时裂隙开裂积累,日产能达到最大。

(2)以韩城地区煤层气工程数据为依托,探讨提出了生产过程中为提高储层的渗流能力,合理动液面高度变化规律的控制范围及降低速率上限值,对煤层气井的合理排采具有借鉴意义。

(3)煤层气开采受多种因素的综合影响,还需考虑表皮效应(储层伤害)和压裂效果的影响,有待进一步考虑研究。

参考文献

[1]张新民,张遂安.1991.中国的煤层甲烷[M].西安:陕西科学技术出版社

[2] SCHAFERPS. H V. 1992. Aguide to coalbedmethane operations [M] . Chicago: US Gas Research Institute SAULSBERRY JL, SCHAFERPS, SCHRAUFNAGELRA. 1996. Aguide to coalbed methane reservoir engineering [M]. Chicago: US Gas Research Institute

[3] 傅雪海等 . 2003. 多相介质煤层气储层渗透率预测理论与方法 [M] . 北京: 中国矿业大学出版社

[4] 郝琦 . 1987. 煤的显微孔隙形态特征及其成因探讨 [J] . 煤炭学报 . ( 4) : 51 ~ 54

[5] 唐巨鹏,潘一山,李成全等 . 2006. 有效应力对煤层气解吸渗流影响试验研究 [J] . 岩石力学与工程学报,25 ( 8) : 1563 ~ 1568

[6] 秦跃平,王丽,李贝贝,崔丽洁 . 2010. 压缩实验煤岩孔隙率变化规律研究 [J] . 矿业工程研究 . 25 ( 1) : 1~ 3

[7] Jüntgen H. 1987. Research for future in situ conversion of coal [J] . Fue,l,66: 272

[8] Gan H,Nandi S P,Walker P L. 1972. Nature of porosity in A-merican coals [J] . Fue,l ( 51) : 272 ~ 277

[10] 苏现波,陈江峰,孙俊民等 . 2001. 煤层气地质学与探勘开发 [M] . 北京: 科学出版社

[11] 李相臣,康毅力,罗平亚 . 2009. 应力对煤岩裂缝宽度及渗透率的影响 [J] . 煤田地质与勘察学报,37( 1) : 29 ~ 32

[12] Palmer I,Mansoori J. 1996. How permeability depends on stress and pore pressure in coalbeds: a new model. Annual Technical Conference and Exhibition. Denver,Colorado. SPE 36737. 557 ~ 564

曾家瑶1,2 吴财芳1,2

(1.中国矿业大学资源与地球科学学院江苏徐州221008 2.煤层气资源与成藏过程教育部重点实验室江苏徐州221008)

摘要:煤储层渗透性是制约煤层气开发的重要因素之一。本文通过对黔西-滇东地区煤储层渗透性特征的深入研究,结合大量煤田地质勘探资料,阐明了研究区控制渗透率的主要地质因素。研究表明:整个研究区自东向西渗透率具有逐渐降低的趋势,黔西织纳煤田渗透率远高于其他区域。在影响渗透率的多个因素中,区域构造应力、煤层裂隙发育状况、煤层埋深、煤层厚度等对煤层渗透性有着重要的控制作用。

关键词:煤层 渗透率 构造应力 煤层埋深 煤层厚度

国家科技重大专项项目 ( 2011ZX05034) 、国家973 煤层气项目 ( 2009CB219605) 、国家自然科学基金重点项目( 40730422) 及青年科学基金项目 ( 40802032) 资助。

作者简介: 曾家瑶 ( 1987 ) ,女,贵州省大方县人,就读于中国矿业大学 ( 徐州) 资源与地球科学学院,硕士,研究方向为煤层气勘探与开发。通讯地址: 江苏省徐州市中国矿业大学南湖校区研一楼 5 单元 302. Tel:,E-mail: jiayaohhaha@ 126. com

Study on Characteristics of coal reservoir Permeability and Factors of Geological Controlling in Western Guizhou-Eastern Yunnan Area

ZENG Jiayao1,2WU Caifang1,2

( 1. School of Resource and Earth sciences,China University of Mining and Technology, Xuzhou Jiangsu 221008,china 2. Key laboratory of CBM Resource and Reservoir Formation Process,Xuzhou Jiangsu 221008 china)

Abstract: Coal seam permeability is one of the key factors that restrict the development of coalbed methane ( CBM) . This paper clarifies the main geological factors which influence the coal seam permeability of Western Guizhou Province-Eastern Yunnan Province by analyzing the characteristics of coal seam permeability and referring to geological exploration data of coal field. According to the research results,the permeability of the whole area has a declining tendency from East to West and the permeability of Zhina Coal Mine in Western Guizhou is dramatically higher than other areas. Among all factors affecting permeability,regional tectonic stress,coal seam fractures, coal seam buried depth and coal seam thickness are of significant controlling effects.

Keywords: coal seam; permeability; tectonic stress; coal seam buried depth; coal seam thickness

引言

黔西地区煤层气资源丰富,主要赋存于六盘水煤田和织纳煤田的向斜构造,其中甲烷含量超过8m3/t的“富甲烷”区资源量占贵州省资源总量的90%以上。滇东地区煤层气资源量为4500亿m3,占云南省煤层气资源总量的90%。

煤储层的渗透率是衡量煤层气可开采性最重要的指标之一(秦勇等,2000),在煤层气气源已查明的前提条件下,煤储层渗透率又是制约煤层气资源开发成败的关键因素之一。煤储层在排水降压过程中,随着煤层气的解吸、扩散和排出,有效应力效应、煤基质收缩效应和气体滑脱效应使煤储层渗透性呈现动态变化。深入分析渗透率分布特征及其地质控制因素,对于煤层气有利区带优选及煤层气开发措施优化具有重要的理论意义和现实意义。

1 煤层渗透率特征

煤层试井渗透率

据统计,贵州省境内目前有9口煤层气井19层次的试井数据(表1)。织纳煤田两口煤层气参数井位于比德向斜化乐勘探区,测试煤层埋深浅于600m,试井渗透率较高,在~之间,平均,属于中渗透率煤层,具有商业性开发的有利条件。六盘水煤田7口煤层气探井,全部分布在东南部的盘关向斜和青山向斜,煤层试井渗透率~,多低于,平均,远远低于织纳煤田,属于特低渗透率煤层。

表1 黔西地区煤层气井试井成果

续表

煤层渗透率分布特征

根据表1统计结果,取埋深浅于650m的测试煤层为基准,黔西(乃至滇东)地区上二叠统煤层渗透率区域分布规律十分明显,总体上由东向西趋于降低。例如,织纳煤田比德向斜煤层试井渗透率平均为,六盘水煤田盘关向斜金竹坪勘探区和青山向斜马依东勘探区煤层渗透率在左右,进一步向西至滇东恩洪、老厂、宣威等向斜或煤田渗透率平均值只有。这一区域分布规律,一方面是聚煤期后构造变动对煤层破坏程度的强弱不同的结果,另一方面与区域现代构造应力场对煤层裂隙的挤压封闭程度有关。

由于煤储层埋藏深度与相应地层有效应力存在相关性,埋藏越深,有效应力越大,渗透率越低(傅雪海等,2003;周维垣,1990),在层位上,煤层渗透率似乎没有明显的分布趋势(表1)。例如,对于化乐勘探区1602井、亮山勘探区QH1井、金竹坪勘探区GM2井和马依东勘探区MY01井,渗透率具有随煤层埋深的增大而减小的趋势。而在马依东勘探区MY03井、亮山勘探区QH3井和化乐勘探区3603井,煤层层位降低,试井渗透率趋于增高。

2 影响煤层渗透率的地质因素

煤层渗透率的影响因素有许多,如构造应力场、煤层埋深、煤储层厚度,煤储层压力,煤体结构、煤岩煤质特征、煤级及天然裂隙都不同程度地影响煤层渗透率,可以是有多因素综合作用的结果,也可以是某一因素起主要作用。

构造应力场对煤层渗透率的影响

黔西滇东地区基底交叉断裂控制盖层中方向各异的褶皱断裂带,组合为弧形、菱形和三角形等各种构造型式,构成统一的区域构造格局(图1)。其中,织纳煤田位于百兴三角形构造,六盘水煤田的构造主体是发耳菱形构造和盘县三角形构造,构造应力场极其复杂(图1)。对于三角形构造,差应力值在3个顶角处最大,边部次之,向三角形内部递减,构造变形在角顶和边部强、中部弱,这与织纳煤田煤体结构区域分布规律一致。由此推测,六盘水煤田中—南部可能发育两个煤体结构相对完整的中心地带,分别是中部发耳菱形构造区和南部盘县三角形构造区的中央地带。其中,发耳菱形构造区构造隆升相对强烈,含煤地层保存条件较差,只有零星分布。因此,黔西地区煤层渗透性较好的地带可能位于两个地带:一是织纳煤田中部,如水公河向斜、珠藏向斜、牛场向斜等区域;二是六盘水煤田南部的盘关向斜中央地带,大致位于盘县县城以北。

黔西—滇东地区煤层物性与地应力状况关系密切,尤其是煤体结构、煤层渗透率和煤储层压力,地应力场则受控于区域构造背景。这种控制作用,具体表现在地应力梯度的高低,这是造成煤层渗透率区域分布差异的重要地质原因。

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

Enever等(1997)通过对澳大利亚煤层渗透率与有效应力的相关研究发现,煤层渗透率变化值与地应力的变化呈指数关系(周维垣,1990):

K/K0=e3CΔδ

式中:K/K0为指定应力条件下的渗透率与初始渗透率的比值;C为煤的孔隙压缩系数;Δδ为从初始到某一应力状态下有效应力。

据黔西—滇东18口煤层气井36层次试井资料,地应力场中的最小主应力(闭合压力)梯度降低,煤层渗透率随之增高,两者之间呈相关性良好的负幂指数关系。另外,渗透率随着地应力和煤层原生结构的破坏程度的增大而降低。区内最小主应力梯度从东往西增大,在织纳煤田比德向斜为17~21kPa/m,六盘水煤田青山向斜为12~27kPa/m,六盘水煤田盘关向斜为21~33kPa/m,滇东老厂矿区为17~25kPa/m,滇东恩洪向斜为20~34kPa/m。越靠近康滇古陆方向,最小主应力越高。

煤层埋藏深度对渗透率的影响

岩层的密度远大于孔隙中流体的密度,致使垂直应力的增加幅度较大,傅雪海等(2001)研究认为煤储层渗透率具有随埋深加大呈指数减小的趋势。这也从另一方面反映了地应力对煤储层渗透率的影响,即随着埋藏深度的增加上覆地层的重力对裂隙的压迫作用增强,使有效应力增加,反而不利于煤储层的裂隙发育,从而渗透性降低。

黔西滇东地区煤层渗透率与埋藏深度之间关系尽管较为离散,但负幂指数趋势十分明显;同时,在测试煤层相似埋深(500~700m)的情况下,渗透率同样具有由东往西降低的趋势(图2)。渗透率与煤层埋深之间负幂指数关系的转折深度在600m左右,对应的渗透率约。煤层渗透率一旦低于,则渗透率与埋藏深度之间就没有确定的关系,指示着渗透率极低不仅是与煤层的埋深有关,也与其他因素有关,而且其他因素对煤层渗透性的影响很大。导致煤层气地面开发难度大,如盘关向斜和滇东恩洪向斜。青山向斜则呈现相反的趋势,随着埋深的增加,煤层渗透率却呈增大的趋势,矿区煤层甲烷含量在平面上有一定的分布规律,表现出“北高南低、东高西低、深高浅低”的总体趋势(彭伦等,2010)。这一点,是由于青山向斜地区与外界水力联系弱,因受水力封闭和水力封堵,煤层含气量高,加之煤体结构较完整,渗透性较好,具有良好的煤层气开发潜力。

图2 黔西—滇东地区煤层渗透率与埋藏深度之间关系

煤层渗透率与储层压力的关系

煤层埋深增大的情况下,垂向地应力导致储层压力增大,有效应力随之显著减小,煤体发生弹性膨胀而致使裂缝宽度减小,渗透性同时降低。研究区煤储层压力与煤层渗透率呈负对数关系,这与储层压力受控于煤层埋深有着必然的联系。比如,在储层压力为5~7MPa之间,煤层渗透率的分布比较离散,没有特定的趋势(图3)。

图3 黔西—滇东地区煤层渗透率与煤储层压力关系

煤层厚度对渗透率的影响

秦勇等(2000)发现,华北石炭二叠系煤层以渗透率为界,煤层厚度与渗透率之间表现为两段趋势相反的分布规律。当渗透率小于时,煤层厚度增大,渗透率总体上增高。当渗透率大于时,渗透率随煤厚的增大反而降低。

就黔西地区渗透率大于的煤层来说,渗透率随煤层增厚呈现出减小的趋势(图4),这与煤厚和裂隙发育密度之间的负相关性有关,泥炭聚集期各种地质因素的综合作用起着重要控制作用。然而,渗透率小于时的煤层厚度与渗透率之间成正相关关系,用上述原理显然无法解释其原因,表明其他因素起着更为重要的控制作用,如煤体结构、裂隙开合度以及煤级和煤岩组成控制之下的裂隙发育密度等。

其他因素对渗透率的影响

渗透率比较小时,煤层埋深、煤储层压力和煤层厚度与渗透率的关系都不是简单的线性关系,这表明煤储层渗透率还受其他因素的控制,比如煤层的孔、裂隙结构和煤体结构等。

图4 黔西地区煤层渗透率与煤层厚度的关系

研究区内平面上自东北向西南方向孔隙度呈现出先增加后减少而后再增加的双峰型特征,煤储层孔隙度发育偏低,渗透率随孔隙度的增加而增加,孔隙度受区域变质影响显著,随最大镜质组反射率的增大先增长后缓慢下降。盘关向斜煤储层孔隙发育较好,有利于煤层气的储集和渗流,其次为织纳煤田部分储层发育较好,大部分煤储层微小孔极为发育非常有利于煤层气的储集,但孔隙连通性较差不利于煤层气的渗流运移;格目底向斜及滇东地区煤储层孔隙发育相似,区域内孔隙类型多、差异大、非均质性强,储集性相对较好,但整体不利于煤层气渗流运移。

贵州省境内不同煤田的煤体结构差别极大。总体来看,六盘水煤田煤体结构破碎,如盘关向斜以构造煤为主;织纳煤田煤体结构相对完整,如水公河向斜多数煤层原生结构完好。整体结构的差异是织纳煤田煤层渗透率远高于六盘水煤田的重要原因。

3 结论

综上所述,黔西滇东地区煤层渗透率的大小受到构造应力、煤层埋深、煤储层压力和煤层厚度等多个因素的影响,其中构造应力是影响煤层渗透率的最主要因素。

(1)煤层渗透率随地应力场中的最小主应力梯度的减小而增大。

(2)黔西滇东地区煤层渗透率随煤层埋藏深度的增加而呈指数降低。受此影响,煤储层压力与煤层渗透率呈负对数关系。

(3)在构造应力对煤储层渗透率总体控制之下,存在着裂隙、储层压力、煤层厚度、水文地质条件等多种因素的叠加,在构造应力相似的条件下,其他因素起着更重要的作用。

参考文献

傅学海,秦勇等.2001.沁水盆地中—南部煤储层渗透率主控因素分析[J].煤田地质与勘探,29(3):16~19

傅雪海,秦勇,姜波等.2003.山西沁水盆地中南部煤储层渗透率物理模拟与数值模拟[J].地质科学,38(2):221~229

林玉成.2003.滇东地区煤层气资源及富集规律[J].云南煤炭.1:53~57

彭伦,刘龙乾等.2010.青山矿区水文地质控气特征研究[J].煤,19(6):1~3

秦勇,叶建平,林大扬等.2000.煤储层厚度与其渗透率及含气性关系初步探讨[J].煤田地质与勘探,28(1):24~27

周维垣.1990.高等岩石力学[M].北京:水利电力出版社,158~214

R. E. Enever,A. Henning,The Relationship Between Permeability and Effective Stress for Australian Coal and Its Implica- tions with Respect to CoalbedMethane Exploration and ReservoirModeling [C] . Proceedings of the 1997 International Coalbed Methane Symposium. Alabama: The University of Alabama Tuscalcosa,1997. 13 ~ 22

林 亮 姚 勇 黄晓明

( 中联煤层气有限责任公司 北京 100011)

摘 要: 通过实施国家科技重大专项 《大型油气田及煤层气开发》项目 “鄂尔多斯盆地石炭二叠系煤层气勘探开发示范工程”柳林示范项目,收集大量煤田资料并施工煤层气试验生产井,研究了柳林地区煤层气储层孔渗发育特征。研究结果表明: 该区煤岩孔隙度主要受煤化程度、显微组分、矿物含量和煤体结构的影响; 煤层渗透率变化较大,渗透率相对较低,具有较强的非均质性; 总体上由北东向南西方向渗透率有减小趋势,太原组较山西组煤层渗透率偏低。

关键词: 柳林区块 煤层气 孔隙变 渗透率

基金项目: 国家科技重大专项示范工程 62 ( 20092 ×05062)

作者简介: 林亮,1983 年生,男,工程师,硕士,2009 年毕业于中国矿业大学 ( 北京) ,现工作于中联煤层气有限责任公司国际合作与勘探部,从事含油气盆地分析及煤层气勘探开发利用研究工作。010 -64298881,atlan-tics@ foxmail. com

The Porosity and perm eability Characteristics of the Liulin Coalbed Methane Block,Shanxi Province

LIN Liang YAO Yong HUANG Xiaoming

( China United Coalbed Methane Co. ,Ltd,Beijing 100011,China)

Abstract: The Liulin demonstration projects of“ordos Basin Carboniferous and Permian’ s coalbed methane Exploration and Development Demonstration Project”is one of the Major National Science and Technology special projects on “Large Oil and Gas Fields and Coalbed Methane Development Program. ” In order to study the porosi- ty and permeability Characteristics of coalbed reservoir characteristics of this area,we collected a large number of coal fields data and many Parameters and production wells have been implemented. The results show that the coal porosity is mainly affected by the degree of coalification,maceral,mineral content and coal shape. The coal per- meability was relatively low and varied significantly,and it shows a decreasing trend from northeast to southwest area. The coal permeability of Taiyuan formation is lower than that of Shanxi formation.

Keywords: Liulin block; coalbed methane; porosity; permeability

柳林位于山西省西部,河东煤田中部,南邻石楼北区块,东邻杨家坪区块。行政区划隶属于山西省吕梁市柳林县的穆村镇、薛村镇、庄上镇、高家沟乡、贾家垣乡。地理坐标:东经110°44'00"~110°53'00",北纬37°21'00"~37°31'00",区块东西宽约,南北长约,面积。

1 区域地质背景

河东煤田主要处在黄河东岸———吕梁山西坡的南北向构造带上,属于李四光指出的“黄河两岸南北向构造带”的东岸部分。煤田总体上是一个基本向西倾斜的单斜构造,属于吕梁复背斜西翼的一部分,在单斜上又发育了次一级的褶曲和经向或新华夏系的断裂构造[1]。

柳林地区位于河东煤田中段离柳矿区西部,南邻石楼北区块,北邻三交区块,构造上位于鄂尔多斯盆地东缘石鼻状构造南翼。在研究区北部,地层向西倾斜,向南逐渐转为向西南倾斜,总体为一向西或西南倾斜的单斜构造。地层产状平缓,倾角约3°~8°。在鼻状构造的背景上,发育有起伏微弱的次级小褶曲,起伏高度一般小于50m。区内断层不发育,仅在区块北部发育有由聚财塔南北正断层组成的地堑及其派生的小型断层。地表未见陷落柱,也未见岩浆活动[2]。

本区块内及周边赋存的地层有奥陶系中统峰峰组(O2f);石炭系中统本溪组(C2b)、上统太原组(C3t);二叠系下统山西组(P1s)、下石盒子组(P1x);二叠系上统上石盒子组(P2s)、石千峰组(P2sh);三叠系下统刘家沟组(T1l)、和尚沟组(T1h);新生界上第三系上新统(N2);第四系中更新统(Q2)、上更新统(Q3)、全新统(Q4)。本区内发育煤层14层,其中山西组5层,自上而下编号为1、2、3、4(3+4)、5号煤层;太原组9层,自上而下编号为6上、6、7、7下、8+9、9下、10、10下、11号[2]。其中山西组的2、3、4(3+4)、5号煤层,太原组的8+9、10号煤为主要可采煤层[3]。

2煤储层孔隙特征

煤岩孔隙是指未被固体物质充填满的空间,为煤结构的重要组成部分,与煤储层的储集性能、渗透性等密切相关。一般来说,随着煤阶的升高,煤中的总孔容呈指数下降,总的规律为微孔和小孔增加、大孔和小孔减少[4]。

空隙的划分方案较多,一般采用.霍多特方案,即大孔大于1000nm,中孔为1000~100nm,小孔为100~10nm,微孔小于10nm的标准。

从鄂尔多斯盆地东缘煤储层孔隙体积百分含量上来看,孔隙体积百分含量在~之间,均值为,微孔变化在~,平均为;大孔次之,介于~,均值为;中孔最弱,变化于~,平均。不同地区不同层位,煤储层孔隙分布变化较大[5]。

杨家坪井组数据(表1)表明柳林地区煤层孔隙以小孔为主体,一般占煤层孔隙的40%~55%,此外,微孔和大孔发育较多,中孔发育最少。平均总孔隙含量在~之间,孔隙发育情况一般。在4MPa有效上覆压力条件下,柳林地区8号煤层总孔隙度平均为,5号煤层总孔隙度平均,4号煤层总孔隙度平均为,以8号煤层孔隙度最优。

表1 柳林地区不同煤层孔隙发育情况(注:杨家坪井组数据)

总体上看,柳林地区总孔容一般变化于(148~547)×10-4cm3/g之间,平均323×10-4cm3/g左右。如图1,孔容分布上主要以小孔、微孔为主,尤以小孔含量为优,中孔发育最少。

图1 柳林地区各类孔隙孔容比对比图

柳林地区煤层压汞总孔比表面积在~之间,且小孔和微孔总孔比表面积比占绝对优势,大孔和中孔所占比率甚微,过渡孔所占比例又略高于微孔所占比例。

3 煤储层渗透率特征

研究区内3+4号煤层渗透率为~,平均;FL-EP1井渗透率相对较高;5号煤层渗透率变化范围为~,平均;8+9号煤层渗透率变化范围~,平均;整体上8+9煤层渗透率要明显高于3+4号与5号,各个层位渗透率都呈现出北高南低的特点[6](图2)。

煤岩渗透率平面变化较大,西部由于煤层埋深较大,渗透率相对较低,测试反映了煤层具有较强的非均质性;总体上由北东向南西方向渗透率有减小趋势,太原组较山西组煤层渗透率高。

煤储层的渗透性是控制煤层甲烷气生产能力的主导因素。渗透率一般指试井渗透率,通过试井资料获得,由于研究区内煤层气探井有限,所以煤层气试井渗透率资料非常有限。据已有资料,柳林地区的渗透率在~10mD之间,南部渗透性要好于北部。煤层气储层的渗透率受煤体结构、裂隙系统的发育程度、地应力等影响;此外,煤层气开采过程中外界条件的改变特别是储层压力变化引起的有效应力效应与基质收缩效应,也对煤岩渗透率产生强烈影响:

图2 柳林地区4、5、8+9煤层渗透率

1.柳林示范区及周边地区以中煤级为主,裂隙非常发育是渗透率的主控因素。裂隙多近东西向展布,端裂隙与之斜交。两组裂隙在平面上以规则的菱形网格状为主,次为不规则网状,孤立状很少见到。

大孔尤其是裂隙的发育情况决定了储层在原始地层条件下的渗透能力。裂隙的发育程度主要是指裂隙的密度(或间距)、长度、宽度、裂口宽度等,它们的值越大,煤层的渗透性越好。裂隙系统的发育程度与煤岩成分、煤变质程度、构造应力等因素密不可分。光亮型煤、中等变质程度的烟煤(如肥煤、焦煤、瘦煤)、低灰分煤等条件最有利于裂隙的大量形成。柳林地区煤以半亮煤为主体,煤级以焦煤为主,有利于形成裂隙。统计面裂隙密度表明,裂隙密度较大,且裂隙大部分未被充填,大幅度扩大了煤体的渗透率[6]。

2.煤层是对地应力十分敏感的天然气储层。通常,地应力场被分解为垂直应力和水平应力。垂直应力是由上覆岩层的重量引起的。煤层裂隙系统的渗透率是有效应力的函数,有效应力是垂直力与地层压力的函数差。垂直应力和地层压力均随埋藏深度的增加而成线数增加关系,由于岩层的密度远大于孔隙中流体的密度,可知,有效应力随深度的增加而增大,裂隙系统的渗透率随着深度的增加而变小。柳林地区煤层由东往西,往南埋深加大,例如4号煤层埋深由东部的200m加大到西南的1250m,渗透率在地应力的作用下呈现变小的趋势。

3.示范区内构造应力场及其伴生的节理发育特征是控制煤储层渗透率的主要因素之一,南部节理变化较小,而中部较大,这预示在中部地区不同走向节理交切部位可能呈网状分布,形成高渗透性地层分布区。同时,统计数据表明,示范区内中部较东西两侧渗透性好。受燕山运动影响,柳林地区地层裂隙呈北东向展布;FL-EP1井山西组3+4号煤层压裂结果显示,造缝裂隙方向仍为北东南西向,与煤层主裂隙方向一致。

4结论

柳林矿区内所含的煤系地层由老到新分别为上石炭统本溪组(C2b)、上石炭统太原组(C3t)以及下二叠统山西组(P1s)。其中矿区内有煤层气勘探潜力的煤层为上石炭统太原组底部8+9+10号煤,下二叠统山西组3+4+5号煤。

两套煤层宏观煤岩类型以半亮煤和半暗煤为主,光亮煤和暗淡煤为辅,镜质组含量高,主要为焦煤。煤层孔隙以小孔为主体,一般占煤层孔隙的40%~55%,此外,微孔和大孔发育较多,中孔发育最少。总孔容一般变化于(148~547)×10-4cm3/g之间,平均323×10-4cm3/g左右。汞总孔比表面积在~之间,且小孔和微孔总孔比表面积比占绝对优势。

煤岩渗透率平面变化较大,西部由于煤层埋深较大,渗透率相对较低,测试反映了煤层具有较强的非均质性;总体上由北东向南西方向渗透率有减小趋势,太原组较山西组煤层渗透率高。

从煤层厚度、煤岩煤质、孔渗条件等方面考虑,柳林地区具备煤层气富集成藏的条件,有大规模开发的潜力。

参考文献

〔1〕刘新社,席胜利,周焕顺.2007.鄂尔多斯盆地东部上古生界煤层气储层特征[J].煤田地质与勘探,35(1)

〔2〕张新民,庄军,张遂安.2002.中国煤层气地质与资源评价[M].北京:科学出版社

〔3〕黄晓明,林亮,王赞维等.2010.山西柳林地区煤系地层对比特征[J].煤层气勘探开发理论与技术———2010年全国煤层气学术研讨会论文集

〔4〕张松航,汤达祯,唐书恒.2009.鄂尔多斯盆地东缘煤层气储集与产出条件[J].煤炭学报,10

〔5〕杨光,刘俊来.2008.鄂尔多斯盆地煤岩变形与煤储层特性关系的实验研究[J].地质学报,10

〔6〕要惠芳,阴翠珍.2006.山西河东煤田柳林杨家坪煤层气储层地质特征[J].中国石油勘探,11(3):68~72

  • 索引序列
  • 煤油渗透检测焊缝论文
  • 磁粉检测和渗透检测论文
  • 超声检测焊缝论文
  • 焊缝超声检测论文
  • 煤岩渗透率研究的论文
  • 返回顶部