初中数学优秀论文
初中数学优秀论文范文
著名数学家华罗庚说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学"特别是二十一世纪的今天,数学的应用更是无所不在那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合新一代的学生呢 我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿那么,数学活动课就是让我们充分体现自主学习的一种教学方式 活动课上,在老师的指导下,我们分成小组,通过自己动手去测量,拼凑,剪切,计算,去探索发现的规律,掌握数学知识这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增 例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴,拼凑变成一个我们已经会计算面积的图形呢 大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形同学们通过观察,思考,认识到拼成的长方形的"长"和"宽",分别就是原来平行四边形的"底边"和"高"由此,大家终于自己找到了平行四边形面积公式为:S=再比如,上《有余数的除法》这节课时,老师采用让同学们玩扑克牌的游戏,使大家很快理解和掌握了有余数的除法的计算规律,让大家在轻松愉快的活动中学到知识 我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对 今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析这道题目是这样的:求3333333333的平方中有多少个奇数数字 分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数即3×3=9→积中有1个奇数数字33×33=1089→积中有2个奇数数字333×333=110889→积中有3个奇数数字3333×3333=11108889→积中有4个奇数数字…… 从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字 做了这道题,我知道做数奥不能求快,要求懂它的方法总之,我认为用活动课的方式上数学课,是我们小学生非常喜欢的在课堂上,每个同学对知识的探索过程充满了好奇心,都迫切渴望通过自己的实验活动,去找到解决问题的方法学习中,我们充分体验套了做学习的主人的快乐和自豪希望老师们能多用活动课的方式来上数学课这样,我们将会学的更扎实,更轻松,更灵活,更优秀
呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
初中数学优秀论文题目
数学小论文数学是生活中的一分子,它是在“生活”这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的数学是没有魅力的数学,同样,人类也离不开数学,离开了数学人类将无法生存。 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合我们这些新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿。那么,数学活动课就是让我们充分体现自主学习的一种教学方式。 活动课上,在老师的指导下,我们可以分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,不仅培养了我们的动手能力,而且提高了我们的思维能力,又让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积的计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,一些同学发现可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”。由此,大家终于可以通过自己的动手能力而找到了平行四边形面积公式为:S=ah。 在数学的世界里,我们还可以使用图象法解数学习题。图象法解数学习题的特点是把繁琐的演算及逻辑推理过程,在函数图象的辅助下加以简化和形象直观,解题思路清淅、直观、明了、可靠.然而,怎样才能在图象法解题过程中做到顺手沾来、得心应手、准确无误呢?我认为关键是要有丰富的初等函数图象知识。而要达到这一点,就得掌握初等函数在复合过程中引起的图象变换规律,以规律求拓宽,为图象法解题创造良好的基础条件。 在教学中老师若能恰当地把握传授知识与增减能力的关系,动用灵活的教学方法,充分发挥课本的功能,就可以事半功倍,提高课堂教学效果.笔者在教学实践中,始终抓住课本这个“纲”,在课本教学上狠下功夫,减少复习资料,不搞题海战术,既减轻学生负担,又培养了学生的多种能力. 我还认为老师要重视课本概念的阅读,培养学生的学习能力。 中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂以外,另外一个原因是我们许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝的讲,满满黑板的写,使学生产生了依赖性.数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容.此外,还可以发挥课本使用文字的垂范作用,潜移默化培养和提高学生准确说练的文字表达能力和学习能力. 重视阅读数学课本,首先要老师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,老师按课本原文逐字,逐句,逐节的阅读.在阅读中,让学生反复琢磨,认真思考,对书中的叙述的概念,定理,定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如,换成其它词语行吗?省略某字行吗?加上某某字行吗?等等.要读出书中的要点,难点和疑点,读出字里行间所蕴藏的内容,读出从课文中提炼的数学思想,观点和方法.教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误,笔误所产生的概念错误,从而使学生能准确地掌握。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。基于这个目的,对我们初中数学来说,老师们必须要改变原来“应试”教育的教学方法,让同学们亲自体验和经历,让他们自己去探索知识的来源。 我认为老师也要换个角度来教学,为每个学生着想 ,我不时会听到同学们说:“书本儿上我看懂了的老师讲,而且不厌其烦的讲,不懂的老师一带而过,结果还是不懂”。这种讲课就是只备教材不备学生,没有为学生着想。比如讲一个概念,不要把定义直接抄在黑板上,接着就开始做题。而要讲如何去理解、体会它,从正面、反面、侧面去讲,并指出如何去理解它,运用它,提醒同学们理解中容易出现的误区,以及它与有关概念的差别和联系,把学生易犯的错误讲在前面。再如讲解一个结论的证明或一道题的解法时,重要的不是一步步按逻辑叙述,而是要指明其思考过程。一个班级里学生的知识水平,能力水平都有所差异,总有些思维水平较低的学生,老师要在备课时换个角度来教,效果就会有所提高。 总之,老师要引导学同学们善于思考生活中的数学,加强知识与实际联系,课堂上同学们通过活动获取知识,突出了知识的形成过程,掌握学习方法,训练学生思维。生活化课堂教学,能以课本为主源,又不受课本知识的禁锢,使同学们灵活掌握知识,培养同学们实践操作能力和思维能力,既能落实减轻学生负担,又能提高教学质量。
建议你用“论数学对称之美”为题目写一篇论文,举例可以用数字的对称性,图形的对称性等来写,完了再谈谈自己的感受就可以了。
目前解题技巧类的不新颖了,关于教改和养成理念方面的较好。初一的论文重点放在学生习惯的培养上,虽然是老问题,但是写的前卫点,还是很吸引人的。我给你建议一个标题,你自己准备素材和内容吧。《如何在数学课堂教学中培养学生的主体意识》
1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值
关于初中数学优秀教师的论文
做一名数学教师容易,成为一名优秀数学教师就不容易了。工作15年,我力争让自己能成为一名优秀数学老师,但仍相差甚远,感悟颇多。要成为一名优秀数学教师,我认为至少需做好以下三个方面。 一、让学生喜欢您 中国有句古话:“亲其师,信其道” 。只有深受学生喜欢的教师才能取得较好的教学效果。我担任一个班的数学教学,从初一到初二,随着知识难度的增加以及学生对自身的要求有所放松,近段时间班上有好几个学生(原本数学基础不错)明显退步,像突然间失去了学习的动力。我单独找他们谈过好几次话都收效甚微,也尝试过一些“非常手段”仍无济于事。正当我愁眉不展时,一次偶然的机会,我邀请了班上那几个学生一起打乒乓球,与他们尽情享受着打球的乐趣。不料第二天上课时“奇迹”出现了:那几个学生眼睛发亮、脸蛋发光、左手常举,争着回答老师提出的各种问题。这不由让我想起“他山之石可以攻玉”“有意栽花花不发,无心插柳柳成荫” ,原本很棘手的问题就如此轻而易举地解决了。老师们,您们也不妨试试:多与学生交流,多参与学生的活动,多关心学生的生活,那么您就能很快成为“深受学生喜欢”的教师,从而开启学生的学习之“门” ,对教育教学起到事半功倍的成效。 二、让课改帮助您 “穷则思变!”我们应清醒地认识到:我们学校将要走进死胡同了。与其像过去一样坐以待毙,倒不如来个彻底变革,老路子不行,必须另辟蹊径。可是路在哪儿呢?路就在我们的脚下,路就在我们学校编印的这本《生本教育》专题学习资料里。只要我们深入学习钻研这本资料,以这次课堂改革为契机,让生本教育先进理念的种子在我校生根发芽,那么我校的这颗“课堂教学从低效到高效”幼苗就能茁壮成长为参天大树。 教育大师叶圣陶早在1962年给教师的通信中提出:教学如“扶孩走路,虽小心扶持,而时时不忘放手也。我近来常以一语语人,凡为教,目的在达到不需要教”。因此有人把“学走路”作为一条经典的教育隐喻。“学走路”意味着:没有人能够代替你走路,你只能自己经过爬行,然后跌跌撞撞,然后就学会了直立走路。尝试、摸索、跌倒之类的错误是成长的正常代价。如果不付出尝试、摸索、跌倒的代价就不会掌握走路的技巧。在教学组织上,生本教育也明确指出“鼓励先学,以学定教,多学少教,直至不教而教”。正是在诸如此类理念的帮助下,我一改传统以教师传授为主的教学模式,不轻意告诉学生数学新知,而是采用学生自主学习、小组合作探究的教学模式,通过创设问题情境激发学生求知欲望,然后引导学生自己发现规律、得出结论。对于教材上的例题,以前的我总是精心设计,力争将例题讲深讲透,结果导致教学效果很不理想。现在有了生本教育“把为教师的好教而设计的教育转向为学生的好学而设计的教育”理念作指导,我逐渐明白教学中有一部分知识不是靠教师传授的,而是靠学生自己领悟的,如果教师包办代替,就会阻碍学生数学思维的发展。于是我放手让学生先尝试、摸索、甚至“跌倒”,然后让学生暴露思维过程,自己仔细倾听学生发言,尽量不正面解答问题,主要任务是提供反例、指出漏洞、支持不同声音、帮助学生激活他们的思维,从而使学生领会“走路”的技巧。 众所周知,中国教育界出现了一个很著名的教学实验——“目标教学”实验。其教学策略是“及时反馈及时矫正”——“群体教学并辅之以每个学生所需要的频繁的反馈与个别化的矫正性帮助。”群体教学最大的危险是淹没学生的错误。如果你不让学生出错,学生就不会长大。如果学生出错之后你不提醒学生及时改正,学生就会往错误的方向生长。怎么办呢?我借鉴了优秀教师通常采用的与众不同的“一本练习本”的做法。学生的练习本不是两本交替使用,而是用完一本再用一本。这样可促使我及时批改作业,一般在当天就可了解学生对知识的掌握情况,如果个别学生出现问题,就通过面批指导的方式,帮助他们学懂学会;如果多数学生掌握不好,那么下一次上课先解决前面的问题。于是大家常常能在晚上看到我批改学生作业的身影,即便是没有安排我下班辅导的晚上也不例外,这也是我在农村初中数学教学中能取得一定成绩的一个法宝。 三、让读书伴随您 一个人成功的因素不只是读书,但读书却是一个人成功的重要因素。古往今来无数的圣哲、文学家、教育家,无不是在让读书成为习惯中走向成功的。“让读书成为习惯”是全面实施素质教育向广大教师提出的时代要求,而且直接关系到中华民族伟大复兴的进程与中华民族充满“阳光”的未来。一个教师肯读书,善读书,再加上善于思考,思考教育现象,从教育的表象看到教育的本质,他就能从教书匠的行列中走出来,成为一名优秀的教师。我从教15年,到现在还是一名普通平凡的教师,一个重要的因素是书读得少,不善于读书。因此,从今以后我要发奋读书,坚决做到不赌博、不玩游戏、不炒股,远离低级趣味,让“少玩多学,超越自我”成为我的座右铭。
在这个网站中可以借鉴一下呵呵
生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域
暮然回首,大学生活已经成为美好的追忆,大学里埋头苦读的情景是那么让人怀念,朋友间彻夜畅聊的情景是那么让人难忘,师生间畅谈教育哲学的情景时那么让人受益匪浅当面对初出茅庐的自己的时候,一踏入工作岗位就接手两个班的数学,还担任班主任,说实话有点担心。担心自己经验不足,会照顾不过来,感谢现在学校的老师们,总是处处照顾我们这些新教师,无论生活上还是工作上都给了我们很多帮助,从事工作已经三个月,正在慢慢地熟悉现在的工作,习惯每天穿梭在学生中,看着一张张天真无邪的笑脸,仿佛再大的烦恼也会立即烟消云散。为了以后能更好地从事教育事业,我对自己提以下几点要求: 一、 具有广博的知识,与时俱进。 作为一名数学教师不仅要有精湛的专业知识,还要具有渊博的各学科的知识,可以说教师就是一本《百科全书》。我曾经听说这样一个故事:一位新教师刚接手一个班级,这个班级的学生个个非常调皮捣蛋。学生为了整一整这个数学老师,便拿着一道非常难的奥数题来到新老师的办公室。正当他们心想这次你还不丢脸,洋洋得意的时候,这位老师已经面带微笑准备跟他们分析题目了,这个时候,所有的学生都打心眼儿里佩服这位新教师,。从此以后,再也不会有学生会在数学课堂上捣乱,再也不会有学生不尊重这位新教师。是什么征服了这帮小顽皮呢?不正是这位老师精湛的专业知识?试想:如果当时这位新教师被难住了?那么又会是怎么样的一种情况?他不仅在学生面前失去了做教师的威严,而且会影响学生对数学课堂的不尊重。 仅仅将知识局限在数学方面当然也是不够的。小学生有问不完的问题,因为他们看见不知道的事情就会形成疑问,而教师在学生的心目中是无所不知的,所以为了丰富学生的知识,拓展他们的视野,当然也为了让我们教师的形象在学生的心目中更加高大,可千万别被小孩子难倒。 时代在不断前进,就要求我们教师要学无止尽,不断与时俱进,不被社会遗弃。 二、 怀一颗宽容的心对待学生的错误,做到张弛有度。 第一任班主任工作结合以前实习的经验和现在工作单位的各位老师的指导,慢慢地摸索前进,在摸索中总结经验,积累经验。一开始真的每天都被气得半死,学生不是纪律特差,就是作业拖拖拉拉。小孩子就算你再凶,也不会收到什么回报。换个角度想想:为什么不能用一刻宽大的心包容学生那一点点小的错误,或许换一种平和的方式相互交流会起到更好的作用。 学生心,玻璃心,它是单纯的也是敏感的,是透明的也是脆弱的,正如苏霍姆林斯基所言:要像对待荷叶上的露珠一样,小心翼翼地保护学生幼小的心灵。晶莹透亮的露珠是美丽可爱的,却又是十分脆弱的,一不小心使露珠滚落,就会破碎,不复存在。学生的不良习惯需要我们老师以一颗宽容的心,引导他,鼓励他,处处为学生着想,方能达到教育的目的,才是为学生的终身发展着想,让我们用自己的人格魅力去影响和塑造学生的人格。 当然,宽容,并不等于纵容,这就是我借来要说的张弛有度。如果教师一味宽容学生,总是以宽容之心对待一错再错的学生,那么就是不负责任,失去做教师的威严。宽容与严格是矛盾统一体,宽容是另一种意义的严格。宽容应该因时而施,因人而异,因事而别。教师应做到:原则问题不让步,是非面前不糊涂,评判学生看主流,心存善意看发展。 三、 时刻保持一颗阳光之心,让快乐传递在每一个人身边。 刚步入工作岗位,面对着巨大的工作任务,无时无刻不感到肩膀重担沉重,甚至有的时候压得自己喘不过气来。可是只要你转身看看太阳,你会发现原来一切都是那么阳光明媚。虽然工作辛苦,但是同样的你也收获了许多,这些不是金钱能够买得到的。数学老师可能给人的感觉就是比较严肃,说话一板一眼,面无微笑的。数学老师同样可以具有语文老师的温柔,具有美术老师的幽默,具有音乐老师的快乐,所以不要做一位严肃的数学教师,让我们以一颗阳光的心面对繁重的工作,让学生感受到快乐无处不在。 时代在发展,新形势下,每一位教师只有不断总结、积累经验,并且不断学习新的理论充实自己,做到不断进步。
初中语文优秀教学论文
关键词一:内涵在语文教学中,对比是教学的最基本要素。对比,是人在认识上确定事物之间的异同和关系的思维过程。在阅读中则是针对某个具体问题找来论述这个问题的代表性作品,边读边比较,从不同侧面、不同角度进行解析,寻求其异同点。一般包括:从不同角度找出作品的各自特点;寻找结构上的异同;寻找文章主旨的不同;寻找写作方法的不同等等。要从哪个角度比较,就要抓哪个方面的特点。由阅读到写作,主要是将阅读中的优质点运用到写作中去,可以是从寻求不同文章的共同点来寻求作文的共同规律;或者是比较文章的不同属性,从而了解文章的不同,易发现文章发生发展的特殊性。关键词二:“562”所谓“562”,是指对比教学的核心要素,即五步流程、六种课型、两套读本。五步流程——一创设情境,导入新课;二初读课文,整体感知;三自主学习,精讲点拨;四比较阅读,鉴别赏析;五写作训练,巩固提高。六种课型——对比品读课、对比评点课、对比写作课、积累运用课、成果汇报课、综合性学习课。两套读本——一套为对比教学课程,分别与课文和古诗词进行比较阅读,提高学生的比较鉴别能力;共有七本,即《龙泉中学对比教学校本课程》之一到七;另一套为课外阅读课程,选取四大文学体裁中的经典作品,进行阅读并积累摘记。关键词三:艺术真正的语文课堂不仅要追求课堂目标的完成,实现语文人文性与工具性的目标,更要追求课堂参与者的欢乐性与深邃性的统一,让语文成为艺术的课堂、欢乐的课堂、愉悦的课堂。因此,在课堂中加入音乐、动画、视频、歌曲、书画作品等艺术元素,在适当的环节呈现,能使学生从中受到艺术的感染和熏陶,让课堂变得愉悦而快乐。学生们都喜欢音乐。音乐能陶冶人的情操,激发人的美好情感,使人身心都感到愉悦。音乐导入会让学生耳目一新,让他们快速地进入课文的氛围中,置身于教学内容相应情境之中。《竹影》这一课,内容清新,充满生活情趣,同时可以培养学生的美学意识。笔者提前让喜欢绘画的学生带来绘画的材料,展示了丰子恺的书画作品后,让学生们也拿出材料一显身手,与大家一比高下。画画的学生聚精会神,挥毫泼墨,观看的学生目不转睛,羡慕不已。他们从这堂课感受了艺术之美,培养了他们感受美,欣赏美,鼓励他们要创造美。
信息技术在教学领域当中的渗透,为教学工作提供了新的平台和技术途径,有利于教学效率和教学质量的进一步提升,所以在如今的初中语文学科教学当中,我们应当加强对信息化教学的应用,以促进学生实现更好的学习、发展。本文基于作者自身的实际教学经验,首先简单分析了信息化教学的优势,然后主要对信息化教学在初中语文教学中的应用提出了部分探讨性建议,以期能为教学实践提供参考。 关键词: 信息技术;初中语文;教学 语文在初中教学课程体系当中是一门非常重要的学科,其对于学生的文化知识与素质能力全面、综合发展来说,具有重要的作用价值。在当前,我们应当将信息化教学有效的应用到初中语文教学中,以促进学生的学习、发展。 1信息化教学的优势 1提高学生的学习兴趣 兴趣是学生学习动力的主要来源,只有让他们对教学产生主观兴趣,才能使他们百分之百地全身心投入到教学当中。但是在实际的教学过程当中,教师很难单单凭借教材课本就吸引起学生的学习兴趣,所以这对于教师而言是一个不小的难题。而信息技术在教学当中的应用,具有非常新颖的形式,能够快速吸引学生的注意力,并让学生产生学习兴趣,这样一来就可以让学生全身心地投入到教学当中,显著增强他们的学习动力。 2降低教学的抽象性 初中学生依然更倾向于形象思维,在抽象思维方面的能力还较差,所以如果教学所涉及到的知识内容具有一定的抽象性的话,就会使他们难以理解和掌握,降低教学的效率和质量。而信息化技术具有非常强的编辑和演示能力,可以将一些抽象的知识内容,通过形象而趣味的方式将其展示出来,从而降低其抽想性,这不仅可以提高学生的学习兴趣,还可以促进他们对知识的理解和掌握[1]。 3激发学生的主观能动性 在传统的教学方式、方法下,学生显得较为被动,主体性体现不足,主观能动性也得不到发挥,这其实就降低了教学的质量和效率,并严重地限制了学生的主体性发展。当前的教学理念强调学生在教学过程当中的主体性体现与主观能动性发挥,注重学生的主体性发展。信息技术在教学当中
初中语文教学论文:一、教师要转变观念,营造适宜的课堂氛围新的课程理念认为:教学过程是师生互动、共同发展的相互过程,教师是学生学习活动的组织者、引导者和参与者。作为教师,我们应该尽快改变落后的教学观念,转变自己的角色。在初中语文教学过程中,要真诚地爱学生,爱他们的优点,也接受他们的缺点;要走进他们的内心,了解他们的真实想法;要尊重他们的人格,多一些欣赏鼓励的话语,少ー点审视责备的目光;要注意保护他们的自尊心不受伤害,鼓励每位学生的个性发挥。此外,还要努力构建一个民主、平等、和谐、融洽的课堂教学氛围,使学生在轻松愉悦的环境中发挥自己的主观能动性,张扬自己的个性,创建一种教师乐教、学生乐学的新型师生关系。同时,作为一名一线教育工作者,初中语文教师还应加强自身学习,不断地更新知识。要关注时事,形成深刻的理解;要时刻更新自己的教育教学理论,提高教学水平;要学习新的课程理念,学习他人经验,提高教书育人质量。二、培养学生学习兴趣,激发学习主动性和积极性兴趣是学生学习的动机,求知的前提和成才的起点。初中生的认知水平还处于发展阶段,对很多事物都有着浓厚的兴趣,教师通过适当的引导,把学生的兴趣吸引到对语文知识的学习上来,定会收到事半功倍的效果。在素质教育全面实施的今天,激发学生对语文学习的兴趣非常重要。激发学生的兴趣,关键就在于教师的引导。在初中语文教学中,教师可以利用学生喜欢看小说的特点,引导学生多阅读与语文相关的文学书籍;可以让学生体会语文与生活的联系,让学生认识语文本身是丰富多彩、有滋有味的。在课堂教学上,教师要认真研究课文,要全面把握课文的内容和形式,并通过精心设计整个教学过程,优化导入设计,丰富教学形式,趣化教学内容,完善课后延展教学,改善评价策略,以此激发学生的学习积极性和主动性。三、培养学生自主学习的能力自主学习是与传统式的接受学习相对应的一种现代化的学习方式。顾名思义,自主学习是以学生作为学习的主体,通过学生独立地分析、探索、实践、质疑、创造等方法来实现学习目标。自主学习是学生愿学、乐学、会学和善学的集中体现。具有自主学习能力的学生,他们能够自省、自励、自控,自主开展学习活动,并有较高的适应性、选择性、竞争性、合作性、参与性。初中语文教学过程应当注意引导学生开展自学,使学生能在自我感悟的基础上掌握知识。这种主动式的学习不仅使学习过程更加有效,而且使学习者自己更加自信。在教学过程中,教师应当注重培养学生“会学”的信心,激发学生“愿学”的动力,点拨学生“善学”的策略。由于每位学生的认知水平、学习形式和的理解能力各不相同,教师在教学中要本着以人为本精神,教学过程兼具层次性和差异性。要针对不同学习能力的学生,采取不同的教学策略,分层要求、分层练习,使教学活动适应每个学生的学习需求和学习水平。只有培养学生的自主学习能力,真正落实因材施教,才能实现学生语文素养的全面提高。
高中数学优秀论文
对教材知识点的生成与发展过程的见解教材中的例题,此题的独特解法对教材中的阅读材料栏目的学习体会数学在生活中的应用数学的有效学习策略与数学相关的跨学科问题麻烦各位大侠。如果写的好有追加分
高中关于概率论教学探究论文摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观随机现象的理解与认识,并激发学生自主学习和主动探索的精神.关键词:概率论;教学;思维方法在数学的历史发展过程中出现了3 次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.1 将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“ 阳春白雪” ,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18 世纪,为解决天文观测误差而提出的.在17、18 世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733 年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“ 拟合” 误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844 年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000 个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ 代数[3]这一概念:设Ω 为样本空间,若Ω 的一些子集所组成的集合? 满足下列条件:(1)Ω∈? ;(2)若A∈ ? ,则A∈ ? ;(3)若∈ n A ? ,n =1, 2,??,则∈∞=nnA ∪1? ,则我们称 ? 为Ω 的一个σ 代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ 代数.几何概型是19 世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899 年,法国学者贝特朗提出了所谓“ 贝特朗悖论” [3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1 的圆,随机取它的一条弦,问:弦长不小于3 的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3 种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3 种答案针对的是3 种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“ 随机” 、“ 等可能”、“ 均匀分布” 等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ -代数的概念:对同一个样本空间Ω ,?1 ={?, Ω}为它的一个σ 代数;设A为Ω 的一子集,则 ?2 ={?, A, A, Ω}也为Ω 的一个σ 代数;设B 为Ω 中不同于A的另一子集,则?3 = {?, A,B, A,B, AB, AB,BA,AB,Ω}也为Ω 的一个σ 代数;Ω 的所有子集所组成的集合同样能构成Ω 的一个σ 代数.当我们考虑?2 时,就只把元素?2 的元素? , A , A , Ω 当作事件,而B 或AB 就不在考虑范围之内.由此σ 代数的定义就较易理解了.2 广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“ 玛丽莲问题” :十多年前,美国的“ 玛利亚幸运抢答”电台公布了这样一道题:在三扇门的背后(比如说1 号、2号及3 号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1 号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17 世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992 年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利彩票中奖问题,等等[4].概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“ 必然寓于偶然转自之中” 的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε ,0 <ε <1,不管ε 如何小,如果把这试验不断独立重复做任意多次,那么A 迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε )n ,前n 次A 都不出现的概率为1? (1?ε )n,当n 趋于无穷大时,此概率趋于1,这表示A迟早出现1 次的概率为1.出现A 以后,把下次试验当作第一次,重复上述推理,可见A 必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3 积极开展随机试验随机试验是指具有下面3 个特点的试验:(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3 个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3 个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4 引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A) > 0时,P(B | A)未必等于P(B).但是一旦P(B | A) =P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B) > 0时,若P(A| B) = P(A),就称事件B的发生不影响事件A 的发生.因此若P(A) > 0 , P(B) > 0 ,且P(B | A) = P(B)与P(A| B) = P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:定义1:设A,B 是两个随机事件,若P(A) > 0 ,P(B) > 0,我们有P(B | A) = P(B)且P(A| B) = P(A),则称事件A 与事件B 相互独立.接下来,我们可以继续引导学生仔细考察定义1 中的条件P(A) > 0 与P(B) > 0 是否为本质要求?事实上,如果P(A) > 0,P(B) > 0,我们可以得到:P(B | A) = P(B) ? P(AB) = P(A)P(B) ? P(A| B) = P(A).但是当P(A) = 0,P(B) = 0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB ? A, AB ? B,因此P(AB) = 0 = P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A) > 0,P(B) > 0,即如下定义事件的独立性:定义2 : 设A , B 为两随机事件, 如果等式P(AB) = P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B 相互独立.很显然,定义2 比定义1 更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5 结 束 语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法,通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.[参 考 文 献][1] C·R·劳.统计与真理[M].北京:科学出版社,2004.[2] 朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.[3] 王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.[4] 张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.[5] 王梓坤.随机过程与今日数学[M].北京:北京师范大学出版社,2006.[6] 邓华玲,傅丽芳,任永泰.概率论与数理统计实验课的探讨与实践[J].大学数学,2008,24(2):11–14.建立数学创造性意识的学习氛围论文论文关键词:创造性思维;培养;协同培养 论文摘要:本文论述了创造性思维研究的现状,简单梳理了创造性思维研究的几种观点,并鉴于实践中对于创造性思维研究的成果的应用,列举了五种较为流传的创造……剖析高中平面向量授课方式研究论文【摘要】本文通过对高中第五章平面向量的研究,从运算的角度,教学内容、要求、重难点,本章的特点三个方面进行了总结,得出了五个方面的教学体会。 【关键词】平面向量;数形结合;向量法;教学体会……培养学生数学时刻使用意识研究论文[摘要]培养数学应用意识,促进知识内化,达到发展学生智慧的目的,是当前小学数学教学中人们关注的一个热点问题。本文从培养学生数学应用意识的理论依据及探索实践这两个方面对如何发展学生智慧问题进行探讨。……高中关于概率论教学探究论文摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观……
给一千元也不能在一小时内帮你写出来,你以为我们是才子李敖吖!六篇啊!天文数字,要一个星期才能写出来.这些是不能下载的.
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。如何撰写数学论文呢? 1、数学论文的组成 数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高。