首页 > 期刊发表知识库 > 芯片核心是什么

芯片核心是什么

发布时间:

芯片核心是什么

CPU和主板芯片是脑和脑神经的关系~没了脑神经~人体就不能动也不会死(植物人)每个主板的芯片组有2个分南桥和北桥~上北下南~北桥控制住CPU硬盆数据,内存,和鼠标键盘USB南桥的就不说了以后也不再补答了

我作个补充把:内核是操作系统的内部核心程序,它向外部提供了对计算机设备的核心管理调用。我们将操作系统的代码分成2部分。内核所在的地址空间称作内核空间。而在内核以外的统称为外部管理程序,它们大部分是对外围设备的管理和界面操作。外部管理程序与用户进程所占据的地址空间称为外部空间。通常,一个程序会跨越两个空间。当执行到内河空间的一段代码时,我们称程序处于内核态,而当程序执行到外部空间代码时,我们称程序处于用户态。 从UNIX起,人们开始用高级语言(UNIX上最具有代表性的就是UNIX的系统级语言C语言)编写内核代码,使得内核具有良好的扩展性。单一内核(monolithic kernel)是当时操作系统的主流,操作系统中所有的系统相关功能都被封装在内核中,它们与外部程序处于不同的内存地址空间中,并通过各种方式(在Intel IA-32体系中采用386保护模式)防止 外部程序直接访问内核结构。程序只有通过一套称作系统调用(system call)的界面访问内核结构。近些年来,微内核(micro kernel)结构逐渐流行起来,成为操作系统的主要潮流。1986年,Tanenbaum提出Mach kernel,而后,他的minix和GNU的Hurd操作系统更是微内核系统的典范。 在微内核结构中,操作系统的内核只需要提供最基本、最核心的一部分操作(比如创建和删除任务、内存管理、中断管理等)即可,而其他的管理程序(如文件系统、网络协议栈等)则尽可能的放在内核之外。这些外部程序可以独立运行,并对外部用户程序提供操作系统服务,服务之间使用进程间通信机制(IPC)进行交互,只在需要内核的协助时,才通过一套接口对内核发出调用请求。 微内核系统的优点时操作系统具有良好的灵活性。它使得操作系统内部结构简单清晰。程序代码的维护非常之方便。但是也有不足之处。微内核系统由于核心态只实现了最基本的系统操作,这样内核以外的外部程序之间由于独立运行使得系统难以进行良好的整体优化。另外,进程间互相通信的开销也较单一内核系统要大许多。从整体上看,在当前的硬件条件下,微内核在效率上的损失小于其在结构上获得的收益,故而选取微内核成为操作系统的一大潮流。 然而,Linux系统却恰恰使用了单一内核结构。这是由于Linux是一个实用主义的操作系统。Linux Tovarlds以代码执行效率为自己操作系统的第一要务,并没有进行过一个系统的设计工作,而是任由Linux在使用中不断发展。在这样的发展过程中,参与Linux开发的程序员大多为世界各地的黑客们。比起结构的清晰,他们更加注重功能的强大和高效的代码。于是,他们将大量的精力放在优化代码上,而这样的全局性优化必然以丧失结构精简为代价,导致Linux中的每个部件都不能轻易被拆除。否则必然破坏整体效率。 虽然Linux是单一内核体系,但是它与传统的单一内核UNIX操作系统不同。在普通的单一内核系统中,所有的内核代码都是被静态编译联入的,而在Linux中,可以动态装入和卸载内河中的部分代码。Linux将这些代码段称为模块。(module),并对模块给予了强有力的支持。在Linux中,可以在需要时自动装入和卸载模块。 Linux不支持用户态线程。在用户态中,Linux认为线程就是共享上下文(Context)的进程。Linux通过LWP(light weight thread)的机制来实现用户态线程的概念。通过系统调用clone()创建新的线程。 Linux的内核为非抢占式的。即,Linux不能通过改变优先权来影响内核当前的执行流程。因此,Linux在实现实时操作时就有问题。Linux并不是一个“硬”实时操作系统。 在Linux内核中,包括了进程管理(process management)、定时器(timer)、中断管理(interrupt management)、内存管理(memory management)、模块管理(module management)、虚拟文件系统接口(VFS layer)、文件系统(file system)、设备驱动程序(device driver)、进程间通信(inter-process communication)、网络管理(network management)、系统启动(system init)等操作系统功能的实现。

芯片的架构是核心吗?这个肯定是啊,因为一个手机的话,他如果没有芯片的话,那肯定是不行的。

楼上的拜托,粘贴也要有点水平,人家问cpu核心,你回答个操作系统内核。。。。

芯片的核心是什么

芯片的架构一般都是一个主体的核心,这是必须的。

芯片的架构是核心吗?这个肯定是啊,因为一个手机的话,他如果没有芯片的话,那肯定是不行的。

。。主板上的核心芯片就是芯片组啦。早期的主板上有南、北桥双芯片,现北桥功能集成到CPU中了,主板上只剩一个南桥芯片了,也就是单芯片组主板。从芯片的型号就可知主板的规格,及是第几代产品,先进程度啦。

,,主板上的核心芯片,自然是主板的灵魂,起管家作用的总控桥片,即所说的主板芯片组啦。

芯片核心技术是什么

分枝预测(branch prediction)和推测执行(speculatlon execution)是CPU动态执行技术中的主要内容,动态执行是目前CPU主要采用的先进技术之一。采用分枝预测和动态执行的主要目的是为了提高CPU的运算速度。推测执行是依托于分枝预测基础上的,在分枝预测程序是否分枝后所进行的处理也就是推测执行。由于程序中的条件分枝是根据程序指令在流水线处理后结果再执行的,所以当CPU等待指令结果时,流水线的前级电路也处于空闲状态等待分枝指令,这样必然出现时钟周期的浪费。如果CPU能在前条指令结果出来之前就能预测到分枝是否转移、那么就可以提前执行相应的指令,这样就避免了流水线的空闲等待、相应也就提高了CPU的运算速度。但另一方面一旦前指令结果出来后证明分技预测错误,那么就必须将已经装人流水线执行的指令和结果全部清除,然后再装人正确指令重新处理,这样就比不进行分枝预测等待结果后再执行新指令还慢了( 所以IDT公的WIN C6就没有采用分枝预测技术)。这就好象在外科手术中,一个熟练的护士可以根据手术进展情况来判断医生的需要(象分枝预测)提前将手术器械拿在手上(象推测执行)然后按医生要求递给他,这样可以避免等医生说出要什么,再由护士拿起递给他(医生)的等待时间。当然如果护士判断错误,也必须要放下预先拿的器械再重新拿医生需要的递过去。尽管如此,只要护士经验丰富,判断准确率高,那么当然就可以提高手术进行速度。 因此我们可以看出,在以上推测执行时的分枝预测准确性至关重要!所以通过 InteI公司技术人员的努力,现在的Pentium和pentium II系列CPU的分枝预测正确率分别达到了80%和90%,这样虽然可能会有2O%和10%分枝预测错误但平均以后的结果仍然可以提高CPU的运算速度。

CPU核心技术揭密 Socket PC机从386时代开始普遍使用Socket插座来安装CPU,从Socket 4、Socket 5、Socket 7到现在的Socket 370。 以我们最常见的Socket 7为例,它是方形多针角零插拔力插座,插座上有一根拉杆,在安装和更换CPU时只要将拉杆向上拉出,就可以轻易地插进或取出CPU芯片了。Socket 7插座适用范围很广,不但可以安装Intel Pentium、Pentium MMX,还可以安装AMDK5、K6、K6-2、K6-III、Cyrix MII等等处理器。 与Socket 7搭配的主板芯片组主要有Intel VX、HX、TX,VIA VP2、VP3等,它们支持的CPU外部频率一般为66、75以及83MHz,其中VX、TX和VP3除了支持普通的SIMM(72线内存)外,还支持DIMM(168线内存),VIA的VP3芯片组更是支持AGP图形接口标准。 随后出现的Super 7标准是在Socket 7基础上发展起来的,与后者相比,Super 7结构增加了对处理器100MHz外频、AGP的支持,其代表产品为VIA的MVP3芯片组,Super 7架构可以支持AMD K6-2、K6-III处理器。 Slot 我们先来看看Slot 1,这种接口方式是由Intel提出的,它是一个狭长的242引脚的插槽,可以支持采用SEC(单边接触)封装技术的Pentium II、Pentium III和Celeron处理器,除了接口方式不同外,Slot 1所支持的特性与Super 7系统没有什么太大的差别。Intel LX、EX和Intel BX、VIA Apollo Pro芯片组是其中的代表,前两种最高只能达到83MHz外频,而后两者可以支持最高到150MHz的外频。 Slot 2接口标准与Slot 1类似,不过它是面向高端服务器市场的,与其搭配的主板芯片组为Intel GX、NX,处理器为Xeon至强。 与Slot 1、Slot 2不同,Slot A接口标准是由Intel的竞争对手AMD提出的,它支持AMD K7处理器,与其搭配的芯片组为AMD自己的AMD 751芯片,VIA作为非Intel阵营的战士之一,届时也会有支持K7的芯片组问世。虽然从外观上看Slot A与Slot 1十分相像,但是由于它们的电气性能不同,两者并不兼容。 CPU制造工艺 早期的处理器都是使用5微米工艺制造出来的,随着CPU频率的增加,原有的工艺无法满足产品的要求,这样便出现了35微米以及现在普遍使用的25微米工艺,不久以后,18微米和13微米制造的处理器产品也将面世。另外一方面,现在的芯片内部都是使用铝作为导体,但是由于芯片速度的提高,芯片面积的缩小,铝线已经接近其性能极限,所以芯片制造厂商必须找出更好的能够代替铝导线的新的技术,这便是我们常说的铜导线技术。铜导线与铝导线相比,有很大的优势,具体表现在其导电性要优于铝,电阻小,所以发热量也要小于现在所使用的铝,从而可以有效地提高芯片的稳定性,此外,采用18或13微米制造工艺以后,处理器的频率可以得到进一步的提高,处理器面积则可以进一步减小,因此,铜导线技术全面取代铝导线技术是必然的趋势。 缓存技术 缓存就是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度极快,所以又被称之为高速缓存。与处理器相关的缓存一般分为两种,L1缓存,也称片内缓存,和L2缓存,Pentium时代的处理器把L1缓存集成在CPU内部,而L2缓存则在主板上以与CPU外频相同的频率下工作。 到了Slot 1时代,Pentium II处理器的缓存封装方式与旧的Socket 7架构完全不同,它的L2缓存做到了处理器上,并以处理器速度一半的频率工作,这便是Intel引以为荣的双独立总线结构。在这种结构中,一条总线联接L2高速缓存,另一条负责系统内存,这样便使整个系统的速度得到了很大的提高。AMD K7也使用这种缓存技术。Inte Celeron处理器与Pentium II不同,它的L2缓存很小,只有128K(PII是512K),但是它们集成在CPU内存,与处理器同频工作,这就是为什么便宜的Celeron有时候比昂贵的PentiumII性能还要好的原因。 AMD在其Super 7平台的最后一个产品K6-III中首次使用了三级缓存技术,它包括一个全速64KB L1缓存,一个内部全速256KB缓存,还有主板上的运行在100MHz频率下的L3缓存,这种三级缓存技术使得K6-III的性能有很大提高,与同频的Pentium II相比,其速度也要略快一畴。 看缓存技术的发展,L2缓存全内置并与处理器同频工作是大趋势,在Intel的最新处理器Coppermine中,256KB L2缓存就是这样工作的。 指令集 为了提高计算机在多媒体、3D图形方面的应用能力,许多处理器指令集应运而生,其中最著名的三种便是Intel的MMX、SSE和AMD的3D NOW!指令集。 MMX指令集是Intel与1996年发明的一项多媒体指令增强技术,其英文名称可以翻译为“多媒体扩展指令集”,它包括57条多媒体指令,这些指令可以一次处理多个数据,还可以在处理结果超过实际处理能力的时候也能进行正常处理,这样在软件的配合下,就可以得到更好的性能。 SSE指令是Intel在Pentium III处理器中首先推出的,它有70条指令,其中包含提高3D图形运算效率的50条SIMD浮点运算指令、12条MMX整数运算增强指令、8条优化内存中连续数据块传输指令。理论上这些指令对目前流行的图像处理、浮点运算、3D运算、视频处理、音频处理等诸多多媒体应用起到全面强化的作用。SEE指令与3D Now!指令彼此互不兼容,但SSE包含了3D Now!技术的绝大部分功能,只是实现的方法不同。SSE兼容MMX指令,它可以通过SIMD(单指令多数据技术)和单时钟周期并行处理多个浮点数据来有效的提高浮点运算速度。 由AMD发明的3D Now!指令出现在SSE指令之前,并被广泛应用与K6-2、K6-III以及K7处理器上,该技术其实是21条机器码的扩展指令集。与MMX技术侧重的整数运算不同,3D Now!主要针对三维建模、坐标变换、效果渲染等三维应用场合,在软件的配合下,可以大幅度提高3D处理性能。

后来朱江洪回忆说:“我们科研人员没有辜负期望,我们只用了一年的时间就研发出来了。5年过后,戏剧性的场面出现了,先后有3家日本企业来到格力,恳请并购合作。2008年8月代表中日两国空调行业最高水平的巨头终于走在了一起,共同成立了“格力大金”。

主频 缓存 还要看是几代的 现在台式机的主频都在9G以上 二级缓存在3M以上 CPU型号 INTEL的I3的最好 AND 的速龙的算是好的了

芯片的核心部分是什么

CPU和主板芯片是脑和脑神经的关系~没了脑神经~人体就不能动也不会死(植物人)每个主板的芯片组有2个分南桥和北桥~上北下南~北桥控制住CPU硬盆数据,内存,和鼠标键盘USB南桥的就不说了以后也不再补答了

。。主板上的核心芯片就是芯片组啦。早期的主板上有南、北桥双芯片,现北桥功能集成到CPU中了,主板上只剩一个南桥芯片了,也就是单芯片组主板。从芯片的型号就可知主板的规格,及是第几代产品,先进程度啦。

CPU。。。。

,,主板上的核心芯片,自然是主板的灵魂,起管家作用的总控桥片,即所说的主板芯片组啦。

芯片的核心技术是什么

没有核心技术。我们没有EDA的核心技术,而EDA是芯片里面的核心技术,所以,他是中国芯片的命门。

一直以来中国的芯片被垄断,关键技术中国都没有,在科学家的努力下终于实现了。

天天电视说祖国多厉害,居然连个手机芯片都造不出,气人啊,祖国,努力啊

X86技术是现在家用电脑通用的处理器核心技术

  • 索引序列
  • 芯片核心是什么
  • 芯片的核心是什么
  • 芯片核心技术是什么
  • 芯片的核心部分是什么
  • 芯片的核心技术是什么
  • 返回顶部