首页 > 期刊投稿知识库 > 细胞的衰老与死亡研究进展论文

细胞的衰老与死亡研究进展论文

发布时间:

细胞的衰老与死亡研究进展论文

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

机体内的一些细胞,使用时间过长,代谢水平下降,对机体来说不利。进入程序性衰老和死亡有利于节约机体内的营养物质。就像植物要进行修剪一样,一些植物的叶片过多,发生遮挡,在下部的叶片不能进行光合作用,但是要进行呼吸作用消耗营养物质。这时候进行适当的修剪有利于整个植物的生长。

细胞衰老的原因分析

细胞衰老的原因分析。细胞学说是一个庞大的课题,我们都知道人体的衰老就是细胞的衰老,不少人好奇细胞为何会衰老。我已经为大家搜集了细胞衰老的原因分析的相关信息,一起来看看吧。

1、遗传决定学说:

认为衰老是遗传上的程序化过程,其推动力和决定因素是基因组。控制生长发育和衰老的基因都在特定时期有序地开启或关闭。控制机体衰老的基因或许就是“衰老基因”。长寿者、早老症患者往往具有明显的家族性,后者已被证实是染色体隐性遗传病。这些都促使人们推测,衰老在一定程度上是由遗传决定的。

2、氧化损伤学说(自由基理论):

早在20世纪50年代,就有科学家提出衰老的自由基理论,以后该理论又不断发展。自由基是生物氧化过程中产生的、活性极高的中间产物。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂质等大分子物质,造成氧化性损伤,结果导致DNA断裂、交联、碱基羟基化,蛋白质变性失活等胞结构和功能的改变。

正常细胞内存在清除自由基的.防御系统,如超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶等。实验证明,SOD与CAT的活性升高能延缓机体的衰老。

3、端粒钟学说:

端粒是染色体末端的一种特殊结构,其DNA由简单的重复序列组成。在细胞分裂过程中,端粒由于不能为DNA聚合酶完全复制而逐渐变短。科学家提出了端粒钟学说,认为端粒随着细胞的分裂不断缩短,当端粒长度缩短到一定阈值时,细胞就进入衰老过程。

4、转录或翻译差错学说:

随着年龄的增长,机体的细胞内不但DNA复制效率下降,而且常常发生核酸、蛋白质、酶等大分子的合成差错,这种与日俱增的差错最终导致细胞功能下降,并逐渐衰老、死亡。

5、废物累积学说:

由于细胞功能下降,细胞一方面不能将代谢废物及时排出细胞,另一方面又不能将这些代谢废物降解消化,这些代谢废物越积越多,在细胞中占据的空间越来越大,影响细胞代谢废物的运输,以致于阻碍了细胞的正常生理功能,最终引起细胞的衰老。

6、程序性细胞死亡理论:

是衰老的一种假说,该理论认为衰老是因细胞程序性死亡,就是细胞象编好的程序一样,按照设定的程序,到了特定的时间就死亡。

有关衰老的假说还有很多。近年来,用线虫进行的发育程序与衰老关系的研究取得了显著进展。线虫的特殊发育模式关系到发育方向的决定和寿命的延长。

细胞衰老的特征有哪些

主要特征:

研究表明,衰老细胞的核、细胞质和细胞膜等均有明显的变化:

形态变化 总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:

1、核:增大、染色深、核内有包含物

2、染色质:凝聚、固缩、碎裂、溶解

3、质膜:粘度增加、流动性降低

4、细胞质:色素积聚、空泡形成

5、线粒体:数目减少、体积增大

6、高尔基体:碎裂

7、尼氏体:消失

8、包含物:糖原减少、脂肪积聚

9、核膜:内陷

分子水平的变化:折叠

1、DNA:从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低。

2、 RNA:mRNA和tRNA含量降低。

3、蛋白质:含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋。

4、 酶分子:活性中心被氧化,金属离子Ca2 、Zn2 、Mg2 、Fe2 等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活。

5、脂类:不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

细胞程序性死亡研究论文

读了点儿科普知识,跟大家分享下。 大家都知道,蝌蚪在发育成青蛙的过程中尾巴会自行消失,导致这种现象的根源是“细胞程序性死亡”。细胞程序性死亡是细胞一种生理性、主动性的“自觉自杀行为”,这些细胞死的有规律,似乎是按编好了的“程序”进行的。  犹如秋天片片树叶的凋零,所以这种细胞死亡又称为“细胞凋亡”。细胞程序性死亡在生物发育和维持正常生理活动过程中非常重要。人体内每天都有许多新细胞诞生,同时又有许多细胞程序性死亡,两者处于一种动态平衡中。如果该死亡的细胞没有死亡,就可能导致细胞恶性增长,形成癌症。如果不该死亡的细胞,过多的死亡,比如受艾滋病病毒攻击以后,不该死亡的淋巴细胞大批死亡,就会破坏人体的免疫功能,导致艾滋病发作。科学家在研究中发现细胞程序性死亡是由基因控制的,并发现了与之相关的一些基因,证实了人体内也存在相应的基因。对这些基因的研究,有助于研究针对癌症、艾滋病和老年痴呆症等疾病的新疗法。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

给楼主论文:分子细胞基因组的研究随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。1 植物体细胞杂交后代胞质基因组重组的多样性体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。2 创制胞质杂种的方法2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。2.3 其它的可能途径(1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。3 胞质杂种中双亲胞质基因的传递遗传学3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。4 植物胞质基因组控制的重要性状目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。

1. 洛育,李彩凤*: s-ABA对甜菜氮代谢关键酶活力的影响 中国糖料, 2006.1 5~72. 李士龙, 葛红霞, 肖迪, 杨德光, 李彩凤, 马凤鸣:植物细胞程序性死亡研究进展,,东北农业大学学报,2006.37(2):238~2443.刘迎雪,李文华,李彩凤*等,不同施氮模式对玉米产量和质量的影响,玉米科学,2007(15).2,117-1194.Li Caifeng, Ma fengming, Li Wenhua, et al, Regulation of sucrose synthase activity and sugar yield by nitrogen in sugar beet, Journal of NEAU, 2007(14)., 4: 289-2935.王瑞,李彩凤*,马凤鸣,洛育,陈胜勇:甜菜谷氨酰胺合成酶研究进展,第九届全国作物生理学研讨会论文集,中国农业出版社,2006年8月(通讯作者)6.张多英,马凤鸣,赵越,李彩凤,马国巍,李世龙,培养液NO-3/NH+4 比对甜菜幼苗NO-3 、NH+4 吸收特性的影响,作物学报,2006.4:548~5527. 康传红,王淑春,陈胜勇,李彩凤*,甜菜胞质型谷氨酰胺合成酶基因组DNA的克隆,植物生理学通讯,2008.4:1-58.王瑞,马凤鸣,李彩凤*等,低温胁迫对玉米幼苗脯氨酸、丙二醛含量及电导率的影响,东北农业大学学报,2008.5:20-239.陈胜勇,李彩凤*,马凤鸣,甜菜谷氨酰胺合成酶基因在不同氮素条件下的表达分析,作物杂志,2008.4:64-6710. 陈胜勇,侯 静,李彩凤* ,马凤鸣 尹春佳 黄兆峰,蛋白和核酸合成抑制剂对氮素诱导甜菜谷氨酰胺合成酶基因表达的影响,作物学报,2009,35(3):445-45111.黄兆峰,李彩凤* 孙世臣,尹春佳,赵明珠,赵丽影,陈业婷,越鹏,王圆圆:赤霉素对甜菜当年抽苔激光和作用的调控,作物杂志,2009.2:41-4312.李彩凤,赵东升,赤霉素对亚麻过氧化物酶及主要农艺性状的影响,作物杂志,2009.4:38-4113.尹春佳,李彩凤*,孙世臣,赵明珠,黄兆峰,赵丽影,陈业婷,越鹏,王圆圆,寒地超级稻叶片衰老过程中SOD、POD活性的动态变化,作物杂志,2009.3:37-3914.陈胜勇,李彩凤*,侯静,马凤鸣,孙世臣:蛋白核酸抑制剂对甜菜谷氨酰胺合成酶活性调控分析,东北农业大学学报,2009.40(1):18-2215.刘迎雪; 李彩凤; 李文华; 曲琦环; 陈胜勇; 丑纯明; 尹春佳; 陈万立; 赵杨; 刘丽,生物种衣剂对玉米氮代谢关键酶和光合速率的影响 ,东北农业大学学报,2010,41(1): 13~1816. 侯静; 马凤鸣; 陈胜勇; 丁广洲; 李彩凤,甜菜基因组DNA的提取及Southern杂交分析, 东北农业大学学报,2008.1217.石振,马凤鸣,李彩凤,张顺捷,侯静,李士龙,外源酚酸类物质对大豆幼苗生长的影响,作物杂志,2008.3:40~4218. 孙世臣,洛育,李彩凤*,张凤鸣,尹春佳,赵明珠,黄兆峰,陈业婷,赵丽颖,王园园,黑龙江省超级稻茎秆性状的研究,中国农学通报2010,26(8):146-14819.孙世臣,尹春佳,李彩凤*,赵明珠,张凤鸣,洛育,黄兆峰,赵丽颖,陈业婷,黑龙江省超级稻干物质积累及与产量性状的关系,东北农业大学学报,2010 41(3): 6~1120. 戴建军、常缨、李彩凤、马凤鸣,低温诱导甜菜(Beta vulgaris L.)抽薹相关基因的RACE分析 东北农业大学学报,2010,41(7): 10-1521. 戴建军、常缨、李彩凤、马凤鸣,低温诱导甜菜抽薹基因的差异表达分析, 东北农业大学学报,2009,40(12): 13-1722.越鹏,李彩凤*,陈业婷,赵丽影,王园园,滕祥勇,王南博,氮素水平对甜菜功能叶片光合特性的影响,核农学报,2010.5:1080-108523.陈业婷,李彩凤*,赵丽影,越鹏,王园园,滕祥勇,王南博,甜菜耐盐品种筛选及幼苗对盐胁迫的响应,植物生理学通讯,2010.46(5):1121-112824.李彩凤,赵丽影,陈业婷,越鹏,王园园,滕祥勇,王南博,高等植物脂氧合酶研究进展,东北农业大学学报,2010.41(10):143-14925. 洛育,孙世臣,,李彩凤*,,赵东升:植物生长调节剂对大豆功能叶片硝酸还原酶活性的影响, 中国农学通报2010,26(19):136-139

细胞凋亡研究进展论文3000字

无论在发育期还是在成人体内,既有大量的新细胞产生,也有大量的旧细胞死亡,这是生物体的一种自然现象。为了维持机体组织中适宜的细胞数量,在细胞分裂和细胞死亡之间需要一种精确的动态平衡。由于这种生成与死亡的有序流程,在胚胎和成人期便维持着人体组织的适宜细胞数量。而这种精密地控制细胞的消亡过程就称为程序性细胞死亡。正常的生命需要细胞分裂以产生新细胞,并且也要有细胞的死亡,由此人体和生物的器官才得以维持平衡。 研究意义 细胞凋亡也帮助我们理解一些病毒和细菌侵袭人体细胞的机理。除了 A IDS,另外一些疾病,如神经变性性疾病、中风、心肌梗塞和自身免疫疾病等都是由于很多正常细胞被不正确地启动了程序性死亡过程而造成细胞过量死亡。

这是我已经发表的药理方面的综述,你可以看一下,但不能用来发表,否则自己会有麻烦的。再者,综述参考文献一般较多,10篇左右的基本没有。国内综述一般参考文献20-30篇左右即可,而国外的好多综述的参考文献都是上百篇或者更多心肌细胞凋亡与梗塞的研究进展关键词:细胞凋亡 心肌缺血 心肌梗塞 细胞凋亡是细胞在正常的生理或病理状态下发生的一种自发的、程序化的死亡过程。细胞凋亡发生时呈现出独特的形态学和生物化学特征,其表现为细胞膜完整,细胞器形态改变较轻,细胞核固缩、断裂,最终形成凋亡小体并被巨噬细胞等清除。而且,凋亡细胞基因组的裂解产物在琼脂糖凝胶电泳图谱上呈现出典型的DNA ladder。心肌缺血可引起缺血区及缺血边缘区心肌细胞的死亡,并可随后发展为心肌梗塞(myocardial infarction, MI),使心肌细胞死亡进一步加剧,最终可导致心衰的发生。近年来研究显示,细胞凋亡参与MI心肌细胞的死亡,并在心室重构、心功能改变过程中起关键作用[1,2]。现就心肌细胞凋亡与梗塞的研究进展综述如下。 1 心肌细胞凋亡存在于MI中的依据心肌细胞凋亡是缺血所致MI心肌细胞死亡的途径之一。Yue等[3]发现,在缺血导致的大鼠MI 模型3d后通过原位末端脱氧核苷酸转移酶介导的切口末端标记法(TUNEL)和DNA laddering检测,梗塞边缘区(离梗塞区~500um)心肌细胞凋亡指数明显增高。Gu等[4]在心肌缺血诱发的MI动物模型中发现,与远离梗塞区相比,梗塞边缘区存在不规则形状的心肌细胞及大量的凋亡细胞核。Baldi等[5]报道在人类急性心肌梗塞(AMI)晚期尸解中,心肌细胞凋亡仍然非常活跃,而且远离梗塞区细胞凋亡指数(0.7%)远远低于梗塞区(25.4%)。以上说明细胞凋亡主要存在于梗塞区及梗塞边缘区。也有研究发现,在早期MI患者中远离梗塞区凋亡细胞数量仍然可观,但心肌细胞凋亡的存在并不能作为MI的诊断标志[6]。2 心肌细胞凋亡与梗塞后心室重构MI发生时引起心肌细胞丢失以及细胞外基质的一系列变化,导致心室重构的发生。心肌细胞凋亡与心室重构关系密切,抑制心肌细胞凋亡有利于心室功能的改善。研究发现,通过药物抑制心肌细胞凋亡可提高左心室射血分数,减少左心室舒张末期内径,改善心功能[4]。Sinagra等[7]研究发现,MI后由细胞凋亡引起的细胞丢失导致左心室舒张功能障碍,这可能是心室功能恶化的原因之一。Abbate等[8]最近发现,在两个不同的实验动物模型中,MI 24h之内通过抑制心肌细胞凋亡能够显著改善心室重构过程。Diwan等[9]在敲除鼠心脏促凋亡基因Bnip3的MI模型中研究发现,2d后梗塞边缘区及远离梗塞区的心肌细胞凋亡减少,3周后则显示出改善左心室收缩及抑制左心室扩张的功能,从而证实Bnip3是MI后心室重构的一个主要决定性因子。另外,AMI后远离梗塞区的左心室正常区域,心肌细胞凋亡明显增加,通过抑制此区域的心肌细胞凋亡能够逆转AMI后的不利反应,起到保护左心室功能的作用[10]。3 与MI有关的凋亡调控因子心肌细胞凋亡受多种蛋白、基因、生长因子的调控,Bcl-2家族是迄今研究最深入的凋亡调控因子之一,其促凋亡蛋白与抗凋亡蛋白的比值在决定细胞存亡中起关键作用。P53在调控心肌细胞凋亡中同样起重要作用。有研究证明,通过药物预处理能明显抑制实验性AMI大鼠心肌细胞中P53及Bax、Fas的表达,Bcl-2表达则增加,从而明显减少心肌细胞的凋亡[2]。人类血液中还存在可溶性Fas(sFas)和FasL(sFasL),前者通过抑制Fas与细胞膜上的FasL结合阻断细胞凋亡,后者可诱导细胞发生凋亡。Soeki等[11]研究发现,在AMI后1d血浆sFas浓度显著增加,14d后浓度减少,而sFasL浓度无明显变化。说明AMI早期,机体自身sFas浓度增加抑制心肌细胞凋亡;随着时间推移,sFas浓度减少,细胞凋亡加剧。该研究还发现,在心室重构患者中sFasL浓度于AMI 后14d及21d高于无心室重构患者,说明MI晚期发生心室重构的患者心肌细胞凋亡增多,sFasL起了诱导作用。另外,hsp70是热休克蛋白家族(hsps)在心肌细胞保护中研究最成熟的成员之一[1]。Dybdahl[12]等对28例AMI患者研究发现,血液中hsp70和C反应蛋白(CRP)及白细胞介素-6(IL-6)显著增加,hsp70峰值浓度与心脏肌钙蛋白T及心肌肌酸激酶同工酶的峰值浓度相关。而且AMI后1d左心室射血分数与hsp70浓度呈负相关,说明hsp70浓度可能与梗塞面积有关。一些生长因子也参与心肌细胞凋亡的发生,如Davis等[13]在大鼠MI模型中通过生物素化的那诺芬使胰岛素样生长因子-1持续释放28d,与仅有那诺芬的组别比较,Akt活性增强,caspase-3减少28%。 4 心肌细胞凋亡的信号转导途径在心肌细胞凋亡的信号转导途径中死亡受体途径与线粒体途径研究最成熟。 最近发现,阻断AT1受体能够明显减少Fas表达,从而抑制Fas/FasL介导的心肌细胞凋亡[14]。TNF-α也能通过与Fas/FasL相同的途径诱导心肌细胞凋亡。Sun等[15]在TNF-α敲除小鼠MI模型中发现,与正常小鼠相比远离梗塞区及无梗塞心肌中细胞凋亡数目非常少。线粒体在细胞凋亡过程中起着主开关作用。Cyt C释放到胞浆中后与凋亡活化因子-1、caspase-9分子形成凋亡体。凋亡体活化caspase-9,从而激活下游caspase分子,如caspase-3等,最终诱导凋亡的发生。有研究证明,抑制凋亡体的形成同时伴随caspase-9和-3的失活能够抑制心肌细胞凋亡[16]。另外,Bcl-2家族可调节线粒体途径中Cyt C的释放。通过抑制Bax通道的活化能够抑制Cyt C的释放,从而抑制细胞凋亡 [17]。Akt在调节心肌细胞生长及存活中起重要作用,其途径的激活能够抑制心肌细胞凋亡[3]。Akt又称磷酸激酶B,是一种丝氨酸/苏氨酸蛋白激酶,包括Akt1、Akt2、Akt3三个亚型。其中Akt1和Akt2已被证实有抑制心肌细胞凋亡作用[3,4]。Akt激活后可使促凋亡因子Bad、caspase-9磷酸化及上调P53的负向调节蛋白,阻断以上因子介导的凋亡途径。有研究发现,三碘甲状腺原氨酸能够明显诱导MI边缘区Akt自身Ser473磷酸化,使此区域心肌细胞凋亡减少,而且MI后正常区Akt2有轻微表达但与模型组相比差异显著,其意义有待进一步研究[3]。最近丝裂原活化蛋白激酶(MAPK)途径在心肌细胞凋亡中的作用日益受到关注。MAPK有3个主要的亚家族:细胞外信号调节激酶(ERK),c-Jun氨基末端激酶(JNK)和P38 MAPK。其中P38 MAPK在心肌缺血后细胞凋亡的信号转导途径中起中枢作用,通过抑制P38 MAPK能明显上调Bcl-2蛋白表达[18]。5 MI心肌细胞凋亡的防治5.1 基因治疗 在包含人类A20基因的转基因小鼠MI模型中发现,在心脏中特异性过度表达人类A20基因可阻断IκB激酶β和P65活性,抑制NF-κB信号通路,减少caspase-3、-9及Cyt C和第二线粒体来源的半胱氨酸天冬氨酸蛋白水解酶激活剂(Smac)的释放,抑制心肌细胞凋亡。进一步研究发现,A20能够增强抗凋亡蛋白Bcl-2、X染色体凋亡蛋白抑制剂(XIAP)、细胞型Fas相关死亡域样白介素-1β转换酶抑制蛋白(cFLIP)的表达,减少促凋亡蛋白Fas、FasL、Bax的表达,明显缩小心肌梗塞面积,阻止左心室功能障碍和重构,延迟随后心衰的发生[19]。Rong等[20]在移植人生长激素(hGH)基因的大鼠心肌缺血模型中发现,缺血4周后GH可下调Bax表达,Bcl-2/Bax比率增加,心肌细胞凋亡被抑制;而且,左心室舒张末期内径和梗塞面积明显减小,心功能明显改善,这可能与血中IGF-1浓度升高、脑钠素水平明显降低有关。大量研究表明,P38 MAPK激活可诱导心肌细胞凋亡。MAPK磷酸化酶-1(MKP-1)可使P38 MAPK去磷酸化而钝化,在心肌缺血MKP-1转基因小鼠中,MKP-1过度表达明显抑制P38 MAPK活性,从而明显减轻梗死损伤程度[18]。也有研究发现,MI早期通过局部P38α基因转移增强P38 MAPK活性,同时增加血管发生相关因子表达,明显降低心肌细胞凋亡指数和减少心肌梗塞面积,改善MI后心室重构[21]。5.2 干细胞移植治疗 干细胞移植为目前治疗缺血性心脏病的热点之一。由于胚胎干细胞的研究受到伦理道德及取材困难等因素的影响,研究者把更多的希望寄予成体干细胞。目前用于心肌细胞研究的成体干细胞主要有骨髓干细胞、骨髓间充质干细胞、内皮祖细胞、骨骼肌干细胞等。Uemura等[22]在鼠心肌缺血导致的MI模型中发现,骨髓干细胞(BMSC)治疗组心肌细胞Akt活性增加,TUNEL阳性细胞数明显减少。BMSC预处理组可通过旁分泌途径抑制心肌细胞凋亡,明显缩减梗塞面积,提高左心室射血分数,减轻MI后左心室重构。Berry等[23]将骨髓间充质干细胞(MSC)直接注入MI大鼠梗塞区及边缘区表现为TUNEL阳性细胞减少,梗塞面积减少,心肌收缩和舒张功能改善。虽然干细胞改善缺血心肌功能的机制尚不明确,其治疗结果存在争议,但大多数研究表明干细胞治疗缺血性心脏病是安全有效的,其最终疗效需进一步进行大样本、随机双盲、多中心的临床研究后才能确定。5.3 天然产物活性成分治疗 天然产物中许多活性成分具有良好的抗心肌细胞凋亡的作用,这些成分主要集中于生物碱、苷类、萜类和黄酮类等化合物中。羟基积雪草苷(MA)是积雪草中的一种主要萜类化合物,研究发现经MA预处理的缺血所致的大鼠MI模型中乳酸脱氢酶、肌酸磷酸激酶释放减少,超氧化物歧化酶活性增强,丙二醛浓度及CRP活性显著降低,心肌细胞凋亡减轻,心肌梗塞面积缩小[24]。Ling等[25]研究发现,四方蒿总黄酮通过调节Bcl-2家族(Bcl-2表达增强,Bax表达降低)抑制心肌细胞凋亡,缩减心肌梗塞面积。绿茶的主要活性成分是表没食子儿茶精没食子酸酯(EGCG),Townsend等[26]研究发现,EGCG可通过抑制信号传导与转录活化因子-1(STAT-1)磷酸化,减少离体大鼠心脏中缺血诱导的心肌细胞凋亡,缩减心肌梗塞面积,改善心功能。在培养的乳鼠心肌细胞中,经EGCG预处理后同样能够抑制STAT-1自身酪氨酸701和丝氨酸727磷酸化,明显减少缺血诱导的Fas受体表达,降低caspase-3活性,抑制心肌缺血损伤诱导的心肌细胞凋亡。从苦苣中提取的单体木犀草素-7-O-β-D-葡萄糖苷可明显减少缺氧培养的乳鼠心肌细胞凋亡,使凋亡小体数目降低[27]。5.4 联合治疗 随着对MI心肌细胞凋亡的研究深入,大量药物治疗可以减少心肌细胞凋亡,改善MI后心功能。有研究发现,MI发生时一些炎症因子参与其中[12,28],通过研究炎症因子与细胞凋亡的关系,抗炎类药物可能会成为今后抑制MI心肌细胞凋亡的一个重要策略之一。另外,血管紧张素转化酶抑制剂(ACEI)、β受体阻滞剂(BB)、他汀类药物等都显示出一定的疗效。最近研究发现,通过药物和治疗方法之间的联合运用显示出优于单独运用其中任一方法的疗效。Boyle等[30]在缺血诱发的MI裸大鼠中分别通过ACEI和BB治疗、内皮祖细胞移植(EPC)治疗、EPC和ACEI/BB治疗,结果发现ACEI和BB治疗组在局部远离梗塞区减少75%的心肌纤维化,EPC治疗组通过诱导梗塞边缘区血管形成而阻抑此区域81%的心肌细胞凋亡,EPC联合ACEI/BB治疗组改善左心室功能的效果优于单独运用其中任一方法。Li等[31]在MI大鼠心肌内直接注射Bcl-2基因修饰的MSC与单独MSC移植相比,心肌细胞存活率明显升高,梗塞面积减少17%,心功能恢复显著。6 小结心肌缺血可导致心肌梗塞,国内外针对缺血引起的心肌梗塞中细胞凋亡的研究日益深入,并对参与心肌细胞凋亡的相关因子进一步明确,为此研发的一系列治疗方法及药物已经或即将应用到临床。但基因治疗中载体的选择、基因表达的调控等问题尚未解决,干细胞移植治疗仍缺乏大量随机双盲的临床证据,而联合治疗则显示出了更佳的疗效。另外,天然产物活性成分因其资源丰富、毒副作用少、疗效独特已引起广泛关注,从天然产物中寻找有效的活性成分抑制心肌细胞凋亡将成为防治MI极具潜力的途径之一。参考文献[1]Gill C, Mestril R, Samali A. Losing heart: the role of apoptosis in heart disease—a novel therapeutic target?. FASEB J, 2002, 16: 135~146.[2]Ruixing Y, Dezhai Y, Jiaquan L. Effects of cardiotrophin-1 on hemodynamics and cardiomyocyte apoptosis in rats with acute myocardial infarction. J Med Invest, 2004, 51(1-2): 29~37.[3]Yue-Feng Chen, Satoru Kobayashi, Jinghai Chen, Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol, 2008, 44(1): 180~187.[4]Gu X, Cheng L, Chueng WL, et al. Neovascularization of ischemic myocardium by newly isolated tannins prevents cardiomyocyte apoptosis and improves cardiac function. Mol Med, 2006, 12(11-12): 275~283.[5]Baldi A, Abbate A, Bussani R, et al. Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol, 2002, 34(2): 165~174.[6] Abbate A, Biondi-Zoccai GG, Baldi A. Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol, 2002, 193(2): 145~153.[7]Sinagra G, Bussani R, Abbate A, et al. Left ventricular diastolic filling pattern at Doppler echocardiography and apoptotic rate in fatal acute myocardial infarction. Am J Cardiol, 2007, 99(3): 307~309. [8]Abbate A, Salloum FN, Vecile E, et al. Anakinra a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 2008, 117(20): 2670~2683.[9]Diwan A, Krenz M, Syed FM, et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest, 2007, 117(10): 2825~2833.[10]Sun CK, Chang LT, Sheu JJ, et al. Losartan preserves integrity of cardiac gap junctions and PGC-1 alpha gene expression and prevents cellular apoptosis in remote area of left ventricular myocardium following acute myocardial infarction. Int Heart J, 2007, 48(4): 533~546.[11]Soeki T, Tamura Y, Shinohara H, et al. Relation between circulating soluble Fas ligand and subsequent ventricular remodelling following myocardial infarction. Heart, 2003, 89(3): 339~341.[12]Dybdahl B, Slørdahl SA, Waage A, et al. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart, 2005, 91(3): 299~304.[13]Davis ME, Hsieh PC, Takahashi T, Tomosaburo Takahashi, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci USA, 2006, 103(21): 8155~8160.

细胞凋亡和细胞增殖都是生命的基本现象,是维持体内细胞数量动态平衡的基本措施。在胚胎发育阶段通过细胞凋亡清除多余的和已完成使命的细胞,保证了胚胎的正常发育;在成年阶段通过细胞凋亡清除衰老和病变的细胞,保证了机体的健康。和细胞增殖一样细胞凋亡也是受基因调控的精确过程,在这一节我们就细胞凋亡的分子机理作简要的介绍。 细胞凋亡的途径主要有两条,一条是通过胞外信号激活细胞内的凋亡酶caspase、一条是通过线粒体释放凋亡酶激活因子激活caspase。这些活化的caspase可将细胞内的重要蛋白降解,引起细胞凋亡。 一、凋亡相关的基因和蛋白 细胞凋亡的调控涉及许多基因,包括一些与细胞增殖有关的原癌基因和抑癌基因。其中研究较多的有ICE、Apaf-1、Bcl-2、Fas/APO-1、c-myc、p53、ATM等。 1.Caspase家族 Caspase属于半胱氨酸蛋白酶,相当于线虫中的ced-3,这些蛋白酶是引起细胞凋亡的关键酶,一旦被信号途径激活,能将细胞内的蛋白质降解,使细胞不可逆的走向死亡。它们均有以下特点:①酶活性依赖于半胱氨酸残基的亲核性;②总是在天冬氨酸之后切断底物,所以命名为caspase(cysteine aspartate-specific protease),方便起见本文称之为凋亡酶;③都是由两大、两小亚基组成的异四聚体,大、小亚基由同一基因编码,前体被切割后产生两个活性亚基。 最早发现人类中与线虫ced-3同源的基因[1]是ICE,即:白介素-1 β转换酶(Interleukin-1 β-converting enzyme)基因,因该酶能将白介素前体切割为活性分子,故名。通过cDNA杂交和查找基因组数据库,在人类细胞中已发现11个ICE同源物[2],分为2个亚族(subgroup):ICE亚族和CED-3家族(图15-6),前者参与炎症反应,后者参与细胞凋亡,又分为两类:一类为执行者(executioner或effector),如caspase-3、6、7,它们可直接降解胞内的结构蛋白和功能蛋白,引起凋亡,但不能通过自催化(autocatalytic)或自剪接的方式激活;另一类为启动者(initiator),如caspase-8、9,受到信号后,能通过自剪接而激活,然后引起caspase级联反应,如caspase-8可依次激活caspase-3、6、7。 细胞中还具有caspase的抑制因子,称为IAPs(inhibitors of apoptosis proteins),属于一个庞大的蛋白家族。它们能通过BIR结构域(baculovirus IAP repeats domain)[3]与caspase结合,抑制其活性,如XIAP。 图15-6:ICE家族成员 A:3类caspase:蓝色参与炎症反应,红色为执行者,绿色为启动者;B:caspase-3的结构模型;C:caspase-3的活化过程 引自Katja C. Zimmermann等2001 2.Apaf-1 Apaf-1被称为凋亡酶激活因子-1(apoptotic protease activating factor-1),在线虫中的同源物为ced-4,在线粒体参与的凋亡途径中具有重要作用,该基因敲除后,小鼠神经细胞过多,脑畸形发育。Apaf-1含有3个不同的结构域:①CARD(caspase recruitment domain)结构域,能召集caspase-9;②ced-4 同源结构域,能结合ATP/dATP;③C端结构域,含有色氨酸/天冬氨酸重复序列,当细胞色素c[4]的结合到这一区域后,能引起Apaf-1多聚化而激活。Apaf-1具有激活Caspase-3的作用,而这一过程又需要细胞色素c(Apaf-2)和caspase-9(Apaf-3)参与。Apaf-1/细胞色素c复合体与ATP/dATP结合后,Apaf-1就可以通过其CARD结构域召集caspase-9,形成凋亡体(apoptosome),激活caspase-3,启动caspase级联反应。 3.Bcl-2家族 Bcl-2[5]为凋亡抑制基因,是膜的整合蛋白,其功能相当于线虫中的ced-9。现已发现至少19个同源物,它们在线粒体参与的凋亡途径中起调控作用,能控制线粒体中细胞色素c等凋亡因子的释放。 Bcl-2家族成员都含有1-4个Bcl-2同源结构域(BH1-4),并且通常有一个羧端跨膜结构域(transmembrane region ,TM)。其中BH4是抗凋亡蛋白所特有的结构域,BH3是与促进凋亡有关的结构域。根据功能和结构可将Bcl-2基因家族分为两类(图15-7),一类是抗凋亡的(anti-apoptotic),如:Bcl-2、Bcl-xl、Bcl-w、Mcl-1;一类是促进凋亡的(pro-apoptotic),如:Bax、Bak、Bad、Bid、Bim,在促凋亡蛋白中还有一类仅含BH3结构,如Bid、Bad。 虽然Bcl-2蛋白存在于线粒体膜、内质网膜以及外核膜上,但主要定位于线粒体外膜,它拮抗促凋亡蛋白的功能。而大多数促凋亡蛋白则主要定位于细胞质,一旦细胞受到凋亡因子的诱导,它们可以向线粒体转位,通过寡聚化在线粒体外膜形成跨膜通道 ,或者开启线粒体的PT孔,从而导致线粒体中的凋亡因子释放,激活caspase,导致细胞凋亡。 胞质中的促凋亡蛋白可通过不同的方式被激活,包括去磷酸化,如Bad;被caspase加工为活性分子,如Bid;从结合蛋白上释放出来,如Bim是与微管蛋白结合在一起的。 图15-7 Bcl-2家族 引自Katja C. Zimmermann等2001 4.Fas Fas又称作APO-1/CD95,属TNF受体家族。Fas基因编码产物为分子量45KD的跨膜蛋白,分布于胸腺细胞,激活的T和B淋巴细胞,巨噬细胞,肝、脾、肺、心、脑、肠、睾丸和卵巢细胞等。Fas蛋白与Fas配体结合后,会激活caspase,导致靶细胞走向凋亡。 5.p53 是一种抑癌基因,其生物学功能是在G期监视DNA的完整性。如有损伤,则抑制细胞增殖,直到DNA修复完成。如果DNA不能被修复,则诱导其调亡,研究发现丧失p53功能的小鼠胸腺细胞对糖皮质激素诱导的调亡反应和正常细胞相同,而对辐射诱导的调亡不敏感。 6.myc 在许多人类恶性肿瘤细胞中都发现有c-myc的过度表达,它能促进细胞增殖、抑制分化。 在凋亡细胞中c-myc也是高表达,作为转录调控因子,一方面它能激活那些控制细胞增殖的基因,另一方面也激活促进细胞凋亡的基因,给细胞两种选择:增殖或凋亡。当生长因子存在,Bcl-2基因表达时,促进细胞增殖,反之细胞凋亡。 7.ATM ATM(ataxia telangiectasia-mutated gene)是与DNA损伤检验有关的一个重要基因。最早发现于毛细血管扩张性共济失调症患者,人类中大约有1%的人是ATM缺失的杂合子,表现出对电离辐射敏感和易患癌症。正常细胞经放射处理后,DNA损伤会激活修复机制,如DNA不能修复则诱导细胞凋亡。ATM是DNA损伤检验点的一个重要的蛋白激酶(参见第十三章第四节) 二、Fas介导的细胞凋亡 细胞表面的凋亡受体是属于肿瘤坏死因子受体(TNFR)家族的跨膜蛋白,它们包括Fas(Apo-1/CD95)、TNFR1、DR3/WSL、DR4/TRAIL-R1和DR5/TRAIL-R2。其配体属于TNF家族,目前已比较清楚的是Fas介导的细胞凋亡途径。 Fas具有三个富含半胱氨酸的胞外区和一个称为死亡结构域(Death domain,DD,图15-8)的胞内区。Fas的配体FasL(Fas ligand)与Fas结合后,Fas三聚化使胞内的DD区构象改变,然后与接头蛋白FADD(Fasassociated death domain)的DD区结合,而后FADD的N端DED区(death effector domain)就能与Caspase-8(或-10)前体蛋白结合,形成DISC (death-inducing signaling complex )[6] ,引起caspase-8、10通过自身剪激活,它们启动caspase的级联反应,使caspase-3、-6、-7激活,这几种Caspase可降解胞内结构蛋白和功能蛋白,最终导致细胞凋亡。 图15-8 FAS介导的细胞凋亡 引自Avi Ashkenazi and Vishva M. Dixit 1998 Caspase 可激活名叫CAD(caspase-activated Dnase)的核酸酶,CAD能在核小体的连接区将其切断,形成约为200bp整数倍的核酸片段。正常情况下CAD存在于胞质中,并且与抑制因子ICAD/DFF-45蛋白结合,不能进入细胞核。Caspase活化后可以降解ICAD/DFF-45,释放出CAD,使它进入细胞核降解DNA。 Fas/FasL系统在免疫系统中具有重要的作用,其一是参与免疫调节,活化成熟的外周T细胞主要通过Fas/FasL系统介导的细胞凋亡清除与自身抗原有交叉反应的克隆和由自身抗原激活的细胞克隆,以限制T细胞克隆的无限增殖,防止对自身组织的损伤,即产生外周免疫耐受。淋巴细胞凋亡异常导致的免疫耐受失控,是自身免疫性疾病的主要病因。其二是细胞毒T细胞(CTL)可以通过FasL诱导靶细胞凋亡,但遗憾的是,某些肿瘤细胞也可以通过这一途径诱导淋巴细胞凋亡,从而逃脱免疫监控。 三、线粒体与细胞凋亡 细胞应激反应或凋亡信号能引起线粒体细胞色素c释放,作为凋亡诱导因子,细胞色素c能与Apaf-1、caspase-9前体、ATP/dATP形成凋亡体(apoptosome,图15-9),然后召集并激活caspase-3,进而引发caspases级联反应,导致细胞凋亡。 在这里,一个核心的问题是细胞色素c究竟通过哪一种途径释放到细胞质中,由于大部分凋亡细胞中很少发生线粒体肿胀和线粒体外膜破裂的现象,所以目前普遍认为细胞色素是通过线粒体PT孔或Bcl-2家族成员形成的线粒体跨膜通道释放到细胞质中的。 线粒体PT孔(permeability transition pore)主要由位于内膜的腺苷转位因子(Adenine nucleotide translocator,ANT)和位于外膜的电压依赖性阴离子通道(Voltage dependent anion channel,VDAC)等蛋白所组成,PT孔开放会引起线粒体跨膜电位下降和细胞色素c释放。Bcl-2家族蛋白对于PT孔的开放和关闭起关键的调节作用,促凋亡蛋白Bax等可以通过与ANT或VDAC的结合介导PT孔的开放,而抗凋亡类蛋白如Bcl-2、Bcl-xL等则可通过与Bax竞争性地与ANT结合,或者直接阻止Bax与ANT、VDAC的结合来发挥其抗凋亡效应。 Bcl-2家族的结构和能形成离子通道的一些毒素(如大肠杆菌毒素)非常相似。插入膜结构中形成较大的通道,允许细胞色素c等蛋白质通过,这可能是细胞色素c释放的另一个途径。 在线虫中ced-3和ced-4的缺失突变抑制所有发育阶段的细胞死亡。在哺乳动物中,尽管Apaf-1基因缺失的小鼠没有caspase活化,但除了神经细胞过多外,大多数器官发育是正常的。近年来的研究发现随细胞色素c释放的蛋白还有Smac(second mitochondria-derived activator of caspase)、凋亡诱导因子(apoptosis inducing factor,AIF)和核酸内切酶G( Endo G)。Smac能通过N端的几个氨基酸与IAPs(凋亡抑制蛋白)的BIR结构域结合,从而解除IAP对caspase的抑制;AIF[7]则引起核固缩和染色质断裂;Endo G可以使DNA片段化。可见即使在caspase不参与的情况下,由线粒体途径仍可引起细胞凋亡。 在对Fas应答的细胞中,一型细胞(type I),如胸腺细胞,其caspase-8有足够的活性,被Fas活化后导致细胞凋亡,在这类细胞中高表达Bcl-2不能抑制Fas诱导的细胞凋亡。在二型细胞(type II),如肝细胞中,Fas介导的caspase-8活化不能达到足够的水平,因此这类细胞中的凋亡信号需要借助凋亡的线粒体途径来放大。活化的caspase-8将胞质中的Bid剪切,形成活性分子tBid(truncated Bid),tBid进入线粒体,导致细胞色素c释放,使凋亡信号放大。 图15-9 细胞色素释放引起的凋亡 引自R. Chris Bleackley and Jeffrey A. Heibein 2001 我们不看出线粒体既是细胞的能量工厂,也是细胞的凋亡控制中心,可是为什么线粒体会担负起如此重要的双重功能呢?一个主要的原因是各类生长因子都可以促进葡萄糖转运和己糖激酶等向线粒体转运、加速能量生产,相反地剥夺生长因子后,细胞氧消耗降低、ATP合成不足、蛋白质合成受阻,最后细胞走向死亡。由于这一方面的资料较少,目前还很难作出一个较好的解释,只能留在以后再完善。 -------------------------------------------------------------------------------- [1]Horvitz实验室的袁均英1993年发现哺乳动物ced-3的同源物为白介素-1-β转换酶(ICE)。 [2] 哺乳动物中已发现14个。 [3] 最早在细菌和病毒中发现。 [4] 是线粒体内膜的外周蛋白,呼吸链中的两个可移动组分之一,位于膜间隙,释放到细胞质中会引起细胞凋亡。 [5] 是一种原癌基因,名称来源于B细胞淋巴瘤/白血病-2(B-cell lymphoma/Leukemia-2,bcl-2),最早由Tsujimoto(1985)从伴有14、18染色体易位的淋巴瘤细胞中发现,在正常人体内位于18号染色体,在患者易位于14号染色体。 [6] Kischkel等1995发现Fas活化时可以与至少4种蛋白相连,分别称为CAP1(Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins 1)、CAP2、CAP3和CAP4,这4种蛋白与活化的Fas受体一起被称为死亡诱导信号复合物(death-inducing signaling complex, DISC)。随后的研究证实CAP1和CAP2是不同形式丝氨酸磷酸化的FADD蛋白,CAP3和CAP4实际上就是活化的caspase-8。 [7]是一种依赖于黄素的一种氧化还原酶,目前还不清楚其作用机制。

细胞衰老及其延衰的研究现状论文

细胞衰老的原因分析

细胞衰老的原因分析。细胞学说是一个庞大的课题,我们都知道人体的衰老就是细胞的衰老,不少人好奇细胞为何会衰老。我已经为大家搜集了细胞衰老的原因分析的相关信息,一起来看看吧。

1、遗传决定学说:

认为衰老是遗传上的程序化过程,其推动力和决定因素是基因组。控制生长发育和衰老的基因都在特定时期有序地开启或关闭。控制机体衰老的基因或许就是“衰老基因”。长寿者、早老症患者往往具有明显的家族性,后者已被证实是染色体隐性遗传病。这些都促使人们推测,衰老在一定程度上是由遗传决定的。

2、氧化损伤学说(自由基理论):

早在20世纪50年代,就有科学家提出衰老的自由基理论,以后该理论又不断发展。自由基是生物氧化过程中产生的、活性极高的中间产物。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂质等大分子物质,造成氧化性损伤,结果导致DNA断裂、交联、碱基羟基化,蛋白质变性失活等胞结构和功能的改变。

正常细胞内存在清除自由基的.防御系统,如超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶等。实验证明,SOD与CAT的活性升高能延缓机体的衰老。

3、端粒钟学说:

端粒是染色体末端的一种特殊结构,其DNA由简单的重复序列组成。在细胞分裂过程中,端粒由于不能为DNA聚合酶完全复制而逐渐变短。科学家提出了端粒钟学说,认为端粒随着细胞的分裂不断缩短,当端粒长度缩短到一定阈值时,细胞就进入衰老过程。

4、转录或翻译差错学说:

随着年龄的增长,机体的细胞内不但DNA复制效率下降,而且常常发生核酸、蛋白质、酶等大分子的合成差错,这种与日俱增的差错最终导致细胞功能下降,并逐渐衰老、死亡。

5、废物累积学说:

由于细胞功能下降,细胞一方面不能将代谢废物及时排出细胞,另一方面又不能将这些代谢废物降解消化,这些代谢废物越积越多,在细胞中占据的空间越来越大,影响细胞代谢废物的运输,以致于阻碍了细胞的正常生理功能,最终引起细胞的衰老。

6、程序性细胞死亡理论:

是衰老的一种假说,该理论认为衰老是因细胞程序性死亡,就是细胞象编好的程序一样,按照设定的程序,到了特定的时间就死亡。

有关衰老的假说还有很多。近年来,用线虫进行的发育程序与衰老关系的研究取得了显著进展。线虫的特殊发育模式关系到发育方向的决定和寿命的延长。

细胞衰老的特征有哪些

主要特征:

研究表明,衰老细胞的核、细胞质和细胞膜等均有明显的变化:

形态变化 总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:

1、核:增大、染色深、核内有包含物

2、染色质:凝聚、固缩、碎裂、溶解

3、质膜:粘度增加、流动性降低

4、细胞质:色素积聚、空泡形成

5、线粒体:数目减少、体积增大

6、高尔基体:碎裂

7、尼氏体:消失

8、包含物:糖原减少、脂肪积聚

9、核膜:内陷

分子水平的变化:折叠

1、DNA:从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低。

2、 RNA:mRNA和tRNA含量降低。

3、蛋白质:含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋。

4、 酶分子:活性中心被氧化,金属离子Ca2 、Zn2 、Mg2 、Fe2 等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活。

5、脂类:不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

无脊椎动物由于寿命短,在用以研究衰老时,实验周期短,易于重复。无脊椎动物在外形上与脊椎动物差别虽很大,但在细胞水平上有许多共同点。有人比较了果蝇与小鼠细胞衰老的变化,发现各种细胞器的改变十分相似。例如核凹陷、线粒体膨大、核糖体减少等等。如进一步分析到分子水平,则无脊椎动物或脊椎动物细胞内的许多生化过程基本一致。因此,轮虫、线虫、果蝇、家蝇等常被用作研究衰老的材料。用无脊椎功物与脊椎动物做比较研究,发现许多因素如遗传、生殖、温度、食物等与衰老有密切关系。遗传与衰老 不同动物各有其特定的寿命极限。如蜉蝣成体只有一天寿命,而果蝇和家蝇成体可有30多天寿命。一种隐杆线虫(Caenorhabditis briggae)能活28天,另一种寄生线虫可活17年。欧洲龙虾最高寿命可达30年。哺乳动物的寿命差异也很大。小鼠和大鼠约3年,大象约70年,而人类可达110年。在人群调查中常见到长寿的家族有长寿的后代。单合子双生儿寿命很接近,而双合子双生儿的寿命可能相差较大。这些都证明遗传对寿限起主导作用。人类女性寿命常比男性长,以往常归因于社会因素即女性承受生活压力较少。实际上除了男性工作、劳动消耗大,损伤机会多的外界因素外,性别也对寿命有影响。性别由性染色体决定,女性为XX型而男性为XY型,许多遗传病的基因位于X染色体上。在女性由于另一X染色体的掩盖可不表现出病态,但男性则不能掩盖而出现病态。遗传决定了男女性别,也造成了寿命的差别。在动物界也有雌性动物比雄性动物寿命长的现象(见图)。雄蝇在17天时死亡率为50%,而雌蝇在32天死亡率才达50%;此外,一种黑蜘蛛雄性平均寿命为100天,而雌性为271天。一种大型水蚤雄性平均寿命为38天,而雌性平均寿命为44天。生殖与衰老 有机体借生殖以保持种群的延续。生殖的方式对机体的衰老有重要影响。一次生殖的有机体,生殖后很快即衰老,随之死亡。许多昆虫和极少数的脊椎动物如太平洋中的几种鲑鱼均属于一次生殖类型。多次生殖的有机体可以在生命过程中一再重复生殖,大多数的脊椎动物和寿命较长的昆虫均属多次生殖的类型。许多昆虫具有两种明显不同的适应性颜色,一种为保护色,另一种为警戒色。具有保护色的动物在生殖期结束后不久即死亡;而有警戒色的昆虫生殖后生存期较长。昆虫在生殖后如飞行多,大量消耗体内储存的能量,很快即死亡。而飞行少的昆虫可保存能量以维持较长的生命。一次生殖的昆虫实际上直到生命的终结前仍需保持全部的功能和活力,衰老仅发生在生殖过程完成后的一段很短的时间内。脊椎动物的鲑鱼也是一次生殖型动物,在产卵后旋即衰老死亡。有人曾用阉割方法阻止产卵,避免产卵后的退化变化,鱼的寿命即可延长数年,因此认为生殖器官的成熟即蕴藏着衰老的因素。产卵本身可引起内分泌的改变,但不是死亡的直接原因。哺乳动物属于多次生殖型。下表中示哺乳动物妊娠期、成熟期、生长期和寿命的一些资料。成熟期早,繁殖力强,一次产仔数多,每年产仔多次的动物寿命较短。小型啮齿动物如大鼠、小鼠、豚鼠等即属此例。而大型动物如牛、马、象以及人类,生长期长,妊娠期较长,产仔率低,寿命较长。温度与衰老 从比较老年学的角度看,许多冷血动物的代谢受外界温度的影响,在低温条件下能降低体温,寿命相对延长。如有些爬虫类和两栖类动物在热带生存的种类寿命比较短,而在温度较低地带的种类寿命比较长。有人用南美的一年生鱼类在15℃和26℃两种不同温度环境下饲养,结果温度低的一组生长快,体型大而且寿命较长。说明温度低时,冷血动物可变温适应环境,寿命也延长。温血动物能保持体温恒定,代谢速度也比较平稳,例如蝙蝠一天内可经常蛰伏不动,代谢慢,冬眠时体温下降,寿命能达15~17年;小鼠行动活跃、代谢快、外界温度降低时小鼠不能降低体温来适应环境,寿命只有3年。如将幼年鼠饲养在低温下,不但不能延长寿命,反而易染疾病,缩短寿命。食物与寿命 摄食量可以直接或间接影响动物的抗病能力从而影响寿命。有人用限量食物饲养断奶后的雄性大鼠可以使之比随意取食的大鼠寿命长。但另有试验说明如大鼠在120天以前取得足够的食物,其寿命比限食动物的寿命长。大鼠120天为成熟期,可见在生长期如给以足够的食物可增强体质延长其平均寿命。也有人认为食物与体重及寿命长短有一定关系。有人用家蝇、蟑螂、工蜂等做了一系列营养试验,认为食物影响昆虫的产卵时间,也间接影响到昆虫寿命。衰老期的变化机体衰老从宏观到微观都有一定的变化,并随年龄增加而渐趋明显。对低等动物的衰老变化虽然有人研究,但为数有限,且多是为了用来建立某种衰老模型,开展抗衰老实验,因此有关其衰老变化的资料比较零散缺乏系统性。对于人和哺乳动物的衰老变化则积累了较多的资料。整体水平老年人身高下降,脊柱弯曲,皮肤失去弹性,颜面皱褶增多,局部皮肤,特别是脸、手等处,可见色素沉着,呈大小不等的褐色斑点,称作老年斑。汗腺、皮脂腺分泌减少使皮肤干燥,缺乏光泽。须发灰白,脱发甚至秃顶,眼睑下垂,角膜外周往往出现整环或半环白色狭带,叫做老年环(或老年弓),是脂质沉积所致。牙齿脱落,但时间迟早因人而异。在行为方面,老年人反应迟钝,步履缓慢,面部表情渐趋呆滞,记忆力减退,注意不集中,语言常喜重复。视力减退,趋于远视。听力也易退化。上述情况个体差异很大,如秃顶未必落齿,面皱者也可能精神焕发。组织与器官水平整体所见的衰老变化有其组织与器官衰老变化的依据。骨骼系统骨组织随年龄衰老而钙质渐减,骨质变脆,易骨折,创伤愈合也比年轻时缓慢。关节活动能力下降,易患关节炎,脊柱椎体间的纤维软骨垫由于软骨萎缩而变薄,致使脊柱变短,这是老年人变矮的一个原因。皮肤老年人真皮乳头变低,使表皮与真皮界面变平,表皮变薄,真皮网状纤维减少,弹性纤维渐失弹性且易断裂,胶原纤维更新变慢,老纤维居多,胶原蛋白交联增加使胶原纤维网的弹性降低。皮肤松弛,不再紧附于皮下结构,细胞间质内透明质酸减少而硫酸软骨素相对增多,使真皮含水量降低,皮下脂肪减少,汗腺、皮脂腺萎缩,由于局部黑素细胞增生而出现老年斑。肌肉老年人肌重与体重之比下降。肌细胞外的水分、钠与氯化物有增加倾向、细胞内的钾含量则有下降倾向,此外,肌纤维数量下降,直径减小,使整个肌肉显得萎缩。这种衰老变化因功能不同而异,在不同的快缩肌或混合肌中收缩时间倾向于延长,而在慢缩肌中收缩时间倾向于缩短,这会影响不同运动单位的相互作用,降低肌群协调共济的有效性,很可能这是老人肌力不足的一个原因。当然,运动单位的老年变化还不足以解释老年人的一切运动障碍,因为神经系统不同水平上的复杂机理对运动都会产生影响。神经系统90岁时人脑重较20岁时减轻10~20%。造成减重的原因主要在于神经细胞的丧失。这种丧失有区域的特异性,例如大脑不同区域细胞减少程度不同。从出生到10岁神经细胞已增殖到最多,不再分裂,20岁以后细胞开始丧失。但全脑细胞基数很大,部分细胞死亡不致造成功能的严重障碍。况且人们对记忆机理了解得还不多,因此记忆减退未必是细胞丧失所致。从大体解剖上看,老年人后脑膜加厚,脑回缩小,沟、裂宽而深,脑室腔扩大。在显微结构上可见神经细胞尼氏体减少,脂褐质沉积。在功能上则见神经传导速度减慢,近期记忆比远期记忆减退得严重,生理睡眠时间缩短;感觉机能如温觉、触觉和振动感觉都下降,味觉阈升高,视听敏感度下降。反应能力普遍降低,特别是在要求通过选择做出决定的情况下反应更为迟缓。心血管系统老年心脏体积增大,目前还没有证据表明脂褐质沉积对心肌功能有何不良影响。在心脏的传导系统可见起搏细胞的数量减少,窦房结与结间束内纤维组织增加。在动脉方面,内膜也有不同程度的加厚,可因此而致小动脉管腔狭窄。冠状动脉分支在30岁后就开始出现内膜的增厚,中膜日趋纤维化,有些平滑肌可能坏死,最突出的衰老变化为弹性纤维板层变?⒍动脉血管变性,外周血管阻力增加以致动脉压升高。呼吸系统在形态方面老年人肋软骨可能钙化,驼背情况有所增加导致胸腔前后径扩大成为“桶状胸”。显微镜下可见肺泡管与呼吸性细支气管扩大,使周围肺泡容积减少消化系统 一般说来消化系统形态上的衰老变化不显著,落齿与对牙齿的保护良否有关,未必为衰老特征。显微镜下可见胃的泌酸细胞随衰老而减少,肝组织单位体积的细胞数也下降,小肠淋巴集结在年轻时最明显排泄系统 人与大鼠肾脏在老年时都失重达20~30%,肾小球数目减少,40岁时正常肾小球占95%,90岁时仅余63%,近曲小管长度与容积均下降,基底膜随年龄加厚, 髓质内间质组织增多。在功能上肾小球过滤速度下降,用菊糖廓清率(C)计算可得下式:C菊糖(毫升/分)=153.2-0.96×年龄肾血流速度由20~70岁下降53%,如以对氨基马尿酸最大排出量(TMPAH)计算,肾小管功能则随年龄下降情况如下式:TMPAH(毫克/分)=120.6-0.865×年龄此外,65岁以上老人不同程度地出现夜尿、尿急、尿濒乃至失禁等现象。内分泌系统性腺的萎缩是内分泌系统最明显的衰老变化。如女性45~50岁左右月经停止,雌激素分泌显著下降,男性从50~90岁雄激素逐渐减少,性机能减退。与此相应生殖及副性器官产生各种萎缩性变化,如卵巢淋巴细胞形成的激素,这都导致免疫机能下降。由于各个器官本身的复杂性以及内分泌器官之间相互作用的复杂性,细胞水平 可以从体内细胞和离体细胞两方面来阐述。在体内表现衰老的细胞主要为固定分裂后细胞,此类细胞出生后不久即停止分裂,死后也不能补充,如神经细胞、心肌细胞等。机体衰老时此类细胞在结构与组成上都有程度不同的改变,如细胞数量减少(源于局部细胞的死亡),线粒体嵴与基质减少、体积膨胀,甚至破坏消失。神经细胞粗面内质网失去典型构造,在光学显微镜下即见尼氏体减少。细胞核的衰老变化则表现为孚尔根氏染色阳性物质减弱,核膜内陷形成皱襞。比较突出的老年变化是脂褐质的堆积,在心肌细胞内的堆积情况已如前述。在神经细胞内堆积随年龄增加可占胞核外体积的一半以上。脂褐质呈褐色颗粒状,有自发荧光,在电子显微镜下可见有单层膜包围,内有电子致密物质,有时具透明区或板层结构。其随年龄增加的速度因不同细胞与不同动物而异,堆积对细胞的功能有何影响仍是个有争论的问题。离体细胞的衰老表现在随培养代龄增高而产生的胞内变化。自从1961年L.海弗利克等发现人胚肺二倍体成纤维细胞的培养寿限以来,对离体细胞的衰老已积累了相当资料。随着细胞增殖达到密布单层后即须分瓶传代,倘以1分为2计,则传代次数只有50±10次,是为细胞群体倍增的极限,也就是培养细胞的寿限。此数与供体年龄、种属有关。供体年老者其细胞培养的代数较来自年轻供体者少。种属寿限高的供体其细胞培养的代数也较来自短寿者多。培养到30~40代后细胞即出现荧光颗粒,核蛋白粒的RNA减少,缺嵴的线粒体增多。这都属衰老变化。在生化方面也已测知不少参数的变化。因此目前国内外已有不少研究者以此类细胞为衰老模型。除成纤维细胞外,诸如内皮组织、淋巴细胞、平滑肌细胞等都已建有细胞株,且有一定的培养寿限。分子水平器宫与细胞的衰老终归与分子水平的衰老有关,首先就细胞外的分子来说,充塞于全身的胞外结缔组织及上皮下方的基底膜均有特异的衰老变化。结缔组织富含胶原蛋白及弹性蛋白。随年龄增长胶原蛋白分子之间产生交联键。30~50岁为交联迅速增加的时期,随着交联的增多胶原纤维吸水性下降,失去韧性,趋于僵硬,不利于组织的活动。弹性蛋白为弹性纤维的主要成分,在衰老中也会进行交联。纤维断裂、脆化,外观黄色加深。至于基底膜只知其在衰老时加厚,其主要成分也是胶原蛋白,次为糖蛋白与碳水化合物。但这些分子如何改变导致膜的加厚还不清楚。此外,作为胞外物质当然还有血液、淋巴。这些物质经常处于运行状态,且不断更新,很难定出衰老的指标。其次就细胞内分子的衰老来说,有些不断更新的胞内分子,如代谢反应中的酶,其实质性的衰老变化还很少见。但其更新速度——合成与降解速度——可能在衰老时减慢。其生物活性是升是降则因不同酶而异。另有一些合成后不再更新的分子,如细胞分裂时的脱氧核糖核酸(DNA)在合成后即不降解。有人认为DNA分子随年龄增长而分子量下降,可能由于断裂增加所致,核小体上重复排列的DNA碱基对在老年比年轻时增多;DNA与组蛋白的结合增多,在染色质内组蛋白与非组蛋白的比值上升等等。至于衰老个体细胞内DNA损伤修复能力如何,人们尚不甚了解,但用离体细胞的研究大多认为DNA修复能力随培养代龄增加而下降,且与培养细胞的供体寿命似成正相关,即长寿动物的细胞在培养中有较高的修复能力。除DNA外,细胞内的大分子如眼球晶体纤维中的晶体蛋白,随年龄增长而含量增加。人在50岁以前晶体的可溶性蛋白占优势,50岁后可溶性蛋白下降而不溶性或难溶性蛋白及其分子量均随年老而增加,尤以晶体中心部为甚,表明早期合成的可溶性蛋白在增龄中进行聚合形成分子量大的聚合体。人们对分子水平的衰老所知有限,研究结果也常互相矛盾,有待于在技术改进的基础上深入探讨。

细胞生物学关于死亡的主题论文

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

论细胞生物学的发展 悠悠300余年,关于细胞的研究硕果累累;近50年来更进入了分子水平,老树又绽新花。许多研究成果已经或将要走进我们的生活:植物细胞在培养瓶中悄然长成幼苗;动物体细胞核移植诞生了克隆动物;不同生物细胞间DNA的转移创造出新的生物类型及其产品;病危的生命期盼着干细胞移植的救助…… 现在,生物学在人类的生产生活中的使用愈加广泛。美国细胞生物学家威尔逊曾经说过:“每一个生物科学问题的答案都必须在细胞中。”这句话明显说明了细胞生物学对整个生物科学的研究有着怎样的重要性。细胞生物学的发展,越来越受到人们的重视。 谈起细胞生物学,不得不提的是建立于19世纪的《细胞学说》。《细胞学说》的建立可谓是自然科学史上的一座丰碑。《细胞学说》的两位建立者——德国科学家施莱登和施旺。经过长时间不断的探索和研究,分别从结构、功能和分裂三个方面对细胞进行了探究,并从中提炼出了三个要点,构成了《细胞学说》的主体。《细胞学说》的建立,不仅为达尔文的《进化论》奠定了基础,更为后人对细胞生物学的研究,做出了巨大贡献。 在细胞学说创立的100年间,人们对细胞的研究基本停留在简单观察和形态描述的水平,细胞在生物学家的眼中多多少少还像一团胶状物,里面杂乱地散布着一些含混不清的东西。此时出现了一名科学家——美国的细胞生物学科学家克劳德,他决心把细胞内部的组分分离开,探索细胞内组分的结构和功能。当时分离细胞器所遇到的困难是今天的人们难以想象的。许多人对他冷嘲热讽,认为把好好的细胞弄碎是毫无意义的。但是克劳德坚信,要深入了解细胞的秘密,就必须将细胞内的组分分离出来。经过艰苦的努力,他终于摸索出采用不同的转速对破碎的细胞进行离心的方法,将细胞内的不同组分分开。这就是一直沿用至今的“转速离心法”。 如果说《细胞学说》是通往细胞生物学的一扇门,那么我认为克劳德的“转速离心法”便是这扇门的钥匙。这种方法的发现,使人类对细胞内部的进一步探究,有着非常重要的意义。 随着对细胞内更深入的探究,人类发现了细胞中一个新的世界。细胞中每个组分如此精巧,一个个小小的细胞器,在细胞中都起到了非常关键的作用。霍中和院士在《细胞生物学》中写到:“我确信哪怕最简单的一个细胞,也比迄今为止设计出的任何只能电脑更精巧。”人类也曾经试图组装出一个细胞。1990年,科学家发现人体生殖道支原体可能是最小、最简单的细胞。1995年,美国科学见文特尔领导的研究小组,对这种支原体的基因组进行了测序,发现它仅有480个基因。如果在480个基因中辨认出对细胞生活必不可少的“基本基因”,那么就有希望人工合成这些基因——一段不很长的DNA分子。 文特尔的方法是破坏一个又一个的基因,看那些基因是绝对不可或缺的,终于筛选出了300个对生命活动必不可少的基因,但其中100个基因的重要性尚不清楚。 文特尔以及其他一些科学家认为,如果能人工合成这300个基因的DNA分子,再用一个细胞膜把它和环境分隔开,在培养基中培养,让他能够生存、生长和繁殖,组装细胞就成功了。科学家现在已经能够合成长度为5000个碱基因对的DNA片段,文特尔估计生殖道支原体的DNA的碱基对比这要多100倍,因此,DNA的人工合成还需要方法上的创新。怎样给DNA分子包上细胞膜也是一个难题。他们的设想是,把生殖道支原体细胞的DNA破坏掉,再把人工合成的基因组“注入”支原体细胞。 有关实验还在进行中,不过可以确信的是,人类对细胞生物学的研究愈加深入,对人类今后的发展就愈加有利。通过不断的科学探究和深入研究,我相信在不久的将来,细胞生物学将成为一个重要的科学领域,会吸引更多的人去探索、研究。它也会绽放出他耀眼的光辉,来迎接着这崭新的时代!

The English papers cell biologyNature Publishing Group (NPG) and the European Molecular Biology Organization (EMBO) are pleased to announce the launch of an exciting new online-only journal, Molecular Systems Biology. The quality of the journal is guaranteed by the editorial and advisory boards, consisting of leading researchers in the field of systems biology, together with the commitment to scientific excellence and the professionalism of EMBO and NPG. Molecular Systems Biology covers all aspects of the rapidly growing and interdisciplinary field of systems biology at the molecular level, and will attract and help shape the highest quality research in the evolving areas of genomics, proteomics, metabolomics, bioinformatics, microbial systems, and the integration of cell signaling and regulatory networks. The journal will work together with the systems biology community to establish guidelines, standards and metrics for global complex datasets.

  • 索引序列
  • 细胞的衰老与死亡研究进展论文
  • 细胞程序性死亡研究论文
  • 细胞凋亡研究进展论文3000字
  • 细胞衰老及其延衰的研究现状论文
  • 细胞生物学关于死亡的主题论文
  • 返回顶部