首页 > 期刊投稿知识库 > 可逆矩阵在通信中的研究论文

可逆矩阵在通信中的研究论文

发布时间:

可逆矩阵在通信中的研究论文

然后根据密文表:

得知矩阵内容是

I L O

V E Y

O U

写成一行,即I LOVE YOU

本科阶段基本没用,若读研,研究无线通信得MIMO-OFDM,就有用了。比如信道矩阵的秩,表示MIMO系统能够独立传输的数据流数。迫零均衡的检测矩阵,就是信道矩阵的广义逆矩阵。等等

找几本现代数字信号处理的教材来看看。里面的推导到处都是矩阵形式。

研究一些特殊矩阵的作用和应用,比如Toeplitz和Hankel矩阵在通信信号处理中的应用等。

逆矩阵和广义逆矩阵毕业论文

所以算出A的广义逆A+,然后验证上述条件即可。

矩阵是工程技术以及经济管理等领域的不可缺少的数学工具,凡是用到矩阵的地方,基本上都要涉及广义逆矩阵,尤其数值分析与数理统计有着重要作用.广义逆矩阵共15类,但最常用有5类,包括A{1},A{1,2},A{1,3},A{1,4},A{1,2,3,4}.主要讨论这5类广义逆矩阵的计算及其应用.作 者: 马秀珍 韩静华 MA Xiu-zhen HAN Jing-hua 作者单位: 沈阳航空工业学院理学系,辽宁,沈阳,110034 刊 名: 沈阳航空工业学院学报 英文刊名: JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期): 2005 22(2) 分类号: O175.14 关键词: 广义逆矩阵 矩阵方程 自反广义逆 最小范数广义逆 通解 机标分类号: 机标关键词: 广义逆矩阵应用数值分析数学工具数理统计经济管理工程技术计算 基金项目:

逆矩阵和广义逆矩阵的区别如下。1、若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。2、若A是奇异阵或长方阵,Ax=b可能无解或有很多解。3、若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。4、当A非奇异时,A^(-1)也满足AA^(-1)A=A,且x=A^(-1)b+(I-A^(-1)A)у=A^(-1)b。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。

矩阵的逆矩阵求解方法毕业论文

逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。

一、伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。例题如下:

伴随矩阵法解题过程

注:用伴随矩阵法计算逆矩阵时需要运用代数余子式和余子式的相关知识,即代数余子式(Aij)和余子式(Mij),其中,i表示第几行,j表示第几列。

二、初等变换法。根据矩阵初等行变换的计算方式,然后引入单位矩阵E(矩阵对角线所对应的三个数字均为1,其他数字均为0的矩阵)。矩阵 A与单位矩阵E组成一个大矩阵,而后通过行变换将原来A的位置转变为E,此时,变换后的E就是所求的逆矩阵。

本人手写笔记

三、待定系数法。根据矩阵定义的推论,利用矩阵A乘以它的逆矩阵A^(-1)等于单位矩阵E的计算公式求得逆矩阵的方法。这种计算过程繁琐,需要列多组方程组,耗时,不建议使用。

题主可根据以上三种计算方法计算逆矩阵,希望对题主有帮助。

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^*=A^(-1)|A|,

两边同时取行列式得

|A^*|=|A|^2 (因为是三阶矩阵)

又|A^*|=4,|A|>0,所以|A|=2

所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

特殊求法:

(1)当矩阵是大于等于二阶时 :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以  , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以  ,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

矩阵性质

矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。

典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。

可逆矩阵论文参考文献

矩阵P可逆说明P是满秩,也就是说P的行列式不等于0。列向量中没有哪一个可以由其他向量线性表示,即列向量线性无关。

矩阵可逆,则秩=行向量个数=列向量个数。矩阵的行向量组的秩等于行向量的个数,所以行向量组线性无关。同理,列向量组线性无关。

在线性代数中,行向量是一个 1×n的矩阵,列向量是一个n×1的矩阵。行向量的转置是一个列向量,反之亦然。

所有的1×n行向量的集合形成一个向量空间,它是所有n×1列向量集合的对偶空间。(对偶空间构造是行向量(1×n)与列向量(n×1)的关系的抽象化。这个结构能够在无限维度空间进行并为测度,分布及希尔伯特空间提供重要的观点。及可以拓展到无限维。)

扩展资料

性质:

1、一个m×n矩阵的列空间一定在R^m中。

2、一个m×n矩阵的列空间如果是R,若m等于n,那么这个矩阵一定可逆。

其实矩阵A乘向量x就是一个将向量x由A的行空间向A的列空间映射的运算。

假设在A(m×n)的行空间中有任一向量x,Ax=b ,那么b在A的列空间中。

3、增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)。

4、减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)。

参考资料来源:百度百科-矩阵可逆

1、公式法:

其中,A^*为矩阵A的伴随矩阵。

2、初等变换法:对(A,E)作初等变换,将A化为单位阵E,单位矩阵E就化为A^-1。

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

扩展资料:

可逆矩阵的性质:

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

矩阵P可逆说明P是满秩,也就是说P的行列式不等于0。列向量中没有哪一个可以由其他向量线性表示,即列向量线性无关。

P可逆,列(行)向量线性无关,P行列式不等于0,P满秩,P的特征值都不为0,这几个是等价命题。

矩阵可逆,则秩=行向量个数=列向量个数。矩阵的行向量组的秩等于行向量的个数,所以行向量组线性无关。同理,列向量组线性无关。

判断或证明  可逆的常用方法:

①证明  ;

②找一个同阶矩阵  ,验证  ;

③证明  的行向量(或列向量)线性无关。

扩展资料:

在线性代数中,行向量是一个 1×n的矩阵,即矩阵由一个含有n个元素的行所组成即行向量。

行向量的转置是一个列向量,反之亦然。

所有的行向量的集合形成一个向量空间,它是所有列向量集合的对偶空间。

矩阵可逆的充分必要条件:

AB=E;

A为满秩矩阵(即r(A)=n);

A的特征值全不为0;

A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);

A等价于n阶单位矩阵;

A可表示成初等矩阵的乘积;

齐次线性方程组AX=0 仅有零解;

非齐次线性方程组AX=b 有唯一解;

A的行(列)向量组线性无关;

任一n维向量可由A的行(列)向量组线性表示。

其实以上条件全部是等价的。

参考资料:百度百科——矩阵可逆

我们说的矩阵可逆,都是指方阵,不是方阵的不在大学的研究范围内,以下所述基于此基础之上。矩阵可逆,说明矩阵的行列式不等于0,而如果行(列)向量组线性相关,那么它的某一个行(列)向量必然可以由其它的向量线性表出,由此可得它的行列式必然可以经过初等行(列)变换,将某一行(列)全部变成0,这样的行列式值为0,也就是不可逆,所以可逆矩阵行(列)向量组线性无关。哪里看不懂再问

逆矩阵的推广和应用毕业论文

因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等。所以在定义逆矩阵的时候就要求AB和BA都是E才行。只不过后面才证明了如果AB=E,则必有BA=E。如果一开始你先证明AB=E,则必有BA=E,那么定义时就可以只取一个等式就可以了。

矩阵乘法的实际应用:1)制造玩具A,分别需要大零件3个,小零件2个,制造玩具B,分别需要大零件1个,小零件5个,则制造玩具A,玩具B,分别x个、y个,则分别需要大、小零件,各多少个?使用矩阵乘法:(x,y) *3 21 5=(3x+y, 2x+5y)则分别需要大、小零件,各3x+y个, 2x+5y个2)计算学生综合得分:期中考试成绩权重为30%期末考试成绩权重为70%学生A,期中成绩89,期末成绩92学生B,期中成绩95,期末成绩86那么两人的综合得分是89 9295 86*30%70%

对角矩阵中,如果对角线上的元素都不为0,那么这个对角阵是可逆的。

其逆矩阵也是一个对角阵,对角线上的元素恰好是对应的原矩阵对角线上元素的倒数。可以利用逆矩阵的初等变换法证明,所以,逆矩阵如下:

扩展资料:

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

定义

由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:

这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵 。

参考资料:百度百科-矩阵

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

  • 索引序列
  • 可逆矩阵在通信中的研究论文
  • 逆矩阵和广义逆矩阵毕业论文
  • 矩阵的逆矩阵求解方法毕业论文
  • 可逆矩阵论文参考文献
  • 逆矩阵的推广和应用毕业论文
  • 返回顶部