首页 > 期刊投稿知识库 > 高阶行列式求解方式研究论文提纲

高阶行列式求解方式研究论文提纲

发布时间:

高阶行列式求解方式研究论文提纲

对行列式可以进行如下操作: 1.行列式的行(或列)可以加上其他任何一行(或列)或若干行(或列)的实数倍; 2.行列式的一行(或列)与任一行(或列)交换,前面加负号; 3.行列式沿左上到右下的对角线对称换位,行列式值不变; 4.某一行或某一列中的每一个元素具有共同的公因子k,可以提到外面; 5.行列式某两行或两列对应成比例,行列式为0; 6.行列式沿左上到右下对角线分开,若对角元素以下或以上(不含对角元素),则行列式为各对角线元素的乘积. 基本运算就是这些,更深的运算不讲,料你也用不到.想办法通过这些运算把它的对角元素之下或之上全弄成0,对角元素一乘就得到结果.举例: | 1 2 3 | | 1 2 3 | | 4 5 6 | = | 3 3 3 | = 0.因为有两行相同. | 7 8 9 | | 3 3 3 | 第二行减去第一行(看做加上第一行的-1倍),第三行减去第二行. | 1 2 1 1 | | 5 5 5 5 | | 1 1 1 1 | | 1 1 1 1 | | 1 1 1 1 | | 1 1 2 1 | | 1 1 2 1 | | 1 1 2 1 | | 0 0 1 0 | | 0 0 0 1 | | 1 1 1 2 | = | 1 1 1 2 | = 5 | 1 1 1 2 | = 5 | 0 0 0 1 | = -5 | 0 0 1 0 | | 2 1 1 1 | | 2 1 1 1 | | 2 1 1 1 | | 1 0 0 0 | | 0 -1 -1 -1 | | 1 1 1 1 | | 0 -1 -1 -1 | = 5 | 0 0 1 0 | =5×1×(-1)×1×1=-5. | 0 0 0 1 | 把二三四行加到第一行,把第一行公因数提出,然后二三四行分别减去第一行,再令二三行换位同时第四行减去第一行,最后第二行和第四行换位使对角元素下方全0,对角元素乘积即可.

行列式是线性代数中的一种重要工具,用于解决线性方程组、矩阵求逆、行列式的秩等问题。行列式的计算方法有多种,以下是其中几种常用的方法:

1. 拉普拉斯展开法:将行列式按照某一行或某一列展开成多个小行列式的和。对于每个小行列式,可以递归地继续展开,直到得到一个1阶行列式,即一个数。最后将所有小行列式的结果相加即可得到原行列式的值。

2. 三角形法则:将行列式通过初等变换,化为一个上三角行列式或下三角行列式。上三角行列式的值等于对角线上的元素之积,下三角行列式的值等于对角线下面的元素之积。因此,可以通过初等变换将行列式化为上三角或下三角形式,然后直接计算行列式的值。

3. 克拉默法则:如果线性方程组的系数矩阵为A,解向量为x,常数向量为b,那么线性方程组的解可以用行列式的形式表示:对于第i个未知量,它的解为该未知量在A的第i列上加上一个常数项,该常数项等于将A的第i列替换为常数向量b后,得到的行列式值除以A的行列式值。因此,可以通过计算行列式和一些简单的矩阵运算,求解线性方程组的解。

4. 巴塞罗那定理:对于一个n阶行列式,将其展开后,每个元素的系数等于它所在行的逆序对数与它所在列的逆序对数之和的奇偶性。因此,可以通过计算行列式展开式中每个元素的系数,来判断行列式的值的正负性。

这些方法的适用范围和精度不同,但都可以用来计算行列式的值。在实际应用中,需要根据具体情况选择合适的计算方法。

毕业论文列提纲的格式

编写提纲的步骤:(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。以《关于培育和完善建筑劳动力市场的思考》为例,简单提纲可以写成下面这样:一、序论二、本论(一)培育建筑劳动力市场的前提条件(二)目前建筑劳动力市场的基本现状(三)培育和完善建筑劳动力市场的对策三、结论详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:一、序论1.提出中心论题;2,说明写作意图。二、本论(一)培育建筑劳动力市场的前提条件1.市场经济体制的确立,为建筑劳动力市场的产生创造了宏观环境;2.建筑产品市场的形成,对建筑劳动力市场的培育提出了现实的要求;3.城乡体制改革的深化,为建筑劳动力市场的形成提供了可靠的保证;4.建筑劳动力市场的建立,是建筑行业用工特殊性的内在要求。(二)目前建筑劳动力市场的基本现状1.供大于求的买方市场;2,有市无场的隐形市场;3.易进难出的畸形市场;4,交易无序的自发市场。(三)培育和完善建筑劳动力市场的对策1.统一思想认识,变自发交易为自觉调控;2.加快建章立制,变无序交易为规范交易;3.健全市场网络,变隐形交易为有形交易;4.调整经营结构,变个别流动为队伍流动;5,深化用工改革,变单向流动为双向流动。三、结论1,概述当前的建筑劳动力市场形势和我们的任务;2.呼应开头的序言。上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业’论文之前拟好提纲,写起来就会方便得多。三、毕业论文提纲的拟定如何落笔拟定毕业论文提纲呢?首先要把握拟定毕业论文提纲的原则,为此要掌握如下四个方面:(一)要有全局观念,从整体出发去检查每一部分在论文中所占的地位和作用。看看各部分的比例分配是否恰当,篇幅的长短是否合适,每一部分能否为中心论点服务。比如有一篇论文论述企业深化改革与稳定是辩证统一的,作者以浙江××市某企业为例,说只要干部在改革中以身作则,与职工同甘共苦,可以取得多数职工的理解。从全局观念分折,我们就可以发现这里只讲了企业如何改革才能稳定,没有论述通过深化改革,转换企业经营机制,提高了企业经济效益,职工收入增加,最终达到社会稳定。(二)从中心论点出发,决定材料的取舍,把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的。有所失,才能有所得。一块毛料寸寸宝贵,台不得剪裁去,也就缝制不成合身的衣服。为了成衣,必须剪裁去不需要的部分。所以,我们必须时刻牢记材料只是为形成自己论文的论点服务的,离开了这一点,无论是多少好的材料都必须舍得抛弃。(三)要考虑各部分之间的逻辑关系。初学撰写论文的人常犯的毛病,是论点和论据没有必然联系,有的只限于反复阐述论点,而缺乏切实有力的论据;有的材料一大堆,论点不明确;有的各部分之间没有形成有机的逻辑关系,这样的毕业论文都是不合乎要求的,这样的毕业论文是没有说服力的。为了有说服力,必须有虚有实,有论点有例证,理论和实际相结合,论证过程有严密的逻辑性

提纲格式是:

1、先拟标题。

2、写出总论点。

3、考虑全篇总的安排:从几个方面,以什么顺序来论述总论点,这是论文结构的骨架。

4、大的项目安排妥当之后,再逐个考虑每个项目的下位论点,直到段一级,写出段的论点句(即段旨)。

5、依次考虑各个段的安排,把准备使用的材料按顺序编码,以便写作时使用。

6、全面检查,作必要的增删。

写提纲时还要注意的是:

1、编写毕业论文提纲有两种方法:一是标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。

毕业论文提纲一般不能采用这种方法编写.二是句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。

2、提纲写好后,还有一项很重要的工作不可疏忽,这就是提纲的推敲和修改,这种推敲和修改要把握如下几点。一是推敲题目是否恰当,是否合适;二是推敲提纲的结构。

先围绕所要阐述的中心论点或者说明的主要议题,检查划分的部分、层次和段落是否可以充分说明问题,是否合乎道理;各层次、段落之间的联系是否紧密,过渡是否自然。

论文提纲就是论文的框架、结构,是作者构思谋篇的具体体现。便于作者有条理地安排材料、展开论证。本科论文的提纲结构:一、中英文摘要二、绪论(前言)1、研究背景2、研究目的和意义3、国内外研究综述4、研究方法三、理论概述与文献概述1、论文用到的相关概念2、相关理论概述四、现状,对研究问题现状进行分析总结(文字描述及数据分析)五、根据现状提出存在的问题及原因分析(列出123)六、对策与建议,针对上面提出的问题提出解决政策,一 一对应进行解决(列出123)。七、结论

具体的范文模板链接:

关于行列式研究的论文

引言: 问题的提出在实践中存在许多解n元一次方程组的问题,如① ② 运用行列式可以解决如②的n元一次方程组的问题。2 2.1排列定义1 由1.2……n组成的一个有序数组称为一个 级排列。n级排列的总数为(n的阶乘个)。定义2 在一个排列中,如果一队数的前后位置与大小顺序相反,即前面的大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列。 2.2行列式定义(设为n阶):n阶行列式是取自不同行不同列的n个元素的乘积的代数和,它由 项组成,其中带正号与带负号的项各占一半, 表示排列 的逆序数。 2.3 阶行列式具有的性质性质1 行列式与它的转置行列式相等.( ) 事实上,若记 则 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立.性质2 互换行列式的两行( )或两列( ),行列式变号. 例如 推论 若行列式 有两行(列)完全相同,则 . 证明: 互换相同的两行, 则有 , 所以 . 性质3 行列式某一行(列)的所有元素都乘以数 ,等于数 乘以此行列式,即推论:(1) 中某一行(列)所有元素的公因子可提到行列式符号的外面;(2) 中某一行(列)所有元素为零,则 ;性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零.性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即.证: 由行列式定义性质6 行列式 的某一行(列)的各元素都乘以同一数 加到另一行(列)的相应元素上,行列式的值不变 ,即计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 2.4行列式的计算2.4.1数字型行列式的计算 1. 三角化法例1 .解: 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…, 列都加到第1列上,行列式不变,得. 例2 .解: 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算.2. 2.递推法 例3 计算行列式 之值。解 把各列均加至第1列,并按第1列展开,得到递推公式继续使用这个递推公式,有 而初始值 ,所以 例4 计算 .解:., ,,3.数学归纳法当 与 是同型的行列式时,可考虑用数学归纳法求之。 一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。 例5 计算行列式 .解:结合行列式的性质与次行列式本身的规律,可以采用数学归纳法对此行列式进行求解当 时, 假设 时,有 则当 时,把 按第一列展开,得由此,对任意的正整数 ,有4.公式法例6 计算行列式 之值。解 由于 ,故用行列式乘法公式,得因 中, 系数是+1,所以 。2.4.2行列式的概念与性质的例题 例7 已知 是6阶行列式中的一项,试确定 的值及此项所带的符号。解 根据行列式的定义,它是不同行不同列元素乘积的代数和。因此,行指标 应取自1至6的排列,故 ,同理可知 。直接计算行的逆序数与列的逆序数,有 。亦知此项应带负号。2.4.3抽象行列式的计算 例8 若4阶矩阵A与B相似,矩阵A的特征值为 则行列式 ( )。解 由A~B,知B的特征值是 。那么 的特征值是2,3,4,5.于是 的特征值是1,2,3,4。有公式得, 。2.4.4含参数行列式的计算 例9 已知 ,求 。解 将第3行的-1倍加至第1行,有所以 。2.4.5关于 的证明 解题思路:①设证法 ;②反证法:如 从A可逆找矛盾;③构造齐次方程组 ,设法证明它有非零解;④设法证矩阵的秩 ;⑤证明0是矩阵A的一个特征值。2.4.6特殊行列式的解法 1 范德蒙行列式定义:行列式 称为n级的范德蒙行列式。例10 计算行列式 之值。解 把1改写成 ,第一行成为两数之和, 可拆成两个行列式之和,即分别记这两个行列式为 和 ,则由范德蒙行列式得,故 2.4.7 拉普拉斯定理设在行列式D中任意取定了 个行,由这 行元素所组成的一切 级子式与它们的代数余子式的乘积的和等于行列式 。(其中:① 级子式:在一个 级行列式 中任意选定 行 列 。位于这些行和列的交点上的 个元素按照原来的次序组成一个 级行列式 ,称为行列式 的一个 级子式。②余子式:在 中划去这 行 列后余下的元素按照原来的次序组成的 级行列式 称为 级子式 的余子式。③代数余子式:设 的 级子式 在 中所在的行、列指标分别是 则 的余子式 前面加上符号 后称为 的代数余子式)。例11 求行列式 。解:在行列式 中取定第一、二行,得到六个子式:它们对应的代数余子式为根据拉普拉斯定理3 结束语老师渊博的学识、敏锐的思维、民主而严谨的作风,使我受益匪浅,终生难忘,严谨的治学态度和对工作的兢兢业业、一丝不苟的精神将永远激励和鞭策我认真学习、努力工作。感谢我的老师对我的关心、指导和教诲! 感谢我的学友和朋友对我的关心和帮助

[1] 多元Pade表的方块结构,东北数学,5(1989),N.2,145-154(MR:91d65037)[2] 多元Pade逼近的恒等式,合肥工业大学学报,12(1989),N.4,14-20[3] 关于一类多元Pade逼近式,合肥工业大学学报,13(1990),N.4,24-32[4]用Goodman插值方法构造多元型Pade逼近,1991年第四届全国计算数学年会论文集,669-672[5] Multivariate Pade Approximants as limits of Multivariate Rational Functions of Best Approximation,in <>. Jilin University Press,1990[ISBN 7-5601-0551-3/0.63[6] 有理插值与广义正交性,大连理工大学博士学位论文,1991[7] 一种多元广义台劳展式,工科数学,7(1991),N.1,63[8] 关于一个行列式恒等式及其几何意义,工科数学,10(1994),N.2,49[9] 应用数学人才培养改革的实践与思考,上海交通大学高教研究1998年3期[10] A Convergence Theorem on the Multivariate Interpolating Rational Functions,J.Shanghai Jiaotong University,E4(1999),N.2,59-63[11] Vector Valued Rational Interpolants over Triangular Grids,submitted

行列式论文的研究现状

中国期刊网,搜索一下相关课题的综述 你直接上当然要钱了。不过你们学校图书馆肯定买了,在你们学校图书馆的电子资源里面找找,肯定有账号或者可以用的镜像站点的。

什么专业什么题目啊?如果跟我论文差不多,可以把开题给你参考一下

4. 行列式的性质:

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

5. 注意区分行列式与矩阵

矩阵定义:由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。

矩阵样式:

主要书写区别便是行列式使用竖线,矩阵使用括号(通常使用中括号)。同时行列式一个数,而矩阵是数的集合。

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

高阶线性微分方程的解法研究论文

这个论文呀,是发挥你的长处的时候了,加油啊

随机微分方程数值解在泄洪风险分析中的应用摘要: 根据泄洪过程中库水位过程的随机微分方程,利用数值解方法,模拟了随机干扰下的库水位及其波动状况.采用相应公式计算了洪水漫越坝顶事件的概率以及库水位过程在不同时刻的样本均值.并通过比较在同样强度的随机干扰下库水位的高低状况,确定出各种泄洪方案的优劣,从而对防洪工作具有重要的指导意义.关键词: 随机微分方程;数值解;欧拉法;泄洪风险1 引 言收稿日期:2005-06-27基金项目:国家自然科学基金(60474037);教育部新世纪优秀人才支持计划(NCET-04-415) 对于洪水,风暴潮等自然灾害事件,风险分析是一种极为有效的工具[1].由于洪水过程具有很多种不确定性因素,随机性便很自然地被引入到防洪过程的分析.近年来,这方面的很多研究工作都认为洪水过程是一随机点过程[2—4];Sen以一阶马尔科夫过程为工具对具有线性相关结构的水文系列风险进行计算[5].特别地,随机微分方程被引入防洪风险分析,由此建立了水库调洪演算的随机数学模型[6,7].由于随机微分方程本身的复杂性,除了一些线性的或者特殊结构的方程以外,可求出显示解的随机微分方程很少[8,9].本文中讨论的随机微分方程不具有上述性质,因此无法求出显示解.姜树海根据其解过程的一阶概率密度函数满足Fokker-Plank向前方程,而这一方程又是一偏微分方程,从而利用偏微分方程的有限差分法求出其数值解[6],但这种方法不能求得概率特征,于是JC计算方法被用于近似地算出洪水漫越坝顶的概率[7].不难看出,这种方法由于采用多次转化,误差比较大.本文利用随机微分方程数值解方法,结合实际例子,分析总结了库水位在布朗运动干扰下的随机波动状况;直接求出了洪水漫坝的风险概率和库水位过程在不同时刻的数学期望.并且还对不同的方案进行分析比较,以确定哪种方案的效果更好,从而可对防洪决策过程提供一定的依据.2 调洪过程的随机微分方程调洪过程中入库洪水和出库泄量是随机过程,其库容水位满足随机微分方程[6]:dH(t) =Q-(t) -q-(H,c)G(H)dt+dB(t)G(H)H(t0) =H0(1)H(t)为库水位过程;H0为初始库水位,它是一个随机变量;Q(t)为任意时刻入库洪水量;q(h,c)为相应时刻的泄洪流量;Q-,q-分别为来流和泄洪的均值过程线;c为流量系数等水利参数.G(H) =dW(H)dH,W(H)是水库的库容量,B(t)是一均值为零的Wiener过程,dB(t)/dt是一正态白噪声,B(t)的一维概率密度函数f(B)为:f(B) =12πt·σexp -B22σ2t.由上式可以看出,E[B(t)] = 0,D[B(t)] =σ2t.洪水漫越坝顶的泄洪风险率定义为Pf=Pf[H Z],其中,Z为相应的坝高.3 计算方法由于随机微分方程很少可求出显示解,故其数值解方法得到广泛的研究和应用.相对于常微分方程数值法而言,随机微分方程数值解方法引入了随机增量,它将所考虑的时间区间做有限划分,一步一步地在节点处生成样本轨道的逼近值,其数值解方法主要有:Eu-ler法、Milstein法、Runge-Kutta法等.这里采用Euler法.3.1 随机微分方程解的欧拉逼近法考虑一般随机微分方程:dXt=a(t,Xt)dt+b(t,Xt)dWt(2)其中,t0 t T,初始条件是Xt0=X0.我们对时间区间[t0,T]进行离散化:t0=τ0<τ1<…<τn<…<τN=T. 采用Euler逼近法[8],构造一连续过程Y= {Y(t),t0 t T}满足以下迭代格式:Yn+1=Yn+a(τn,Yn)(τn+1-τn) +b(τn,Yn)(Wτn+1-Wτn)其中,n= 0,1,2,…,N- 1,Y0=X0.将通过逐步迭代得出的有限个离散的随机变量作为原随机微分方程在相应时间节点的近似解.显然,如果扩散项系数为零,则原随机微分方程退化为一般的常微分方程,于是随机微分方程的Euler法就退化为常微分方程的Euler法.就数值方法而言,一般讨论其强收敛性.定义1[8] 对于一个最大步长为δ的离散逼近序列Yδ,它在时刻T强收敛于一个Ito∧过 你好,我有相关论文资料(博士硕士论文、期刊论文等)可以对你提供相关帮助,需要的话请加我,7 6 1 3 9 9 4 5 7(扣扣),谢谢。

微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析

天文科普,拉格朗日点,你知道是什么吗

  • 索引序列
  • 高阶行列式求解方式研究论文提纲
  • 毕业论文列提纲的格式
  • 关于行列式研究的论文
  • 行列式论文的研究现状
  • 高阶线性微分方程的解法研究论文
  • 返回顶部