首页 > 期刊投稿知识库 > pid论文格式

pid论文格式

发布时间:

pid论文格式

浣熊在水溪中洗它们的肉食。正无神地凝视记忆的某个角落而使那思想麻木 哦,窃贼的大门世界没有篱笆和栅栏 历经的却是这个的的悲欢苦中哈哈

恒温室房间温度PID控制研究摘要:某恒温实验室的恒温精度为27±0.2℃,但是由于实验室的非凡性,恒温室的内外扰量多且某些随机扰量的大小难于确定,而导致了其恒温精度很难达到预期效果。为了解决这个问题,通过建立恒温室被控对象的数学模型求出其传递函数,然后采用参数寻优方法确定PID控制器的参数,最后采用MATLAB仿真的方法,研究恒温室内外扰量对房间温度的影响。通过研究,可以得出,当设备散热干扰量为17℃以及送风温度干扰量为0.1℃,渗透风干扰量不大于0.3℃时,PID控制才能保证恒温室的恒温精度。关键词:恒温室,PID控制渗透风干扰量参数寻优温度1前言随着科学技术的发展,各类精密产品的生产制造以及特种科学实验都要求具有特定的工作环境,恒温就成为了不可缺少的条件之一。目前我国常见的恒温室的恒温精度为±1℃及±0.5℃,也有±0.1℃。而一些高精度的恒温室如光学仪器厂的刻线室恒温精度已达到了±0.0056℃。但是在某些非凡的科学实验室不仅恒温精度很高,而且干扰量多如渗透风、设备散热、送风温度波动以及电热器供电电压的波动等,且某些干扰量如渗透风其最大值难于确定而没有采用相应的措施控制渗透风扰量,导致了房间温度的波动过大,结果使恒温室的恒温精度很难达到要求。如何使这些非凡的科学实验室恒温精度达到使用要求,也成为了恒温室的空调系统和控制系统设计的一个巨大的难题。由于传统的PID控制算法,其运算简单、调整方便、鲁棒性强,在过程控制中,这种控制算法仍占据相当重要的地位.故目前恒温室的空调系统大部分采用PID控制。但PID控制的效果如何,在很大程度上是取决于控制器参数的正确整定。为此,人们提出了各种不同的参数整定方法,如误差积分最小、固定衰减比、极点配置等方法.这些方法主要是用经典控制理论中的一些设计方法或者依靠现场试验方法来进行PID控制器参数的计算与整定.显然,这就要求操作人员具有较高的理论基础和现场调试经验.而且,被控对象模型参数难以确定以及系统性能稳定性较差,则需频繁地进行参数整定,这必将影响系统的正常运行。对于这些非凡的空调房间温度的控制,由于被控对象具有较大的惯性和迟延,且受各种因素变化的影响,因此对象的传递函数具有非线性和时变特性,采用传统的PID控制难于取得较好的控制效果。本文采用单纯形法寻优PID参数,然后采用MATLAB仿真确定渗透风干扰量的最大值,PID控制才能保证恒温室的恒温精度。2工程概况恒温室建筑面积625m2,层高8m,总送风量27500m3/h,送风温度15℃,房间设计温度27±0.2℃,设备散热量135KW,恒温室建筑墙体、地板采用绝热材料,渗透风来自外部房间其设计温度26±1℃。3恒温室空调过程建模1恒温室空调系统被控对象的数学模型要对一个恒温室空调系统被控对象进行控制,须为其建立一个合适的数学模型。使用数学语言对实际对象进行一些必要的简化和假设:由于该恒温室建筑墙体、地板采用绝热材料,故室内外墙体和地板热量传递忽略不计。恒温室顶棚由盖板组成,存在缝隙,考虑有一定的渗透风,其他地方如门窗的渗透风忽略不计。假如不考虑执行机构的惯性和室温调节对象的传递滞后,根据能量守恒定律,单位时间内进入对象的能量减去单位时间内由对象流出的能量等于对象内能量蓄存量的变化率,表达式和图1如下所示:图1室温自动调节系统数学表达式为:式中:Chrr——恒温室的热容;C——空气的比热;GS——送风量;θ0’——电加热器前的送风温度;θ1——室内空气温度,回风温度;QE——电加热器的热量;Qm——设备散热量;QI——渗透风带入的热量;由式QI=GIcit式中:GI——渗透风量;θIt——渗透风空气温度;cIt——渗透风空气的比热。把式代入式,整理得式中:T1——调节对象的时间常数,T1=Chrr/;K1——调节对象的放大系数,K1=GSc/;θE——电加热器的调节量,换算成送风温度的变化,θE=QE/GSC;θf——干扰量换算成送风温度的变化,;θf‘——送风温度干扰量,θf‘=θ0“θIf——渗透风的干扰量,θIf=QI/GSC;θMf——设备散热量的干扰量,θMf=QM/GSC。由式拉普拉斯变换,得假如考虑被控对象传递滞后,则恒温室空调过程的传递函数为:2感温元件和执行调节机构的传递函数感温元件采用热电阻,根据热平衡原理,其热量平衡方程式:式中:C2——热电阻的热容;θ2——热电阻温度;q2——单位时间内空气传给热电阻的热量;α2——室内空气与热电阻表面之间的换热系数;F2——热电阻的表面积;θ1——室内空气温度,回风温度。由式拉普拉斯变换,可得感温元件的传递函数:同样执行调节机构的传递函数:3恒温室特性参数及其他参数的确定恒温室特性即房间的特性,用传递滞后τ、时间常数T1和放大系数K1这三个参数来表示。时间常数T1和放大系数K1由式,η=4,GI=GS×3%,通过式,式计算可以得到,T1=18分,K1=0.971。传递滞后τ由经验公式τ/T1=0.07通过计算则得τ=35分由参考文献的附表6-可以得到感温元件的时间常数和不灵敏区为T3=50秒,2ε=0.05℃。电加热器的比例系数K2=△θ/△N=0.00009,T2=50秒。4单纯形法寻优方法控制系统参数最优化是指对被控对象已知、控制器的结构和形式已确定,需要调整或寻找控制系统的某些参数使整个控制系统在某一性能指标下最佳。单纯形法的思想很简单,若要求一个函数的最大点,则可先计算若干点处的函数值,进行比较,并根据它们的大小关系确定函数的变化趋势作为搜索的参考方向,然后按参考方向搜索直到找到最小值为止。在三维空间内取不同一平面的四个点构成单纯形,如图3所示。图2三维空间的单纯形这四个点X0、X1、XX3对应的函数值为F0、FFF3,比较可看出最大者,则对应点X3作为差点,由此可以推测好点在差点XH的对称点XR处的可能性最大,然后计算XR处的函数值FR,若有FR≥max,说明从XH前进的步长太大,XR并不一定比XH好,因此可以压缩步长在XH与XR之间找一点XS为新点,然后X0,F1,F2中最大者说明情况有所改善,但前进和步长可能还不够,还可以加大步长得XH与XR延长线上的一点XE,若XE对应的函数FE小于FR则以XE作为新点,并以X0、X1、X2构成新的单纯形。最后比较构成新的单纯形的各点处的函数值,若其中最大者和最小者之间的相对差小于预先给定的数E,则说明最小值已经找到,否则继续重复上述步骤直到找到止。5恒温室控制系统仿真整个室温自动调节系统包括调节对象,调节器、感温元件以及PID控制器。根据参数计算结果,最后得到恒温室恒温控制系统如图3所示。图3恒温室恒温控制系统仿真框图?恒温室实验设备散热量相当稳定,由式计算可得,设备散热量干扰量θMf=17℃是稳定的扰量。而送风温度干扰量主要包括电加热器供电电压的波动和换热器冷冻水温度的波动以及管道温升等引起的送风温度的变化,其值为0.1℃。渗透风干扰量是随机扰量,其随着恒温室外面的房间温度的变化和渗透风风量的变化而变化,它是影响恒温室的房间温度最重要的因数。当渗透风干扰量分别0.1℃、0.2℃、0.3℃、0.4℃时,PID控制的仿真曲线如图4-图7所示。图4θIf为0.1℃时PID控制的仿真曲线图5θIf为0.2℃时PID控制的仿真曲线图6θIf为0.3℃时PID控制的仿真曲线图7θIf为0.4℃时PID控制的仿真曲线分析图4-图可以得出:当渗透风扰量θIf不大于0.3℃时,恒温室房间温度波动小于0.2℃,满足恒温室的恒温精度要求。但是当渗透风扰量θIf为0.4℃时,恒温室房间温度波动大于0.2℃,超出答应的波动范围。6结论通过以上的仿真和分析,可以得出:恒温实验室的恒温精度为27±0.2℃,但是由于实验室的非凡性,恒温室的内外扰量多,只有当设备散热干扰量为17℃以及送风温度干扰量为0.1℃,渗透风干扰量不大于0.3℃时,PID控制才能保证恒温实验室的恒温精度,达到使用的要求。=============Room temperature PID control of room temperatureAbstract: A temperature accuracy of laboratory temperature 27 ± 0.2 ℃, but because of the extraordinary nature of the laboratory, constant temperature room and the volume inside and outside the interference of some random disturbance difficult to determine the size of the volume, which led to the accuracy of its temperature is very difficult to achieve the desired effect. To solve this problem, through the establishment of constant temperature room was charged with the mathematical model of the object to derive its transfer function, and then used to determine optimal parameters of PID controller parameters, and finally the use of MATLAB simulation method to study indoor and outdoor temperature the amount of room disturbance temperature. Through research, can be drawn, when the equipment cooling capacity of 17 ℃ interference and disruption of supply air temperature 0.1 ℃, the volume of infiltration air interference at 0.3 ℃ not more than, PID temperature control room in order to ensure the accuracy of the thermostat. Key words: constant temperature room, PID control parameters of the infiltration volume of wind interference temperature optimization 1 Introduction With the development of science and technology, various types of manufacturing precision products and the special requirements of scientific experiments are with a specific working environment has become a heated one of the conditions indispensable. At present, the temperature of our common room temperature accuracy of ± 1 ℃ and ± 0.5 ℃, also ± 0.1 ℃. And some, such as high-precision optical instrument factory room temperature of the engraved line has reached room temperature accuracy of ± 0.0056 ℃. However, in some extraordinary precision scientific laboratory is not only a high temperature, and interference, such as infiltration of the wind volume, equipment cooling, supply air temperature fluctuations, as well as electric heaters, such as supply voltage fluctuations, and some amount of interference, such as wind penetration of its difficult to determine the maximum value without the use of appropriate measures to control the amount of infiltration of the wind disturbance, leading to fluctuations in room temperature is too large, resulting in the constant temperature room thermostat accuracy requirement is very difficult to achieve. How to make these remarkable scientific accuracy of the use of constant temperature laboratory requirements, but also become a constant temperature room air-conditioning system and control system design of a huge problem. As a result of the traditional PID control algorithm, the computation is simple, convenient adjustment, robustness, and in process control, this control algorithm is still occupied a very important position. Therefore, the current room temperature most of the air-conditioning system using PID control. However, the effects of PID control to a large extent depends on the correct controller parameter tuning. To this end, the people made a variety of parameter tuning methods, such as minimum error integral, fixed attenuation ratio, pole placement and other methods. These methods are mainly used in classical control theory a number of design methods or testing methods rely on the scene to carry out PID control parameters of the calculation and setting. Obviously, this requires the operator has a higher theoretical basis and field testing experience. Moreover, the plant model parameters it is difficult to determine system performance, as well as less stable, it would take frequent tuning parameters, This will affect the normal operation of the system. For these extraordinary control of an air-conditioned room temperature, due to a larger plant with inertia and delay, and by the impact of changes in a variety of factors, so the object of the transfer function with nonlinear and time-varying characteristics, using the traditional PID control difficult to obtain a better control effect. Simplex method using PID parameter optimization, and simulation using MATLAB to determine the amount of infiltration of the maximum wind disturbance, PID control room temperature in order to ensure the accuracy of the thermostat. 2 Project Overview Constant temperature room floor area of 625m2, storey 8m, total air volume of 27500m3 / h, air temperature 15 ℃, room design temperature 27 ± 0.2 ℃, heat dissipation equipment 135KW, constant temperature room building wall, floor insulation materials used, the wind penetration to Since the design of external room temperature 26 ± 1 ℃. 3 air-conditioned room temperature process modeling A constant temperature room air-conditioning systems charged with the mathematical model of the object To a constant temperature room air-conditioning system to control the object to be suitable for the establishment of a mathematical model. The use of mathematical language of the actual number of objects necessary to simplify and assumptions: Room temperature due to the building wall, floor insulation materials used, the indoor and outdoor wall and floor heat transfer is negligible. Room temperature by the flat roof of the existence of the gap, taking a certain degree of infiltration of wind, such as doors and windows in other parts of the wind penetration is negligible. If agencies do not consider the implementation of the inertia and temperature regulation of the transmission lags behind the target, according to the law of conservation of energy, per unit time into the object of energy per unit time minus the outflow of energy from the target object with the same energy with the rate of change of the stock, the expression and Figure 1 as follows: Figure 1 at room temperature automatic adjustment system Mathematical expression is: Where: Chrr - room temperature heat capacity; C - specific heat of air; GS - air traffic; θ0' - electric heater before the air temperature; θ1 - indoor air temperature, return air temperature; QE - the heat electric heater; Qm - equipment heat dissipation; QI - the infiltration of heat into the wind; QI = GIcit by type Type in: GI - the infiltration air flow; θIt - air temperature wind penetration; cIt - the air infiltration heat wind. Skill into the style, finishing a Where: T1 - the object of regulation time constant, T1 = Chrr /; K1 - adjust object magnification factor, K1 = GSc /; θE - regulation of electric heater volume, converted into changes in air temperature, θE = QE / GSC; θf - converted to interfere with the volume of supply air temperature changes ; θf' - interfere with the volume of supply air temperature, θf '= θ0 " θIf - interfere with the volume of wind penetration, θIf = QI / GSC; θMf - equipment heat dissipation capacity of the interference, θMf = QM / GSC. Laplace transform by the style, too If the accused objects to consider transmission lag, then the process of constant temperature air-conditioned room for the transfer function: 2 temperature components and the implementation of the transfer function of regulating agencies Temperature components using thermal resistance, according to the principle of heat balance, the heat balance equation: Where: C2 - thermal resistance of the heat capacity; θ2 - thermal resistance temperature; q2 - units of air time to the thermal resistance of heat; α2 - indoor air and thermal resistance between the surface heat transfer coefficient; F2 - thermal resistance of the surface area; θ1 - indoor air temperature, return air temperature. Laplace transform by type, available thermal transfer function components: Regulating agencies to implement the same transfer function: 3 Room temperature characteristics and other parameters to determine Room temperature properties of the characteristics of that room, with delivery lags τ, time constant T1 and the magnification factor of these three parameters K1 said. Time constant T1 and the magnification factor K1 By type, η = 4, GI = GS × 3%, through the ceremony, can be calculated, T1 = 18 minutes, K1 = 0.971. Transmission lag τ By the empirical formula by calculating the τ/T1 = 0.07 is a τ = 35 minutes References schedule from 6 - temperature components can be time constant and dead-zone for the T3 = 50 seconds, 2ε = 0.05 ℃. The ratio of electric heater coefficient K2 = △ θ / △ N = 0.00009, T2 = 50 seconds. 4 simplex optimization method Control system parameters optimization refers to the object known, controls the structure and form have been identified, need to adjust the control system or to find some of the parameters so that the whole control system of performance indicators in a best. Simplex method of thinking is very simple, if the maximum point of a function may be a number of points to calculate the function values, for comparison, and in accordance with their function to determine the size of the relationship between changes in the trend of the reference as a search direction, and then by reference to the direction of the search until you find the minimum value so far. Three-dimensional space in a plane different from the four points constitute a simplex, as shown in Figure 3. Figure 2 Three-dimensional simplex space These four points X0, X1, XX3 corresponding value is a function of F0, FFF3, comparison can be seen the largest, then the corresponding point as almost X3, it can be a good point that in the nearly symmetric point XH Department is most likely to XR , and then calculating the value function XR Department FR, if FR ≥ max, from the XH big step forward, XR is not necessarily better than the XH, the compression step can be in between the XH and XR point to find the new XS point X0, F1, F2 largest note in the situation has improved, but step forward and might not be enough, you can increase the step-by-step look XH and XR point to extend the online XE, if XE corresponding FE function of small while in the FR as a new point of XE, and X0, X1, X2 constitute a new simplex. Finally, constitute a new comparison of the simplex function value point, if one of the largest and the smallest relative difference between the pre-less than a given number of E, then the minimum has been found, otherwise continue to repeat the above steps until you find the only. 5 Room temperature control system simulation Automatic adjustment of the temperature regulation system includes objects, regulators, and the PID temperature controller components. The calculation results based on parameters, and finally to be room temperature thermostat control system shown in figure 3. Figure 3 Room temperature thermostat control system simulation block diagram? Room temperature a considerable amount of laboratory equipment, heat stability, available from the computing equipment interfere with heat dissipation capacity θMf = 17 ℃ traffic disturbance is stable. Interfere with the volume of supply air temperature and the main electric heater supply voltage fluctuations and the chilled water heat exchanger, as well as fluctuations in temperature, such as pipeline temperature rise caused by changes in air temperature, its value is 0.1 ℃. Interfere with the volume of air infiltration is the amount of random disturbance, the room with the outside temperature changes in room temperature and the amount of infiltration风风changes, it is the impact of room temperature room temperature the most important factor. When the infiltration of wind interference respectively 0.1 ℃, 0.2 ℃, 0.3 ℃, 0.4 ℃, when, PID control of the simulation curve in Figure 4 - as shown in Figure 7. Figure 0.1 ℃ when 4θIf for the simulation curve of PID control Figure 0.2 ℃ when 5θIf for the simulation curve of PID control Figure 0.3 ℃ when 6θIf for the simulation curve of PID control Figure 0.4 ℃ when 7θIf for the simulation curve of PID control Analysis of Figure 4 - plans can be drawn: When the volume of infiltration θIf wind disturbance is not more than 0.3 ℃, the temperature fluctuations in room temperature of less than 0.2 rooms ℃, room temperature thermostat to meet accuracy requirements. However, when the volume of infiltration air disturbance θIf for 0.4 ℃, the temperature fluctuations in room temperature greater than room 0.2 ℃, beyond the agreed scope of the fluctuations. 6 Conclusion Through the above simulation and analysis, can be drawn: Temperature accuracy of laboratory temperature 27 ± 0.2 ℃, but because of the extraordinary nature of the laboratory, both inside and outside the room temperature volume disturbance, interference only when the cooling equipment of air temperature of 17 ℃ and the interference of 0.1 ℃, wind penetration interfere with the volume of not more than 0.3 ℃, when, PID temperature control to ensure the accuracy of laboratory temperature, to achieve the requirements of use.【这是我在网上找的,希望可以帮助你】

只要有论文格式标准和要求就行,调整格式很简单.

题目(黑体不加粗三号居中) 摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下) 首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点我们对问题1用……的方法解决;对问题2用......的方法解决;对问题3用……的方法解决。对于问题1我们用......数学中的......首先建立了......模型I。在对......模型改进的基础上建立了......。模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为......。,然后借助于......数学算法和......软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)对于问题2我们用......对于问题3我们用......如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。要注意合理性。此推广模型可以不深入研究,也可以没有具体结果。关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。摘要是重中之重,必须严格执行!。页码:1(底居中)一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。篇幅建议不要超过一页。大部分文字提炼自原题。二、问题分析主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。如果有多个小问题,可以对每个小问题进行分别分析。(假设有3个问题) 问题1的分析对问题1研究的意义的分析。问题1属于......数学问题,对于解决此类问题一般数学方法的分析。对附件中所给数据特点的分析。对问题1所要求的结果进行分析。由于以上原因,我们可以将首先建立一个......的数学模型I,然后将建立一个......的模型II,........对结果分别进行预测,并将结果进行比较.问题2的分析对问题2研究的意义的分析。问题2属于......数学问题,对于解决此类问题一般数学方法的分析。对附件中所给数据特点的分析。对问题2所要求的结果进行分析。由于以上原因,我们可以将首先建立一个......的数学模型I,然后将建立一个......的模型II,......。。对结果分别进行预测,并将结果进行比较. ..............................。。三、模型假设(4号黑体)(以下小4号) 假设题目所给的数据真实可靠;2.3.4.5.6..................................... 注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。四、定义与符号说明(4号黑体)(对文章中所用到的主要数学符号进行解释小4号)............................ 尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。对文章自己创新的名词需要特别解释。其他符号要进行说明,注意罗列要工整。如“~第种疗法的第项指标值”等,注意格式统一,不要出现零乱或前后不一致现象,关键是容易看懂。五、模型的建立与求解(4号黑体)第一部分:准备工作(4号宋体)数据的处理 1、......数据全部缺失,不予考虑。 2、对数据测试的特点,如,周期等进行分析。 3、......数据残缺,根据数据挖掘等理论根据......变化趋势进行补充。 4、对数据特点(后面将会用到的特征)进行提取。(二)聚类分析(进行采样) 用......软件聚类分析和各个不同问题的需要,采得。。。组采样,每组5-8个采样值。将采样所对应的特征值进行列表或图示。预测的准备工作根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。第二部分:问题1的...模型(4号宋体)模型I(......的模型)该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参考文献。......模型I的建立和求解说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。给出问题1的数学模型I表达式和图形表示式。给出误差分析的理论估计。3.模型I的数值模拟将模型I进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。对误差进行数据分析。模型II(......的模型)该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参考文献。......模型II的建立和求解说明问题1适用此模型来解决,并将模型进行改进以适应问题1。借助准备工作中的采样,通过确定出模型中的参数。给出问题1的数学模型I表达式和图形表示式。给出误差分析的理论估计。3.模型II的数值模拟将模型II进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。对误差进行数据分析 (三)模型III(......的模型) ........................(四)问题1的三种数学模型的比较。对三种模型的优点和缺点结合原始数据和模拟预测数据进行比较。给出各自得优点和缺点。第三部分:问题2的...个模型(4号宋体)........................。第四部分:问题3的...个模型(4号宋体)........................。六、模型评价与推广对本文中的模型给出比较客观的评价,必须实事求是,有根据,以便评卷人参考。推广和优化,需要挖空心思,想出合理的、甚至可以合理改变题目给出的条件的、不一定可行但是具有一定想象空间的准理想的方法、模型。(大胆、合理、心细。反复推敲,这段500字半页左右的文字,可能决定生死存亡。)七、参考文献(4号黑体)(书写格式如下) [1] 作者名1,作者名2.文章名字.杂志名字,年,卷(期):起始页码-结束页码[2] 作者名1,作者名2.书名.出版地:出版社,年,起始页码-结束页码[3] 作者名1,作者名2.文章名字. 年,卷(期):起始页码-结束页码,网页地址。[4] 李传鹏,什么是中国标准书号,,2006-9-18。[5] 徐玖平、胡知能、李军,运筹学(II类),北京:科学出版社,2004。[6] Ishizuka Y, AiyoshiE. Double penalty method for bilevel optimization problems. Annals of Operations Research, 24: 73- 88,1992。注意:5篇以上!八、附件(4号黑体)(正文中不许出现程序,如果要附程序只能以附件形式给出) 数学建模评分参考标准摘要(很重要) 5分数据筛选 35分数学模型 35分数据模拟 15分总体感觉 10分特别注意1.问题的结果要让评卷人好找到;显要位置---独立成段2.摘要中要将方法、结果讲清楚;3.可以有目录也可以不要目录;4.建模的整个过程要清楚,自圆其说,有结果、有创新;5.采样要足够多,每组不少于7个;6.模型要与数据结合,用数据验证过;7.如果数学方法选错,肯定失败;8.规范、整洁;总页数在35~45之间为宜。9.必须有数学模型,同一问题的不同模型要比较;10.数据必须有分析和筛选;11.模型不能太复杂,若用多项式回归分析,次数以3次为好。

温度控制pid研究毕业论文

用DS18B20测试温度,然后做出相应的控制,也可以报警创新方面可以做多路温度测试和控制吧,加温度显示,用LED数码管或者LCD显示屏

第1章 硬件电路分析第1.1节 硬件电路概述该测温系统由五部分组成:电源模块、侦测模块、显示模块、控制模块、通讯模块。电源模块完成将200V,50Hz市电转换为稳定的直流+5V电源的任务,包含变压、整流、滤波和稳压四部分,其中稳压部分采用LM7805集成块。串口通信模块的任务是实现单片机与计算机的通信,通过软件将程序下载至单片机中进行运行调试以上内容来自5173论文网 点击参考更多

温度控制系统的设计(555定时器) [单片机] 04-20摘要 在日常的生产与生活中,温度是一个非常重要的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形、结晶以及空气流动等物理和化学过程。所以人们需要用到良好的温度检测及控制装置系统来解决这些问题。本文介绍了采用A/D ...http:// 化工液的温度控制与检测(程序+电路图+Protel原理图+PCB图)精品☆ [电子] 01-01摘 要 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合传感器技术而开发设计了这一温度监控系统。文中传感器理论单片机实际应用有机结合,详细地讲述了利用AD5 ...http:// 温度控制器的设计(AT89S51单片机)(程序+电路图+原理图+PCB图)☆ [单片机] 11-17摘 要 随着科技的不断进步,在工业生产中温度是常用的被控参数,而采用单片机对这些被控参数进行控制已成为当今的主流。本文介绍了以AT89C51单片机为核心的数字温度测量及自动控制系统的设计,该温度控制器可以实时显示和设定温度,实现对温度的自动控制。其 ...http:// MCS-51单片机智能温度控制系统设计 [单片机] 07-16温度控制在热处理工艺过程中,是一个非常重要的环节。控制精度直接影响着产品质量的好坏。本文研究的电炉是一种具有纯滞后的大惯性系统,传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。 ...http:// 基于AT89C2051单片机的温度控制系统的设计(程序+电路图)☆ [单片机] 07-16摘 要 :温度控制在工业生产中运用的非常广泛,其控制过程中存在着很大的时滞性和很强的干扰。采用一般的控制方法如PID控制,都不能很好地满足要求。而基于AT89C2051单片机的温度控制策略可以很容易的解决这些问题。 以AT89C2051单片机为基础,结合温度传感 ...http:// 基于单片机饮水机温度控制的设计(实物图+原理图+PCB图+程序)☆ [单片机] 07-16摘 要 温度是表征物体冷却程度的物理量,也是一种最基本的环境参数。在农工业生产及日常生活中,对温度的测量及控制始终占据着极其重要的地位。目前,典型的温度测控系统由模拟式温度传感器、A/D 转换电路和单片机组成。由于模拟式温度传感器输出的模拟信号必 ...http:// 基于AT89S51单片机核心的温度控制系统的设计 [单片机] 07-16摘要 本文介绍了以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路、PC机与单片机串口通讯电路和一些接口电路 ...http:// 基于单片机的温度控制系统的设计 [单片机] 07-16摘 要 本文列举了单片机在锅炉中的一个实际应用,并对设计的温度控制系统的组成及主要电路的作用进行了详细的介绍。 文章介绍了用单片机控制的、基于数字温度传感器DS1820的温度测量和控制系统:重点阐述了DS1820的工作原理、指令系统、单片机与DS1820之间的 ...http:// 基于单片机的模糊PID温度控制系统设计 [单片机] 07-16摘 要 温度控制在热处理工艺过程中,是一个非常重要的环节。控制精度直接影响着产品质量的好坏。本文研究的电炉是一种具有纯滞后的大惯性系统,传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。因此本文将模糊控制算法引入传统的加热 ...http:// 嵌入式系统在多点温度控制中的应用 [嵌入式] 07-16第一章 概述 1.1 引言 嵌入式系统被定义为:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。实际上嵌入式系统是计算机的一种应用形式,是将先进的计算机技术、半导体技术和电子技 ...http://

毕业设计论文可以找别人帮你做啊,把你的详细要求发不到任务中国网,让高手给你解决这个问题。或者你去抄一片。

pid参数整定方法研究论文

给你两种方法:1. 数学建模仿真法. 选定采样周期,根据你的控制像 (电流 电压 微秒极, 速度 ms级, 温度 流量 位置 秒级) 对控制对象建立数学模型 (用matlab等工具) 调整参数.2. Ziegler-Nichols方法试凑PID参数 第2种在工程中最有效

你这篇中国知网也好,万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章,通读一遍,对这方面的内容有个大概的了解!参照论文的格式,列出提纲,补充内容,实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了,祝你顺利完成论文!

数字PID控制器的参数整定方法研究中山大学 信息科学与技术学院 电子与通信工程系 自动化摘要:本文重点论述数字PID控制的原理和参数的整定方法。重点介绍了增量式PID和位置式PID,对数字PID控制参数的整定方法做了详细的分析,最后提出数字PID参数的整定对自动控制所起到的重要作用。关键词: 数字PID 算法研究 参数整定 控制引言:在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。数字PID调节是连续系统控制中广泛应用的一种控制方法。由于它结构改变灵活,所以 ,可根据系统的要求,在常规PID调节的基础上进行多种PID变型控制,如PID控制 ,比例PID控制,不完全微分控制,带死区的PID控制等等。特别是PID控制不需控制对象的精确的数学模型,这对大多数很难得到或根本得不到精确的数学模型的工业控制对象来说,无疑更适合应用PID控制。因此 PID 控制技术在工业过程控制中应用的非常广泛。数字PID控制系统是时间的离散系统,计算机对生产过程的控制是断续的过程. 即在每一个采样周期内,传感器将所测数据转换成统一的标准信号后输入给调节器,在调节器中与设定值进行比较得出偏差值,经PID运算得出本次的控制量,输出到执行器后才完成了本次的调节任务。在PID调节中 ,由于PID 算式选择的不同会得到不同的控制效果,特别是当算法中某些参数选择的不妥时,会引起控制系统的超调或振荡,这对某些生产过程是十分有害的。为了避免这种有害现象的发生,分析和研究PID算法,确定合理的PID参数是必要的,同时对PID控制技术的广泛应用具有重要的意义.正文:1.数字PID控制原理PID调节器由比例调节器P, 积分调节器I和微分调节器D构成 ,它通过对偏差值的比例,积分和微分运算后 ,用计算所得的控制量来控制被控对象。图1所示为PID控制系统框图.图中 : R为设定的期望值 , y为控制变量,S为实际输出值,e为控制偏差 ( e = R - S)PID调节器按其调节规律可分为比例调节,比例积分调节和比例积分微分调节等. 下面分别 来阐述它们的各自的调节作用.1.1比例调节比例调节是数字控制中最简单的一种调节方法. 其特点是调节器的输出与控制偏差e成线性 比例关系 ,控制规律为 y =Kp * e + y0 (1)式中,Kp为比例系数,y0为偏差,e为零时调节器的输出值。图2为比例调节器输入与输出的关系图.当输出值S与设定的期望值R之间间产生偏差时,比例调节器会自动调节控制变量y (如为控制阀门的开度)的大小。控制变量y的大小会朝着减小偏差e的方向变化。比例系数Kp的大小决定了比例调节器调节的快慢程度,KP大调节器调节的速度快,但Kp过大会使控制系统出现超调或振荡现象。Kp小调节器调节的速度慢,但KP过小又起不到调节作用. 另外,虽然比例调节器控制规律简单,控制参数易于整定。但缺点是它只能在一种负载情况下实现无静差值的调节,当负载变化时,除非重新调整相应的y0值的大小,否则控制系统将会产生无法消除的静差值.1.2比例积分调节比例调节器的主要缺点是存在无法消除的静差值,影响了调节精度。为了消除静差值,在比例调节器的基础上并入一个积分调节器构成比例积分调节器,其调节规律可用下列(2)式表示: y = Kp * (e+ )+y0 (2)式中:Ti 为积分常数,它的物理意义是当调节器积分调节作用与比例调节作用的输出相等时所需的调节时间。积分常数Ti的大小决定了积分作用强弱程度。Ti选择得越小,积分的调节作用越强,但系统振荡的衰减速度越慢。 当 Ti 过小时,甚至会造成系统的持续振荡,使调节器的输出波动不定,给生产过程带来严重的危害。相反地,当 Ti 选择的越大,积分的调节作用越弱 ,虽然过渡过程中不容易出现振荡现象,但消除偏差e的时间却很长。因此,积分常数Ti大小的选择要得当,根据一般的经验, Ti值的优选范围是:对于压力调节Ti 为0.8 ~ 2.0min, 对于温度调节 Ti 为4.0 ~ 8.0min。由于积分调节对偏差有累积作用 ,所以,只要有偏差e存在积分的调节作用就会不断地增强,直至消除比例调节器无法消除的静差值。图3为PI调节器输入与输出的关系1.3比例积分微分调节 加入积分调节后,虽可消除静差,使控制系统静态特性得以改善,但是有意积分调节器输出值的大小是与偏差值e的持续时间成正比的,这样就会使系统消除静差的调节过程变慢, 由此带来的是系统的动态性能变差。尤其是当积分常数Ti 很大时, 情况更为严重。另外,当系统受到冲激式偏差冲击时,由于偏差的变化率很大,而PI调节器的调节速度又很慢,这样势必会造成系统的振荡,给生产过程带来很大的危害。改善的方法是在比例积分调节的基础上再加入微分调节,构成比例积分微分调节器 PID,其调节规律可用(3)式表示: y = Kp * (e+ + )+y0 (3)式中 :Td 为微分常数,它的物理意义是当调节器微分调节作用与比例调节作用的输出相等时所需的调节时间。图 4 为比例微分调节器PD的输入与输出的关系图。加入微分调节后,当偏差e瞬间波动过快时 ,微分调节器会立即产生冲激式响应,来抑制偏差的变化。而且偏差变化越快,微分调节的作用越大。从而使系统更趋于稳定,避免振荡现象的发生,改善了系统的动态性能.数字PID控 制 系 统 就 是把模拟PID控 制算 式离 散化处理,便于系统用单片机或计算机实 现 控 制 。数 字PID控制系统如图5示 其中,SV是设定数字量 。设采样周期为T,初始时刻为0,第n次采样的偏差为 ,控制输出为Vn , 则数字PID控制算式为 式中,T采样周期,Vn为调节器第n次输出值, 为第n次采样偏差, 为第n-1次采样偏差。2.位置式PID与增量式PID算法的比较单片机控制系统通过A/D电路检测输出值S,并计算偏差e和控制变量y, 再经D/A转换后输出给执行机构,从而实现缩小或消除输出偏差的的,使系统输出值S稳定在给定值区域内. 在计算机控制过程中,整个计算过程采用的是数值计算方法,当采样周期足够小时,这种数值近似计算相当准确,使离散的被控过程与连续过程相当接近.图6单片机闭环控制系统图PID算法是将描述连续过程的微分方程转化为差分方程,然后,根据差分方程编制计算程序来进行控制计算的. 另外在PID控制中,由于PID算式选择的不同,最终所得到的控制效果是不同的. 位置式PID的控制算法如前所述PID调节的微分方程为:y = Kp * (e+ + )+y0设采样周期为T,初始时刻为0,第n次采样的偏差为 ,控制输出为Vn , 则数字PID控制算式为 (4)式中,T采样周期,Vn为调节器第n次输出值, 为第n次采样偏差, 为第n-1次采样偏差。在式(4)所表示的算式中,输出值Vn 对应于执行机构达到的位置,它对控制变量与设定值的偏差进行运算,基本控制形式与常规调节器相类似,因此,通常称为位置式PID控制算式。为了编写计算机程序的方便,将上述式子写成 式子:Ka=Kp*T/Ti Kb=Kp*Td/T因为采样周期T积分常数Ti和微分常数Td选定后都是常数,因此Ka和Kb必定是常数。图7算法程序流程图增量式PID的控制算法在数字控制系统中并不常用位置式PID控制算式,而是让单片机只输出增量,也就是采用增量式PID算法增量式PID算法就是让计算机或单片机输出相邻两次调节结果的增量,由式(2) ,可求出第n-1次调节器的输出Vn -1 。 (5)式中, Kp = 1 /σ为比例常数; KI = Kp * T / Ti 为积分常数; KD = Kp * Td / T为微分常数。式(5)的运算结果表征了阀位改变的增量,执行机构每次只按增量大小动作,因此即便控制器出了故障,也不会对生产造成威胁。有些执行机构需要的不是控制变量的绝对值而是增量,这样增量式P ID的算式恰好满足要求。即使执行机构需要的是控制变量的绝对值而不是增量,仍然可采用增量式PID算式进行计算,输出则采用位置式PI的输出形式,这样也使计算变得简单多了.其计算公式为: yn =yn-1 +Δyn 程序流程图,如图8示. 在控制系统中,如执行机构采用调节阀,则控制量对应阀门的开度,表征了执行机构的位置,此时控制器应采用数字PID位置式控制算法,如下图所示。如执行机构采用步进电机,每个采样周期,控制器输出的控制量,是相对于上次控制量的增加,此时控制器应采用数字PID 增量控制算法,如下图所示。这两种控制算法的比较量型算法与位置型算法相比,具有以下优点: ① 增量型算法不需要做累加,控制量增量的确定仅与最近三次误差采样值有关,计算误差或计算精度问题,对控制量的计算影响较小。而位置型算法要用到过去的误差累加值,容易产生大的累加误差。特别是当计算机发生故障时, 位置型PID由于调节器是全量输出,控制变量y可能会发生大幅振荡,给生产带来严重危害。而在增量式PID算法中,由于计算机只输出控制变量的增量Δyn ,发生故障时,只影响本次增量的大小,故影响较小。另外,用位数相同的计算机或单片机,因为ΔVn 比Vn 小的多,增量式算法可以有更高的精度。② 增量型算法得出的是控制量的增量,例如阀门控制中,只输出阀门开度的变化部分,误动作影响小,必要时通过逻辑判断限制或禁止本次输出,不会严重影响系统的工作。而位置型算法的输出时控制量的全量输出,误动作影响大。因而增量式算法比位置式算法更可靠。③ 系统从手动切换到自动时,位置式PID算法需将调节器的输出置为Y0,这样才可能实现无冲击切换. 而增量式P ID 算法中,由于公式中没有Y0项,所以易于实现手动到自动的无冲击切换.或反过来从自动切换到手动,对系统冲击小。④ 增量式算法中,比例项Kp ( )与积分项 的符号有如下关系: 当PV < SV 且继续偏离SV 变化时, > , > 0; 当PV < SV 且继续偏离SV 变化时, < , < 0 。因此,可以得出结论:当过程变量PV 继续偏离设定值SV 变化时, 积分项与比例项同符号;反之,当过程变量向设定值方向变化时,积分项和比例项的符号相反。由于增量式PID 控制具有这种性质,当PV 接近SV 变化是,反号的比例作用阻碍了积分作用,因而可避免积分饱和和随之带来的振荡。⑤ 位置式PID算法中,由于差分公式中有对偏差的累加计算,所以,容易产生积分饱和现象, 造成系统失控. 而在增量式PID算法中,由于差分公式中不存在有对偏差的累加计算,所以,不会产生积分失控现象,避免了系统的超调和振荡现象的发生. 但增量式PID 算法有产生比例和微分失控现象的可能,对系统的动态特性产生影响。⑥ 由式(4)和式(5)可以看出,增量式算法简单,便于编程的实现。 由于增量式算法有以上优点,所以增量式算法比位置式算法用得更为广泛。3.采样周期的选取数字PID控制系统和模拟PID控制系统一样,需要经过参数整定才能运行。所不同的是,除了整定P,I,D外,还要确定系统的采样(控制)周期T。根据采样定理, 采样周期T≤∏≤wmax, 由于被控制对象的物理过程及参数的变化比较复杂, 致使模拟信号的最高角频率wmax是很难确定采的。定理仅从理论上给出了采样周期的上限, 实际采样周期的选取要受到多方面因素的制约。1 系统控制品质的要求 由于过程控制中通常用电动调节阀或气动调节阀, 他们的响应速度较低, 如果采样周期过短, 那么执行机构来不及响应, 仍然达不到控制目的, 所以采样周期也不能过短。2 控制系统抗扰动和快速响应的要求 从控制系统抗扰动和快速响应的要求来讲要求采样周期短些, 从计算工作量来看, 则又希望采样周期长些, 这样可以控制更多的回路, 保证每个回路有足够的时间来完成必要的运算。3 计算机成本从计算机的成本来讲,也希望采样周期长些,。这样计算机的运算速度和采集数据的速率也可降低, 从而降低硬件成本。采样周期的选取还应考虑被控制对象的时间常数Tp和纯延迟时间τ, 当τ= 0 或者当 τ< 0.5Tp时,可选T介于0.1Tp至0.2Tp之间;当τ>0.5Tp时, 可选T等于或接近τ。4 必须注意, 采样周期的选取应与PID参数的整定综合考虑, 选取采样周期时应考虑的几个因素(1)采样周期应远小于对象的扰动信号周期。(2)采样周期比对象的时间常数小得多, 否则采样信号无法反映瞬变过程。(3)考虑执行器响应速度。如果执行器的响应速度比较慢, 那么过短的采样周期将失去意义(4)对象所要求的调节品质。在计算机运行速度允许的情况下,采样周期短,调节器质好。(5)性能价格比。从控制性能来考虑,希望采样周期短,但计算机运算速度以及AD和DA的转 换速度要相应地提高, 导致计算机的费用增加。(6)计算机所承担的工作量。如果控制的回路数多,计算量大,则采样周期要加长;反之,可以缩短。由上述分析可知, 采样周期受各种因素的影响, 有些是相互矛盾的, 必须是具体情况和主要的要求 做出折中的选择。在具体选择采样周期时, 可参照表1所示的经验数据,在通过现场试验最后确定合适的采样周期, 表1仅列出几种经验采样周期T的上限,随着计算机技术的进步及其成本的下降, 一般可以选取较短的采样周期, 使数字控制系统近似连续控制系统。几种常见的参数整定方法:随着计算机技术的发展, 一般可以选择较短的采样(控制)周期T ,它相对于被控制对象时间常数Tp来说也就更短了。所以数字PID控制参数的整定过程是,首先按模拟PID控制参数整定的方法来选择,然后再适当调整,并考虑采样 控制周期对整定参数的影响。由于模拟 PID调节器应用历史悠久,已经研究出多种参数整定方法。针对数字控制的特点,目前常用的有几种整定方法。(1)稳定边界法 这种方法需要做稳定边界实验。实验步骤是,选用纯比例控制, 给定值r做阶跃扰动, 从较大的比例带开始, 逐渐减小 ,直到被控制量Y出现临界振荡位置,记下临界振荡周期Tu和临界比例带 u,然后按经验公式计算 ,Ti和Ta。(2)衰减曲线法实验步骤与稳定边界法相似, 首先选用纯比例控制,给定值 r做阶跃扰动,从较大的比例带 开始,逐渐减小 ,直至被控量Y出现4∶1 衰减过程为止。记下此时的比例带 v,相邻波峰之间的时间Tv。然后按经验公式计算 ,Ti和Ta。(3)动态特性法 上述两种方法直接在闭环系统中进行参数整定。而动态特性法却是在系统处于开环情况下,首先做被控制对象的阶跃响应曲线,从该曲线上求得对象的纯延迟时间τ,时间常数Te 和放大系数K。然后在按经验公式计算 ,Ti和Ta。(4)基于偏差积分指标最小的整定参数法 由于计算机的运算速度快,这就为使用偏差积分指标整定PID 控制参数提供了可能,常用以下三种指标: ISE,IAE,ITAE。一般情况下, ISE 指标的超调量大,上升时间快; AIE 指标的超调量适中, 上升时间稍快; ITAE 指标的超调量小,调整时间小。采用偏差积分指标, 可以利用计算机寻找最佳的PID控制参数。(5)实验凑试法 实验凑试法是通过闭环运行或模拟,观察系统的响应曲线,然后根据各参数对系统的影响,反复凑试参数,直至出现满意的响应,从而确定PID控制参数。 整定步骤实验凑试法的整定步骤为“先比例,再积分,最后微分”。 ①整定比例控制 将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。 ②整定积分环节 若在比例控制下稳态误差不能满足要求,需加入积分控制。 先将步骤①中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。 ③整定微分环节 若经过步骤②,PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。 先置微分时间Td=0,逐渐加大Td,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数。 (6)实验经验法 扩充临界比例度法 实验经验法调整PID参数的方法中较常用的是扩充临界比例度法,其最大的优点是,参数的整定不依赖受控对象的数学模型,直接在现场整定、简单易行。 扩充比例度法适用于有自平衡特性的受控对象,是对连续――时间PID控制器参数整定的临界比例度法的扩充。 整定步骤扩充比例度法整定数字PID控制器参数的步骤是: ①预选择一个足够短的采样周期Ts。一般说Ts应小于受控对象纯延迟时间的十分之一。 ②用选定的TS使系统工作。这时去掉积分作用和微分作用,将控制选择为纯比例控制器,构成闭环运行。逐渐减小比例度,即加大比例放大系数Kp,直至系统对输入的阶跃信号的响应出现临界振荡(稳定边缘),将这时的比例放大系数记为Kr,临界振荡周期记为Tr。 ③选择控制度。控制度,就是以连续――时间PID控制器为基准,将数字PID控制效果与之相比较。 通常采用误差平方积分 作为控制效果的评价函数。 定义控制度 采样周期TS的长短会影响采样-数据控制系统 的品质,同样是最佳整定,采样-数据控制系统的控制品质要低于连续-时间控制系统。因而,控制度总是大于1的,而且控制度越大,相应的采样-数据控制系统的品质越差。控制度的选择要从所设计的系统的控制品质要求出发。 ④查表确定参数。根据所选择的控制度,查表,得出数字PID中相应的参数Ts,Kp,Ti和Td。 ⑤运行与修正。将求得的各参数值加入PID控制器,闭环运行,观察控制效果,并作适当的调整以获得比较满意的效果。结束语:数字PID控制参数的整定, 其目的是为过程计算机控制系统提供一个实用的数字PID 控制器。数字PID控制器综合了PID控制和逻辑判断的功能, 他的功能比模拟调节器强。人们对PID控制系统的连续化设计已积累了丰富的经验, 在此基础上, 相信数字PID控制系统的设计更加完美, 数字PID控制参数的整定更趋于理想, 使PID控制更加灵活多样, 更能满足生产过程自动化提出的多种要求, 把调节品质提高到最佳控制状态参考文献:①benjanmin C.Kuo Farid Gplnaraghi 自动控制理论 高等教育出版社②于长官 现代控制理论 哈尔滨工业大学出版社③俞金寿 过程控制系统 机械工业出版社④顾德英 罗云林 马淑华 计算机控制技术 北京邮电大学出版社

毕业论文纯滞后系统pid控制

1 前者表达的是一定的能量或者是阻力 后者表达的是时间概念, 从定义上说: 容量滞后一段是由于物料或能量的传递需要通过一定阻力而引起的,通俗的说,就是对象受到一定的作用后,能量从不稳定到再次稳定的过程; 传递滞后又叫纯滞后,它的产生一般是由于介质的输送需要一段时间而引起的。2 输出变量的变化落后于输入变量变化的时间称为纯滞后时间,纯滞后的产生一般是由于介质的输送或热的传递需要一段时间引起的。容量滞后通常又包括,测量滞后和传送滞后。测量滞后是检测元件在检测时需要建立一种平衡,如热电偶、热电阻、压力等响应较慢产生的一种滞后。而传送滞后则是在传感器、变送器、执行机构等设备产生的一种控制滞后,纯滞后是相对与测量滞后的。

如何实现PID控制在一些系统中,需要进行PID控制,如一些板卡采集系统,甚至在一些DCS和PLC的系统中有时要扩充系统的PID控制回路,而由于系统硬件和回路的限制需要在计算机上增加PID控制回路。在紫金桥系统中,实时数据库提供了PID控制点可以满足PID控制的需要。进入到实时数据库组态,新建点时选择PID控制点。紫金桥提供的PID控制可以提供理想微分、微分先行、实际微分等多种控制方式。进行PID控制时,可以把PID的PV连接在实际的测量值上,OP连接在PID实际的输出值上。这样,在实时数据库运行时,就可以自动对其进行PID控制。PID参数的调整:在PID参数进行整定时如果能够有理论的方法确定PID参数当然是最理想的方法,但是在实际的应用中,更多的是通过凑试法来确定PID的参数。增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。增大积分时间I有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。增大微分时间D有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤。首先整定比例部分。将比例参数由小变大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线。如果系统没有静差或静差已经小到允许范围内,并且对响应曲线已经满意,则只需要比例调节器即可。如果在比例调节的基础上系统的静差不能满足设计要求,则必须加入积分环节。在整定时先将积分时间设定到一个比较大的值,然后将已经调节好的比例系数略为缩小(一般缩小为原值的0.8),然后减小积分时间,使得系统在保持良好动态性能的情况下,静差得到消除。在此过程中,可根据系统的响应曲线的好坏反复改变比例系数和积分时间,以期得到满意的控制过程和整定参数。如果在上述调整过程中对系统的动态过程反复调整还不能得到满意的结果,则可以加入微分环节。首先把微分时间D设置为0,在上述基础上逐渐增加微分时间,同时相应的改变比例系数和积分时间,逐步凑试,直至得到满意的调节效果。PID控制回路的运行:在PID控制回路投入运行时,首先可以把它设置在手动状态下,这时设定值会自动跟踪测量值,当系统达到一个相对稳定的状态后,再把它切换到自动状态下,这样可以避免系统频繁动作而导致系统不稳定。复杂回路的控制:前馈控制系统:通常的反馈控制系统中,对干扰造成一定后果,才能反馈过来产生抑制干扰的控制作用,因而产生滞后控制的不良后果。为了克服这种滞后的不良控制,用计算机接受干扰信号后,在还没有产生后果之前插入一个前馈控制作用,使其刚好在干扰点上完全抵消干扰对控制变量的影响,因而又得名为扰动补偿控制。在紫金桥的控制系统中,可以把前馈控制计算的结果作为PID控制的输出补偿量OCV,并采用加补偿,这样就形成了一个前馈控制系统了。纯延迟补偿控制:在实际的控制过程中,由于执行机构和测量装置的延迟,系统有可能是一个纯滞后过程,如对于温度的控制其延迟时间可能多达10多分钟。这种滞后性质常引起被控对象产生超调或振荡,造成系统不容易达到稳定过程。因此,可以在控制过程中并联一个补偿环节,用来补偿被控制对象中的滞后部分,这样可以使系统快速达到稳定过程。纯滞后控制系统是把滞后补偿的结果作为PID控制器的输入补偿量ICV,并作为输入补偿的减补偿。这样就构成了一个纯滞后的SMITH预测控制回路。

模糊pid温度控制设计毕业论文

我发到你邮箱里了,请签收。

用DS18B20测试温度,然后做出相应的控制,也可以报警创新方面可以做多路温度测试和控制吧,加温度显示,用LED数码管或者LCD显示屏

基于单片机控制的温度自动控制系统

摘要本文主要介绍了基于PID控制理论的单片机温度的控制。控制器件使用单片机,单片机的应用有利于增加控制的灵活性,提高控制精度,减小控制部分的体积,是现代控制的主要硬件部分。温度是工业控制对象的主要被控参数之一,如冶金,机械,食品,化工各类工业中广泛使用的各种加热炉,热处理炉,反应炉等。在过去多是采用常规的模拟调节器对温度进行控制,本文采用了单片微型机对温度实现自动控制。对不同的升温速率升温,再对某种仪器在不同升温状况下的特性进行检测,达到了较高的精度。应用继电器自整定方法,可以快速整定PID参数,减少工人的工作量,计算出错的几率降低很多。所使用的时间也减少了很多,工作效率大大提高。并应用经验公式快速计算出相应的数值。关键词: PID 单片机 继电器整定 温度控制ABSTRACTThis text mainly introduced the controller of PID in industry produce the control of the temperature.The controller piece uses a machine, the application of a machine is advantageous to the vivid of the increment control, exaltation control accuracy, let up the control the physical volume of the part, is main hardware part of the modern control.The temperature is a mainly industry controled object, such as metallurgy, machine, food, each kind of industry of chemical engineering in various heating stove of the extensive usage, the hot processing stove, reactor etc..At pass by mostly the emulation modulator adopt of the normal regulations carries on the control to the temperature, this literary grace uses a miniature machine to carry out the automatic control to the temperature.Carry on the examination towards heating the velocity to heat differently, again to a certain instrument under the condition that dissimilarity heat of characteristic, come to a the higher accuracy.Using relay setting method, It can settle the parameter of PID quickly and reduce the worker's workload, several rates that compute to come amiss lower many. The time also reduced a lot of, Work efficiency raises consumedly.Apply the empirical formula also to compute a number for correspond quicklyKeyword: PID Single-chip microcomputer Relay setting temperature control绪论温度是生产过程和科学实验中普遍而且重要的物理 参数。在工业生产过程中为了高效地进行生产,必须对生产工艺过程中的主要参数,如温度,压力,流量,速度等进行有效的控制。其中温度的控制在生产过程中占有相当大的比例。准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。本课题是结合生产实际和科研工作,运用PID算法对温度进行控制,以求达到较好的控制效果。目前先进国家各种炉窑自动化水平较高,装备有完善的检测仪表和计算机控制系统。其计算机控制系统已采用集散系统和分布式系统的形式,大部分配有先进的控制算法,能够获得较好的工艺性能指标。单片微型计算机是随着超大规模集成电路的技术的发展而诞生的。由于它具有体积小,功能强,性价比高等优点,所以广泛应用于电子仪表,家用电器,节能装置,军事装置,机器人,工业控制等诸多领域,使产品小型化,智能化,既提高了产品的功能和质量又降低了成本,简化了设计。本文主要涉及MCS-51单片机在温度控制中的应用。应用单片机实现PID控制算法和PID参数的整定。PID 控制是最早发展起来的控制策略之一, 由于其算法简单、鲁棒性好、可靠性高等优点, 被广泛应用于工业过程控制。当用计算机实现后, 数字 PID 控制器更显示出参数调整灵活、算法变化多样、简单方便的优点。随着生产的发展, 对控制的要求也越来越高, 随之发展出许多以计算机为基础的新型控制算法, 如自适应 PID 控制、模糊 PID 控制、智能 PID 控制等等。1.PID 控制原理模拟 PID 控制系统原理框图如图 1- 1所示, 系统由模拟 PID 控制器和受控对象组成。PID 控制器根据给定值 r(t) 与实际输出值c(t) 构成的控制偏差:(1-1 )将偏差的比例(P)、积分( I) 和微分 (D ) 通过线性组合构成控制量, 对受控对象进行控制。其控制规律为:(1- 2)或写成传递函数形式:(1- 3)式中, 为比例系数, 为积分时间常数, 为微分时间常数。简单说来, PID 控制器各校正环节的作用是这样的:●比例环节: 即时成比例地反应控制系统的偏差信号 , 偏差一旦产生, 控制器立即产生控制作用以减小误差。●积分环节: 主要用于消除静差, 提高系统的无差度, 积分作用的强弱取决于积分时间常数 , 越大积分作用越弱, 反之则越强。● 微分环节: 能反应偏差信号的变化趋势(变化速率) , 并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号, 从而加快系统的动作速度, 减小调节时间。2. PID控制规律及对系统稳定性的影响控制器输出与偏差信号之间的函数关系称为控制规律。控制规律决定了控制器的特性。在控制器输出稳定之前,偏差 与输出之间的相互关系,称为控制器的动态特性。在控制器上施加恒定的偏差,经过一段时间,控制器的输出达到稳定,偏差 与输出 的相互关系称为控制器的静特性。控制器的输入与输出信号的相互关系如图所示。图中 为偏差信号,通常用测量值与给定值只差在全量程范围中所占的百分数来表示:

  • 索引序列
  • pid论文格式
  • 温度控制pid研究毕业论文
  • pid参数整定方法研究论文
  • 毕业论文纯滞后系统pid控制
  • 模糊pid温度控制设计毕业论文
  • 返回顶部