首页 > 学术发表知识库 > 螺丝钉对木材强度的影响研究论文

螺丝钉对木材强度的影响研究论文

发布时间:

螺丝钉对木材强度的影响研究论文

这个要看是横断面还是垂直面,还有木材的硬度和螺丝的直径也有关系。普通的算法就是一圈螺纹可以承受50斤的力度。

型号不同承受拉力能力也不同。一颗M3的黑色宽牙木工自攻螺丝,可以承受15公斤左右的下拉力。

我们假设两种方式做功相同,而用螺丝转动的总路程显然要比钉子进入的路程长,根据功等于路程乘以力,可知路程长的省力,况且改椎把与改椎头在旋转时,前者旋转半径大于后者,形成省力杠杆,所以螺丝更省力

强酸强碱对蛋白酶的影响研究论文

一级就是肽键和二硫键(这是核糖体做的),二、三……级就是把多条肽链连接起来,并且在三维空间里面进行扭曲(这是内质网和高尔基体做的)。强酸强碱首先能使蛋白质发生变性,也就是改变了它的二三级结构(结构变了,性质肯定变了啦),比如这条肽链,本来是向左扭的,它现在向右扭了,那不就变形了咯。其次,强酸强碱还能使蛋白质里的肽键发生水解反应,生成氨基酸。

绝大多数酶是蛋白质,但是也有极少数是RNA,强酸强碱会把他们的结构破坏掉,使其永久失活,但是也有一些特殊的酶能在强酸强碱的条件下进行催化,比如胃蛋白酶。

强酸强碱可以降低酶的活性属于抑制剂的一种在酶浓度及其他条件不变的情况下,底物浓度与反应速度的相互关系,可用矩形双曲线表示。在底物浓度很低时,反应速度随着底物浓度的增加而增加,两者是正比关系。随着底物浓度的继续升高,反应速度的增加趋势渐缓,再加大底物浓度,反应速度不再增加,逐渐趋于恒定。

灌木对环境的影响研究论文

灌木在边坡生态防护中的作用摘要:大规模的交通、水利、矿山等工程建设,给自然界留下了大量裸露的边坡,导致生态环境恶化。运用生态学理论与方法,探讨了边坡生态防护的理论体系,在分析生态防护现状的基础上,论述了灌木在边坡生态防护中的重要性。 关键词:边坡 生态环境 生态防护 灌木 在公路、铁路、水利、矿山等基础设施的施工过程中,原地貌植被的破坏不可避免,弃土、弃石、开挖等会给和谐的自然环境留下大量的裸露边坡。这些边坡有的是岩质边坡,有的是土质边坡,或陡或平。根据恢复生态学原理,在排除环境干扰的条件下,土质边坡有自我修复、恢复的能力,但这是个漫长的过程,随着环境的变化有很多不确定性,不能及时达到防护和绿化的效果。岩质边坡因缺乏植被生长的条件,更难于自我恢复[1]。鉴于此,只有借助人工才能加快其恢复过程。利用植被稳定边坡、改善生态环境在生态学上称为边坡生态防护。近10多年来,人们开发出了多种既能起到良好的边坡防护作用,又能改善工程环境、体现自然环境美的边坡植物防护新技术。它不同于以往的工程防护措施,能与传统的坡面工程防护措施共同形成边坡工程植物防护体系,以坡面长期稳定为目的,以保护当地自然植物群落结构、恢复生态系统、防止水土流失、减轻管理工作量为宗旨,主要靠植物根系与土壤之间的附着力以及根系之间的相互缠绕来达到加固边坡的目的。边坡生态防护可以涵养水源、减少水土流失,还可以有效地净化空气、保护生态、美化环境,具有生态效益[2]。边坡生态防护的主体是植物,目前采用最多的是豆科、禾本科等草本植物[3],对灌木、乔木等木本植物研究较少,实践中也不太成功,但木本植物在生态防护中有自己的优势。本文通过分析草本、木本植物在边坡生态防护中的作用,着重研究灌木的应用前景。1生态防护的理论体系生态防护的目标之一是使植物存活并正常生长。然而长期以来,人们仅把不良自然条件下树或草坪的成活作为研究目的,并在栽培方面获得了很大成功,形成了一系列在不同条件下的施工工艺或技术,如植生带、土工网、三维网、草袋、保水剂、生根粉等[4]。现代生态防护工程则不能仅以植物存活为研究目的。大量的施工实践证明,边坡防护施工后,有的看似达到了生态防护的目的,表面上植被恢复了,水土流失也得到了一定的控制,但时间一长,由于植物之间的恶性竞争或外界环境不能满足植物生态习性的要求,致使植物生长势逐渐减弱,群落开始逆行演替,刚刚恢复植被覆盖的土地又会退化为裸地,形成水土流失现象[5]。为发挥植物持续永久的综合生态功能,应运用生态学原理构建一个和谐有序、稳定的植物群落,这一点非常重要,其关键是护坡植物的选择。下面研究在不同的边坡上制定物种配方应遵循的原则。1.1遵从植物生态习性,因地制宜植物的生态习性是指植物生长对环境条件的要求,包括气候生态条件、土壤生态条件、生物生态条件等。气候生态条件(光照、湿度、温度等)影响植物的生长繁殖,决定植物能否顺利越冬、越夏;土 壤生态条件(养分、肥力、结构、pH值、盐分等)与植物的生长密切相关;生物生态条件关系着植物的生长发育。如果外界环境不能满足植物的生态习性,植物生长就要受到阻碍甚至发生退化。因此,在选配植物时应综合考虑环境条件,因地制宜合理种植。1.2保持物种多样性,建立自然群落结构目前,学术界就物种多样性在生态系统中的作用提出了很多假设,如冗余种假设[6]、零假设、特异反应假设、铆钉假设等,对这个问题的看法还没有完全一致的认识。多数生态学家认为,物种多样性是群落稳定的一个重要尺度,物种多样性指数高的群落,物种之间往往形成比较复杂的关系,植物链或植物网更加趋于复杂,当面对来自外界环境的变化或群落内部种群的波动时,群落有一个较强的反馈系统,可以缓冲干扰。当某一物种发生病虫害时,不可能侵染所有的物种,即病虫害不易传播。植物的自然群落结构是草、灌、乔三位一体的多层次的复杂结构,物种多样性指数高,在一般的情况下抗外界干扰的能力强,即使群落中一种或几种植物受到病虫害的危害而死亡,其他的植物也会填补其留下的空白。1.3遵从生态位原则,优化植物配置

摘要:作为陆地生态系统中最大的碳库,森林被公认为最有效的生物固碳方式,同时又是最经济的吸碳器。与工业减排相比,森林固碳投资少、代价低、综合效益大、更具经济可行性和现实操作性。关键词:林业;环保;经济林业是发展低碳经济不可缺或的重要领域。根据目前中国经济发展的阶段来看,通过林业措施发展低碳经济,不仅成本低、综合效益好,真实的吸收和减少了二氧化碳,而且不会像有些所谓低碳的工业项目,在设备生产过程中造成新的二氧化碳排放。一、林地面积减少对环境的影响毁林和森林退化以及灾害导致森林遭受破坏后,储存在森林生态系统中的碳被重新释放到大气中。联合国《2000年全球生态展望》指出,全球森林已从人类文明初期的约76亿hm2减少到38亿hm2,减少了50%,难以支撑人类文明的大厦,对全球气候变暖造成了严重影响。而且,目前全球森林减少的趋势仍在继续。围绕哥本哈根乃至今后的国际谈判,许多国家和国际组织都在积极倡导通过恢复和保护森林生态系统,以推动“减少毁林和退化林地造成的碳排放(REDD+)”等政策的制定,以控制温室气体排放,减缓气候变暖。二、森林的的功能森林具有碳汇功能。作为陆地生态系统中最大的碳库,森林被公认为最有效的生物固碳方式,同时又是最经济的吸碳器。作为陆地生态系统的主体,森林通过光合作用吸收二氧化碳,放出氧气,并把大气中的二氧化碳固定在植被和土壤中。所以,森林以其巨大的生物量储存了大量的碳。与工业减排相比,森林固碳投资少、代价低、综合效益大、更具经济可行性和现实操作性。森林的碳汇功能和其他许多重要的生态功能一样,对维护全球生态安全和气候安全一直起着重要的杠杆作用。三、森林对气候变化的影响森林是适应气候变化的重要措施,如大规模植树造林、治理荒漠化等,具有涵养水源、保持水土、防风固沙的作用;建设农田林网,起到了改善农业生产条件、提高粮食产量的作用;建设沿海防护林、恢复红树林生态系统,对抗御海洋灾害,保护沿海生态环境具有重要价值。而采用抗旱抗涝作物品种、加固海岸提防、减少森林火灾和病虫灾害、加快优良林木品种选育等,有助于提高森林本身适应气候变化的能力,森林适应气候变化能力的增强,反过来又会提高森林减缓气候变化的能力。四、木制林产品深加工节能减排的作用增加木质林产品使用、提高木材利用率、延长木材使用寿命等都可增强木制林产品储碳能力。中国林科院专家研究得出:用1m3木材替代等量的水泥、砖材料,约可减排0.8 t二氧化碳。这既节约能源又减少污染。此外,利用灌木和林业剩物发电以及种植油料能源林发展生物柴油,可以替代部分化石能源,既增加碳汇,又减少排放,为减缓气候变暖做出积极贡献

光照强度对黄芪的影响论文文献

植物光合作用及其对光的需求无论是采用太阳光还是人工光进行植物生产,最终都是通过光合作用来完成产物的积累。光合作用是通过植物叶绿素等光合器官,在光能作用下将CO2和水转化为糖和淀粉等碳水化合物并释放出氧气的生理过程;与光合作用相对应的是呼吸作用,呼吸作用是通^植物线粒体等呼吸器官,吸收氧气和分解有机物而释放CO2与能量的生理过程,是植物把光合作用形成的碳水化合物作为能量用来形成根、茎、叶等形态建成的重要生理活动。呼吸作用包括与光合作用毫无关系的暗呼吸以及与光合作用同时进行的光呼吸2个部分。作物的光合作用与呼吸作用之间有一个相互平衡的过程,随着生长阶段的不同,其平衡点也不同。实际生产中经常利用控制作物的光合速度和呼吸速度来调节营养生长和生殖生长的相对平衡,达到提高目标产量或改善产品品质的目的。植物的光合作用与CO2的吸收、释放关系密切,光合时吸收CO2,呼吸时排放CO2,这2种生理活动是同时进行的,所以光合器官的叶片内外的CO2交换速度也就等于光合速度减去呼吸速度。通常把该CO2交换速度也叫做净光合速度,其中的呼吸速度则是暗呼吸速度与光呼吸速度的总和。一般而言,C3植物光呼吸速度高,C4植物光呼吸速度低。因此,净光合速度为0时,光合速度等于光呼吸速度。光合速度的单位为kg/cm2・s)或mol/cm2・s)(以CO2计),表示单位叶面积单位时间内CO2的吸收、排放或交换量。光强对作物光合的影响光合产物的形成与光照的强度及其累积的时间密切相关。光照的强弱一方面影响着光合强度,同时还能改变作物形态,如开花、节间长短、茎的粗细及叶片的大与厚薄等。在某一CO2浓度和一定的光照强度范围内,光合强度随光照强度的增加而增加。当光照强度超过光饱和点时,净光合速度不但不会增加,反而还会形成抑制作用,使叶绿素分解而导致作物的生理障碍。不同类型植物的光饱和点的差异较大,光饱和点一般会随着环境中CO2浓度的增加而提高。因此,植物生产中给予光饱和点以上的光照强度毫无意义;而另一方面,当光照强度长时间处于光补偿点之下,植物的呼吸作用超过了光合作用,有机物消耗多于积累,作物生长缓慢,严重时还会导致植株枯死,因此对植物生长也极为不利。通常情况下,耐荫植物的光补偿点为200~1000 lx,喜阳植物的光补偿点为1000~2000 lx。植物对光照强度的要求可分为喜光型、喜中光型、耐弱光型植物。蔬菜多数属于喜光型植物,其光补偿点和光饱和点均比较高,在人工光植物工厂中作物对光照强度的相关要求是选择人工光源的最重要依据,了解不同植物的光照需求对设计人工光源、提高系统的生产性能都是极为必要的。光质对作物光合的影响光质或光谱分布对植物光合作用和形态建成同样具有重要影响,地球上的植物都是在经过亿万年的自然选择来不断适应太阳辐射,并依据种类不同而具有光选择性吸收特征的。到达地面的太阳辐射的波长范围为300~2000 nm,而以500 nm处能量最高。太阳辐射中,波长380nm以下的成为紫外线,380~760 nm的叫可见光,760 nm以上的是红外线也称为长波辐射或热辐射。太阳辐射总能量中,可见光或光合有效辐射占45%~50%,紫外线占1%~2%,其余为红外线。波长400~700 nm的部分是植物光合作用主要吸收利用的能量区间,称为光合有效辐射;波长700~760 nm的部分称为远红光,它对植物的光形态建成起到一定的作用。在植物光合过程中,植物吸收最多的是红、橙光(600~680 nm),其次是蓝紫光和紫外线(300~500nm),绿光(500~600 nm)吸收的很少。紫外线波长较短的部分,能抑制作物的生长,杀死病菌孢子、波长较长的部分,可促进种子芽、果实成熟,提高蛋白质、维生素和糖的含量;红外线还对植物的萌芽和生长有刺激作用,并产生热效应。不同的光谱成分对植物的影响效果也不尽相同(表1),强光条件下蓝色光可促进叶绿素的合成,而红色光则阻碍其合成。虽然红色光是植物光合作用重要的能量源,但如果没有蓝色光配合则会造成植物形态的异常。大量的光谱实验表明,适当的红色光(600~700 nm)/蓝色光(400~500 nm)比(R/B比)才能保证培育出形态健全的植物,红色光过多会引起植物徒长,蓝色光过多会抑制植物生长。适当的红色光(600~700 nm)/远红色光(700~800 nm)比(R/FR比)能够调节植物的形态形成,大的R/FR比能够缩短茎节间距而起到矮化植物的效果,相反小的R/FR比可以促进植物的生长。所有这些特征都是植物工厂选择人工光源时必须考虑的重要因素,尤其是对于近年来发展起来的新型节能光源,如LED、LD以及冷阴极管等来说显得更为重要,因为这些光源需要通过不同光谱的单色光组合构成作物最适直的光质配比,以保障高效生产和节能的需求。光周期对植物的影响植物的光合作用和光形态建成与日长(或光期时间)之间的相互关系称其为植物的光周性。光周性与光照时数密切相关,光照时数是指作物被光照射的时间。不同的作物,完成光周期需要一定的光照时数才能开花结实。长日照作物,如白菜、芜青、芭英菜等,在其生育的某一阶段需要12~14 h以上的光照时数;短日照作物,如洋葱、大豆等,需要12~14h一下的光照时数;中日照作物,如黄瓜、番茄、辣椒等,在较长或较短的光照时数下,都能开花结实。

植物光合作用的多样性光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。1.光合作用的多种途径据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者M.calvin而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。此外,C4植物的光合作用还有三种变式,即PEP-CK型C4植物,NAD-ME型C4植物和NADP-ME型C4植物,这三类C4植物都具有相似的叶片解剖结构,即花环状维管束和具叶绿体的维管束鞘,其主要差别是产生的中间产物和脱羧酶不同。PEP-CK型C4植物在叶肉细胞内固定CO2形成草酰乙酸,然后转变为天冬氨酸传导至维管束鞘细胞,经丙酮酸磷酸双羧酶脱羧,其碳架以丙酮酸或丙氨酸重新返回到叶肉细胞;NAD-ME型C4植物在叶肉细胞中固定CO2形成天冬氨酸并传导至维管束鞘细胞,然后转化为苹果酸.并在线粒体内脱羧,其碳架再以丙酮酸或丙氨酸转回到叶肉细胞;NADP-ME型C4植物在叶肉细胞固定CO2形成草酰乙酸,而后转化为苹果酸,并被输送到维管束鞘细胞中,在叶绿体内经苹果酸脱羧酶氧化脱羧,产生的碳架以丙氨酸重新返回叶肉细胞。以上三类C4植物在维管束鞘细胞内脱羧后,产生的CO2最终还是通过C3途径被还原,C4途径实际上只起“CO2泵”的作用,以增加反应位置CO2的浓度,从而显著提高光合效率。2.不同光合途径的判定叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。δ13C是近来发展起来的一种新的检测技术,主要依据是C3途径中的 RuBP羧化酶比C4途径中的PEP羧化酶对13CO2具有更大的排斥性,即在13CO2和12CO2中C4植物比C3植物更易消耗13CO2,因此,C4植物有机质中的13C/12C要比C3植物有机质中的13C/12C更大。13CO2和12CO2含量的测定是以国际标样(即普通石灰岩CaCO3)为对照,通过焚烧干燥的植物材料测定的。最后根据下式计算出δ13C(‰)值,即:从上式可以看出,如果在光合作用的碳固定期间13C/12C没有变化,δ13C(‰)将等于零;如果对13CO2有排斥,δ13C(‰)将是一个负数,排斥能力愈大,δ13C(‰)负值也越大。实验证明,在25℃和pH8.5条件下,PEP羧化酶的δ13C(‰)是-3‰,而在24℃和pH8.2条件下,RuBP羧化酶的δ13C(‰)是-33.1%,这清楚地表明,RuBP羧化酶对13CO2具有比PEP羧化酶更大的排斥性。当温度升高(37℃,pH8.2)时,RuBP羧化酶的δ13C(‰)显著变负的程度要小一些(-18.3‰),这与C3植物光合作用的最适温度偏低(15-25℃)相一致。应用此法目前已测得C3植物的δ13C(‰)在-23到-34‰之间,C4植物的δ13C(‰)在-10到一18‰之间,并据此发现了一些δ13C(‰)居于C3植物与C4植物之间的C3/C4中间类型植物。对于CAM植物来说,得到的δ13C(‰)在-14到-33%之间,显然较低的值落在C4植物的δ13C(‰)范围内,而较高的值则落在C3植物的δ13C(‰)范围内。对此种情况的解释是,许多CAM植物在变化着的环境条件中,能够从光合作用的C3方式转变到CAM,反之亦然。从上新世到二叠纪的代表性化石植物材料中得到的δ13C(0/00),都在现代典型的C3植物范围内,并且目前古老植物中也很少发现有CAM植物存在,这表明植物自来到陆上以来,C3途径就作为一个固定空气中CO2的主要方式进行着。而C4途径和CAM途径似乎比C3途径进化较晚,是C3途径对环境变化的一种适应性反应。3 光合作用多样性与植物系统演化的关系在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。单子叶禾本科被认为是进化程度很高的被子植物类群,其适应性特强,分布极广是众所周知的。研究表明,该科差不多存在几乎所有的光合作用类型,并且公认较原始的竹亚科只有C3型,而进化较高级的虎耳草亚科和须芒草亚科等均为C4型,有些亚科如芦竹亚科等既有C3型,又有C4型。因此,在这种“高级进化科”中研究光合作用的多样性及其进化关系是很有代表意义的。4 结束语据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。

光照强度影响光合作用速率,光照增强可以提高作物产量,但是光照增强超过一定限度后,增加产量的效果就不再明显。

取断螺钉的方法研究论文

粗(5以上)的好办,打一个孔用专用的取丝器就行了。细的可麻烦,不如就别理只是重新钻孔攻丝。

以下几种方法供你参考。1、螺钉断头后,如有一部分露出,可用适当的钳子卡紧后拧出,或在断头螺钉上焊接一个方螺母,将断头螺钉拧出。2、断头略有外露,可用偏铲按拧出螺钉的方向慢慢铲出。3、断头螺钉仅露出少许,可在露出部分锯一槽口然后用螺丝刀拧出。4、断头螺钉埋里面,可选用一个与螺钉螺纹内径相当的钻头,将螺钉全部钻掉,然后用同类丝攻复一下扣即可。5、在断头螺钉上钻一个适当大小的孔,打入一个棱锥或改变成反向螺纹,并拧入反向螺纹的螺钉,然后按一般拆卸螺钉的方法拧出。

1、用电钻2、用平口螺丝刀+榔头

可以用电焊补上一个螺丝尾出来,在电焊时热胀冷缩之下很容易拧动。

  • 索引序列
  • 螺丝钉对木材强度的影响研究论文
  • 强酸强碱对蛋白酶的影响研究论文
  • 灌木对环境的影响研究论文
  • 光照强度对黄芪的影响论文文献
  • 取断螺钉的方法研究论文
  • 返回顶部