• 回答数

    5

  • 浏览数

    85

蜡笔1982
首页 > 期刊论文 > 低热膨胀材料研究现状论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

小兔菲宝宝

已采纳

刘晓丹1,2 陶兴华1 牛新明1

(1.中国石化石油工程技术研究院,北京 100101;2.中国石油大学,北京 102249)

摘 要 本文旨在研究如何提高膨胀管抗挤强度,分别从材料和强度影响外部因素入手进行分析。首先,提出高性能膨胀管材料选择的主要依据,基于此研究了膨胀管抗挤强度的外部影响因素,采用实验分析、微观理论剖析、模拟计算相结合的手段,诠释了其对抗挤强度的影响及敏感性。其次,研究了不同膨胀工艺对膨胀后管体性能的影响规律,给出了选择工艺的基本依据。另外,本文在充分吸收国内外该领域先前研究的基础上,尝试性提出了新型膨胀管材料,探索了膨胀管技术未来发展的方向,旨在获得综合性能良好的膨胀管,为拓展其应用领域做好前瞻性准备。

关键词 膨胀管 材料 力学性能 抗挤强度 影响因素

Expandable Tubular Materials and StudyingProgress on Improving Collapse Strength

LIU Xiaodan1,2,TAO Xinghua1,NIU Xinming1

(1.SINOPEC Research Institute of Petroleum Engineering,Beijing 100101 ,China;2.China University of Petroleum,Beijing 1 02249,China)

Abstract The purpose of this article is to improve the collapse strength of expandable tubular.The analysis is beginning from how to choose expandable tubular materials and how the external factors affecting the collapse strength.First,it gives out the principle on which the materials are selected.Based on this the main relative factors of collapse strength are studied.In the process the methods as test,micro-theory analysis,simulation are used.Thus the effects on collapse strength of all the factors and their sensitivity are analyzed.Then the laws of the how the expandable technology effected collapse strength are also studied.It gives out how to choose the proper method under some circumstance.In the other hand,the paper learns from the former and gives out the new expandable tubular materials,explores the future development of expandable tubular technology.The main purpose is to obtain the expandable tubular of good comprehensive performance in order to enlarge the operating fields.

Key words Expandable tubular;materials;mechanical properties;collapse strength;effective factors

膨胀管技术是在钻井施工过程中,将小于上层套管内径的特殊管下入井内,在井下通过液压式或机械式方式推动膨胀锥头,使管柱径向发生永久变形,内径增大,从而达到封固复杂地层、修补破损套管等目的。国外膨胀管技术研究开始于20世纪70~80年代。随后发展迅速,早在1993年已经进行了膨胀管技术概念性试验。1998年Shell公司在Gasmer Test Well井进行了型号为J55、尺寸为133/8套管的原型试验,膨胀和密封获得成功[1]。1999年便达到了商业化的水平,2004年6月,Enventure公司已在世界20个国家为58家用户完成了247次技术服务,累计胀管长度达到258755ft,可靠性超过95%。国内研究起步较晚,基础薄弱。2000年开始引入膨胀管概念,跟踪研究发现国内需求市场较大。因此,西南、大港等机构科研院所进行了相关课题研究和试验。2004年,中国石化胜利石油管理局钻采工艺研究所首次进行实体可膨胀管试验并取得成功[2]。之后,因其应用规模不断拓展,受到越来越多科研机构的青睐。该技术优势核心:一是可以节约井眼尺寸;二是可用于套管修补、完井以及采油等作业的全过程;三是具灵活的作业程序、广泛的适用性、显著的经济性。因此,被业界赞誉为 “21世纪石油钻采行业的核心技术之一”[3]。

膨胀管必须具备良好的力学性能,即较高的强度、良好的塑形等。大量试验和力学模拟结果表明,套管膨胀后抗挤强度会有较大程度降低,降幅一般为30%~50%。为提高作业安全性,拓展其使用范围,需要更高抗挤强度的膨胀管。鉴于此,本文围绕提高膨胀管抗挤强度的核心,首先提出了从内因着手,分析并提出高性能膨胀管材料选择的主要依据。其次剖析影响膨胀管抗挤强度的外部主要因素,采用实验分析、微观理论剖析、模拟计算相结合的手段,诠释了主要外部影响因素对抗挤强度的敏感性。本文吸收了国内外该领域前辈研究的精华,提出了新型膨胀管材料,尝试性探索了膨胀管技术未来发展的方向。旨在改善和提高膨胀管的性能,拓展其应用领域。

1 膨胀管材料性能要求

回顾关于膨胀管材料方面的研究,国外花费了大约6年的时间,系统地研究了管体材料、膨胀方式、膨胀后热处理等对膨胀管机械性能、残余应力和抗外挤性能的影响[4~7]。通常使用的膨胀管材料包括普通低碳合金钢、高压锅炉钢以及专门用于膨胀管的材料,如目前常用的N80、L80、K55等。部分资料显示高强度管线钢X-95和套管材料P110也可以作为膨胀管材料使用。为了模拟和预测钢管膨胀后抗外挤性能,根据ASTM E9-89标准,进行了膨胀管的压缩试验,图1反映了膨胀对不同材料钢管压缩屈服强度和硬度的影响。由图1a可见,P110和X95膨胀后屈服强度降低最为明显,降低大约30%,其原因是由于加工硬化作用不明显(图1b),无法弥补由于Bauschinger效应引起的屈服强度的降低。K55、L80、N80膨胀前后屈服强度变化不大,推断其原因是由于加工硬化作用与Bauschinger效应相抵消。图2为膨胀前后钢管冲击韧性变化曲线,膨胀后不同钢级钢管冲击韧性都出现了一定程度的降低,但都能够满足API标准的要求。

综上所述,国外科研机构对膨胀管材料硬度、屈服强度、抗拉强度、屈强比和伸长率等进行了详细研究,总结出了膨胀管材料具备的基本性能。为满足膨胀管使用时较大的塑性变形要求,膨胀管管体材料应满足以下几点要求:(1)良好的塑性变形能力;(2)较高的抗拉强度;(3)较低的屈服强度;(4)较高的加工硬化指数;(5)膨胀后管材(膨胀率一般为10%~25%)力学性能应满足API的要求。这为膨胀管在不同膨胀工艺下、不同作业环境中的使用提出了材料选择的基本原则,对进一步改善膨胀管材料性能和提高管体强度具有重要的借鉴作用。

图1 膨胀对不同钢级管材屈服强度和硬度的影响

2 膨胀管膨胀工艺适应性研究

为研究膨胀工艺对管材性能和强度的影响,国外某研究机构开展了专题研究。本文着重分析研究膨胀加载方式对管体抗挤强度的影响。试验采用专有成分C-Mn钢50钢管,外径193.7mm,壁厚9.5mm,膨胀率15%。

不同方式膨胀后管体尺寸变化、残余应力和抗挤强度结果见表1。

试验结果表明:膨胀后管体抗挤强度下降47%~55%。膨胀方式对膨胀后管体残余应力、径厚比、抗挤强度影响显著。方式d,膨胀后径厚比和残余应力在几种膨胀方式中处于中间水平,膨胀后抗挤强度最高。方式e,残余应力较低,径厚比较高,抗挤强度最低。方式f,膨胀后径厚比最高,残余应力较低,抗挤强度较高。该试验为有条件使用膨胀管提供了切实可行的膨胀工艺。为确保膨胀管具有良好的性能,在膨胀过程中要增加膨胀管润滑措施,尽量居中,膨胀速度适宜(最佳膨胀速度为7.6~18m/min)。

图2 膨胀对不同钢级管材冲击韧性的影响

表1 膨胀和加载方式对膨胀后管体尺寸、残余应力及抗挤强度的影响

注:a为膨胀前;b为单独在膨胀锥前施加压缩载荷;c为在膨胀锥后水力膨胀,在膨胀锥前施加压缩载荷;d为固定膨胀锥后面的管端,拉拔膨胀锥膨胀;e为在膨胀锥后水力膨胀;f为固定管子两端,在膨胀锥后水力膨胀。

3 膨胀管抗挤强度关键影响因素分析

因膨胀管自身工艺具特殊性,使抗挤强度的不利影响因素变得更为复杂。现就管体结构、屈服强度、应变时效、Bauschinger效应等对膨胀后管体抗挤强度的影响进行研究,并对各因素的敏感性进行分析。

3.1 复杂几何形状膨胀管管体结构影响

膨胀管在制造、运输或者作业过程中,比厚壁套管更容易受到外界划拉、磕碰,作业中不可避免地受到钻柱等磨损。计算表明:膨胀管内壁磨损缺陷的存在,一方面降低了膨胀管本身的抗外挤强度,另外,如果外部地层为岩盐地层,因磨损改变了膨胀管管体径向不同方向的刚度,造成膨胀管外壁应力分布的不均匀性更加严重,非均匀载荷和内壁磨损缺陷的存在共同加剧了对膨胀管本体抗外挤强度的损伤。对型号为P110、壁厚12.7mm的套管,假设内壁缺陷的最大厚度为0、0.5、1、1.5、2、2.5mm,分别计算磨损后套管的抗挤强度表明,在磨损半径一定的情况下,磨损量达到2.5mm时,套管抗外挤强度下降约45%(图3)。另外,椭圆度也是影响膨胀管抗挤强度的重要因素之一,膨胀过程中椭圆度和壁厚不均度会继续保持甚至增强,膨胀后径厚比的增大也是导致膨胀后管体抗挤强度降低的原因。

图3 磨损对膨胀管抗挤强度的影响

3.2 膨胀管材料屈服强度的影响

如前所述,P110和X95材料膨胀后屈服强度降低较为明显,约30%,尤其是膨胀前期(膨胀率在10%之内)对管体影响显著。究其原因,是由于加工硬化作用不明显,无法弥补由于Bauschinger效应引起的屈服强度的降低。由于加工硬化作用与 Bauschinger 效应相抵消,K55、L80、N80膨胀前、后屈服强度变化不大。因此,材料的加工硬化率越高,膨胀后压缩屈服强度降低得越少。同时,根据Hall-Petch方程,即

油气成藏理论与勘探开发技术:中国石化石油勘探开发研究院2011年博士后学术论坛文集.4

式中:σy为屈服应力;σ0为晶格摩擦力;K为常数;d为晶粒直径。

结合试验得到的低碳钢加工硬化指数n与晶粒直径之间的经验关系式,即

油气成藏理论与勘探开发技术:中国石化石油勘探开发研究院2011年博士后学术论坛文集.4

得到屈服应力与加工硬化指数之间存在如下关系:

油气成藏理论与勘探开发技术:中国石化石油勘探开发研究院2011年博士后学术论坛文集.4

由式(3)可见,材料加工硬化指数越高,屈服强度越低。因此在保持抗拉强度基本不变的前提下,尽量降低膨胀管材料的屈服强度、提高材料加工硬化指数对提高膨胀管抗外挤强度具有积极意义。国外研究认为在考虑材料非线性、加载历史、椭圆度、壁厚不均匀度条件下,在径厚比大于20时,材料的屈服强度并不是影响膨胀管抗挤强度的关键因素。

3.3 应变时效的影响

应变时效主要发生在低碳钢和低合金钢中,是指在塑性变形时或变形后,固溶状态的间隙溶质(C、N)与位错交互作用,钉扎位错阻止变形,导致强度提高、韧性下降的力学冶金现象。应变时效对膨胀管抗挤强度有重要影响,下面以L80膨胀管为例定量分析。表2为膨胀及应变时效对L80套管压缩屈服强度的影响。由于膨胀管是在温度环境为50 ~350℃井下进行膨胀施工,因此试验考察了在一定温度下的膨胀管应变时效作用。由表2可见,当管体膨胀20%后,压缩屈服强度由原来的632MPa降低为505MPa,降低约20%,出现所谓反载软化现象。在150℃温度下时效1.5h,屈服强度损伤恢复约14%,在该温度下时效作用5h,压缩屈服强度提高到639MPa,与膨胀前管体屈服强度相近。保持时效时间为5h,温度升高至175℃,屈服强度不再继续提高。这种现象说明膨胀管在井下使用过程中,膨胀初期抗外压强度会出现较大程度的降低。但经过一段时间时效后,抗外挤强度又会在一定范围内提高。

表2 膨胀和应变时效对L80套管屈服强度的影响

3.4 膨胀过程中的Bauschinger效应

膨胀管服役期间,它将受到内压力、外挤力以及拉力的作用。管子承受内压的方向和膨胀方向相同,而承受外挤力的方向和初始膨胀方向相反,所以Bauschinger效应会导致膨胀后的管体抗内压能力增强,抗外挤能力下降。影响机理如下:

Bauschinger效应大小与金属材料塑性变形量密切相关,在一定范围内,Bauschinger效应随塑性变形量增加而增大。但当塑性变形量超过易滑移区时,因位错增殖和难于重分布,则在随后反向加载时,Bauschinger效应可迅速降低甚至消失。因此,研究Bauschinger效应值与金属材料塑性变形量之间的关系对提高膨胀管抗挤毁强度有重要的意义。

3.5 膨胀后管体内产生的残余应力

管体膨胀过程中,环向、轴向均产生塑性变形,这种塑性变形一般是不均匀的,不均匀变形在管体内产生附加应力,膨胀后残留在管体内形成残余应力。张建兵等对35CrMo钢管和J55套管膨胀后残余应力的测量和分析结果表明[8],膨胀后管体存在显著的环向残余压缩应力(其值约为200MPa),其效应相当于直接降低了管体的横向压缩屈服强度,它是导致膨胀后管体抗挤强度下降的一个重要因素。

3.6 膨胀管抗挤强度影响因素敏感性分析

力学模拟分析和和室内试验均表明,由于膨胀产生的残余应力和 Bauschinger 效应共同作用,膨胀后管体抗外挤强度有较大程度降低。膨胀后因管壁有不同程度的减薄。因此,原有的损伤或后续作业可能造成的磨损等缺陷都更加严重地影响膨胀后管体的抗挤强度。对于径厚比大于20的膨胀管,磨损深度比磨损半径影响程度更大;材料的屈服强度对膨胀管抗外挤强度的影响并不大。其他因素如Bauschinger效应、残余应力等相互影响,以及其对套管抗外挤强度的影响,有待于进一步的定量分析研究。

4 提高膨胀管抗挤强度新思路的探索

为了提高膨胀管作业的安全性,获得良好的膨胀管综合性能,现从材料热处理、管体结构优化、管体膨胀整形等角度提出增强抗外挤强度的新思路。

4.1 膨胀管材料热处理工艺优化

一般情况下,随着钢级的提高,加工硬化率降低,屈服强度比提高,这会导致膨胀后抗挤强度大幅度降低。可以通过对普通套管制定合适的热处理改善其力学性能。例如,可以对显微组织为铁素体+珠光体的低碳钢或低合金钢套管进行亚温淬火,即将材料加热到奥氏体与铁素体之间两相区(Ac1—Ac3之间),保温后淬火以获得铁素体和马氏体两相组织[9,10]。这种组织状态的钢具有强度高、屈服点低、连续屈服、加工硬化率高和延伸率高等特点[11]。研究表明,铁素体+马氏体双相组织钢与普通铁素体+珠光体组织钢相比膨胀后具有更高的抗挤强度[12]。

4.2 膨胀前后管体结构优化

如前所述,膨胀管缺陷的存在使其抗挤强度大大降低,在膨胀后相应缺陷的不利影响更加恶劣。因此,在膨胀管选择前应设定更加严格的标准,加大整形力度,力求获得近似理想圆形膨胀管。在膨胀管服役期间,要优化工艺措施,防止钻柱或其他作业管串磨损膨胀管内壁。

4.3 膨胀管膨胀后消除残余应力

膨胀管因为加工和作业过程的影响,导致存在一定的残余应力,这对于膨胀管的抗挤强度会造成不可忽视的不利影响。因此,应采取主动措施将残余应力降至最低。下井前残余应力消除工艺及方法比较成熟。井下膨胀后残余应力消除是目前较新的认识。其中,超声冲击是相对有效的方法。膨胀芯下面连接超声波装置,随膨胀工艺自下而上移动并旋转,采用20kHz以上的高频大功率超声波,使膨胀管表层发生较大的压缩塑性变形,能够有效降低残余应力,提高膨胀管的综合性能。

5 膨胀管新材料研究展望

如前所述,膨胀管材料需要良好的强度和塑性匹配以及优良的加工硬化能力,可以采用强塑积(抗拉强度与延伸率的乘积)作为衡量膨胀管材料性能的指标。国际上Shell公司最先推出的膨胀管用钢LSX80,其强塑积达到30GPa%。先进的汽车用钢与膨胀管材料性能要求相似,可以引入到新型的膨胀管材料开发中。第二代汽车用钢材料中的TWIP钢和奥氏体不锈钢属于高合金钢的范畴,它的组织结构主要是软相奥氏体。通过利用奥氏体的TWIP效应将钢的强度提高800~1000MPa,塑性达到50%~80%,因而其强塑积达到50~70GPa%的水平[13]。目前我国自主研发的第三代汽车用钢,通过中锰碳钢的合金化设计及奥氏体逆相变等措施,制备出含30%左右的亚稳奥氏体与超细晶基体的双相复合组织钢。其室温抗拉强度在0.8~1.6GPa级,断后延伸率为30%~45%的水平,而其强塑积为30~48GPa%[14]。将这些先进材料引入石油行业,作为未来高性能膨胀管材料具有广阔的前景。

6 结 论

1)通过分析膨胀前后P110、X95、K55钢管的硬度、屈服强度、Bauschinger效应及其相互影响对管体抗外挤性能的影响,给出了膨胀管材料具备的基本性能,为高性能膨胀管材料开发提供了主要依据。

2)结合5种不同膨胀试验加载方式,分析了膨胀工艺对膨胀管结构和综合性能的影响。据此,结合实际工况能够为选择合适的膨胀工艺提供重要参考依据,从而获得具有良好综合性能的膨胀管。

3)膨胀工艺不同造成膨胀后残余应力的分布和大小变化较大,不仅严重影响膨胀管抗外挤强度,而且直接影响其他后续工艺的效率。本文提及的井下消除残余应力的方法提供了改善管体强度的新思路。

4)膨胀管制造和加工都可能不同程度地造成管体的变形,即使入井后后续作业也可能造成膨胀管内壁的磨损,这都将严重影响膨胀波纹管抗外挤强度,而且这种缺陷对强度的影响将在膨胀后恶化。

5)如果不考虑其他影响因素,膨胀管材料屈服强度比越低,加工硬化率越高,膨胀后抗挤强度损失越小。可以通过对普通套管制定合适的热处理工艺(如亚温淬火)来提高其抗挤强度。

6)将第二代汽车用钢和新型第三代汽车用钢引入石油行业膨胀管技术领域,创新了该方面的理论研究思路,补充和扩展了原有膨胀管选材范围,具有重要的启发意义和导向作用。

参考文献

[1]孟庆昆,谢正凯,冯来,等.可膨胀套管技术概述[J].钻采工艺,2003,26(4):67~68,74.

[2]李作会.膨胀管关键技术研究及首次应用[J].石油钻采工艺,2004,26(3):17~19.

[3]Dupal K K,Campo D B,Lofton J E,et al.Industry experience with solid expandable tubular technology[J].World Oil,2001,222:7~8.

[4]Filippov A,Mack R,Cook L,et al.Expandable tubular solutions[J].SPE 56500,1999.

[5]Mack R D,Terry Mccoy,Lev Ring.How in situ expansion affects casing and tubing properties[J].World Oil,1999,220:69~71.

[6]Mack R,Filippov A,Kendziora L,et al.In-situ expansion of casing and tubing-effect on mechanical properties and resistance to sulfide stress cracking[J].Corrosion,2000,3:26~31.

[7]Mack R D.The effect of tubular expansion on the mechanical properties and performance of selected OCTG-results of laboratory studies[J].OTC 17622,2005.

[8]张建兵,韩建增,陈建初,等.膨胀套管中的残余应力问题[J].石油钻采工艺,2005,27(2):18~20.

[9]张树坤,张利民.36Mn2V钢石油套管的亚温淬火强韧化处理工艺[J].钢管,2005,34(3):20~22.

[10]王冀恒,李惠,谢春生,等.35CrMo钢亚温淬火强韧化组织与性能研究[J].热加工工艺,2009,38(6):144~146.

[11]马鸣图,吴宝榕.双相钢——物理和力学冶金[M].北京:冶金工业出版社,2009.

[12]Pavlina E J,Van Tyne C J,Hertel K.Hydraulic bulge testing of dual phase steel tubes produced using a novel processing route[J].Journal of Materials Processing Technology,2008,201 :242~246.

[13]Frommeyer G,Brux U,Neumann P.Super-ductile and high-strength manganese -TRIP/TWIP steels for high energy absorption purposes[J].ISIJ Inter .,2003,43(3):438 ~446.

[14]董瀚,曹文全,时捷,等.第三代汽车钢的组织与性能调控技术[J].钢铁,2011,46(6):1 ~1.1

141 评论

木小蹬蹬民

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put forward.Key words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 5.3SiCP/2124Al 粉末冶金20 552 103 7.0SiCP/6061Al 粉末冶金20 496 103 5.5SiCP/7090Al 粉末冶金20 724 103 2.5SiCP/6061Al 粉末冶金40 441 125 0.7SiCP/7091Al 粉末冶金15 689 97 5.0SiCP/A356Al 搅拌铸造20 350 98 0.5SiCP/A359Al 无压浸渗30 382 125 0.4表1 碳化硅颗粒增强铝基复合材料的力学性能[1]Tab.1 Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域3.1 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为0.3m,仅重4.54kg。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。3.2 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。3.3 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。4.1 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 2.3SiCp /ZL101 20 375 101 1.64SiCp /ZL101A 20 330 100 0.5SiCp /6061 25 517 114 4.5SiCp /2124 25 565 114 5.6Al2O3 /Al-1.5Mg 20 226 95 5.9Cf /Al 26 387 112 -表2 金属基复合材料的力学性能[1]Tab.2 Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。4.2 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。4.3 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。4.4 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。5.1 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。5.2 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。5.4 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. Mater.Process.Tech.,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

293 评论

黄二小要奋斗

在连铸坯 的凝固收缩的数值模拟中。铸坯的凝固收缩 行为是通过热膨胀系数来实现的。为此、本 论文针对碳钢的热膨胀系数。对比研究了不 同的热膨胀系数的取值方法对铸坯温度场和 初生坯壳的影响。结果表明,所建立的碳钢 瞬时线性热膨胀系数模型,应用于连铸结晶 器内热和力学状态有限元模拟中将具有重要 的意义。

324 评论

海派装饰0312

快,接受相同的热量不易变形和膨胀,能在温差较大的条件下保持物体原来的形状

226 评论

未暖rabbit

物体的体积或长度随温度的升高而增大的现象为热膨胀。热膨胀系数用来描述温度变化时材料发生膨胀或收缩程度的物理量。线(体)膨胀系数指温度升高1K时物体的长度(体积)的相对增加。 热膨胀的本质为点阵结构中的质点间平均距离随温度的升高而增大的现象。晶格振动一般近似地认为是质点的简谐振动。事实上在晶格振动中相邻质点间的作用力是非线性的,作用力并不简单地与位移成正比。 影响材料热膨胀的因素有很多,除了温度外还有合金成分和组成相、晶体缺陷、晶体结构等。 组成合金的溶质元素及含量对合金的热膨胀有明显影响。对于大多数合金来说,如合金形成均一的单相固溶体,则合金的热膨胀系数一般介于组元的热膨胀系数之间,可以用简单的相加率的关系进行计算。如果金属固溶体中加入过渡元素,则固溶体的膨胀系数变化就没有规律性。 当金属和合金发生相变时,膨胀量和热膨胀系数也发生变化。对于一级相变,伴随着比热容的变化,相应的热膨胀系数在相变点有不连续变化,在转变点处变为无穷大。对于二级相变,膨胀系数曲线在相变点处出现拐点。 晶体缺陷空位对热膨胀系数影响比较大。空位可以由离子辐射产生,也可以由高温淬火产生,空位的产生可以导致热膨胀系数的增加。 晶体结构组成相同,结构不同的物质,膨胀系数不相同。一般情况下,结构紧密的晶体,膨胀系数较大;而类似于无定形的玻璃,往往具有较小的膨胀系数。结构紧密的多晶

349 评论

相关问答

  • 低热膨胀材料研究现状论文

    刘晓丹1,2 陶兴华1 牛新明1 (1.中国石化石油工程技术研究院,北京 100101;2.中国石油大学,北京 102249) 摘 要 本文旨在研究如何提高膨胀

    蜡笔1982 5人参与回答 2023-12-08
  • 生物材料研究现状论文

    生物医用高分子材料摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子

    傻傻的双子 2人参与回答 2023-12-11
  • 建筑玻璃材料研究现状论文

    随着建筑工程的发展,建筑工程材料也变得越来越重要,建筑项目的完成质量往往取决于建筑材料质量的好坏。下文是我为大家搜集整理的关于建筑材料论文2000字的内容,欢迎

    哈毛小子 3人参与回答 2023-12-09
  • 通货膨胀研究论文

    造成通货膨胀的原因主要有以下几个方面:(一)需求拉动的通货膨胀。需求拉上的通货膨胀是指总需求过渡增长所引起的通货膨胀,即“太多的货币追逐大小的货物”,按照凯恩斯

    七月小太阳 5人参与回答 2023-12-10
  • co2膨胀烟丝分类使用研究论文

    1、以优质的膨胀烟丝制作而成,膨胀烟丝是经过膨胀技术处理后的烟丝,包括膨胀叶丝和膨胀梗丝。经过膨胀技术处理后的烟丝,可以提高烟丝的填充值、降低卷烟的原料耗用量,

    可爱哆咪 4人参与回答 2023-12-07